Text-to-Speech
Transformers
Safetensors
English
parler_tts
text2text-generation
annotation
ylacombe commited on
Commit
855b4ef
1 Parent(s): 35a3ea6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -170
README.md CHANGED
@@ -1,199 +1,95 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
 
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-to-speech
5
+ - annotation
6
+ language:
7
+ - en
8
+ pipeline_tag: text-to-speech
9
+ inference: false
10
+ datasets:
11
+ - ylacombe/jenny-tts-tagged-v1
12
+ - reach-vb/jenny_tts_dataset
13
  ---
14
 
 
15
 
 
16
 
17
+ <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
18
 
19
 
20
+ # Parler-TTS Mini v1 - Jenny
21
 
22
+ <a target="_blank" href="https://huggingface.co/spaces/parler-tts/parler_tts_mini">
23
+ <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
24
+ </a>
25
 
 
26
 
27
+ * **Fine-tuning guide on Colab:**
28
 
29
+ <a target="_blank" href="https://github.com/ylacombe/scripts_and_notebooks/blob/main/Finetuning_Parler_TTS_v1_on_a_single_speaker_dataset.ipynb">
30
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
31
+ </a>
 
 
 
 
32
 
33
+ Fine-tuned version of **Parler-TTS Mini v1** on the [30-hours single-speaker high-quality Jenny (she's Irish ☘️) dataset](https://github.com/dioco-group/jenny-tts-dataset), suitable for training a TTS model.
34
+ Usage is more or less the same as Parler-TTS v1, just specify they keyword “Jenny” in the voice description:
35
 
36
+ ## Usage
37
 
 
 
 
38
 
39
+ ```sh
40
+ pip install git+https://github.com/huggingface/parler-tts.git
41
+ ```
42
 
43
+ You can then use the model with the following inference snippet:
44
 
45
+ ```py
46
+ import torch
47
+ from parler_tts import ParlerTTSForConditionalGeneration
48
+ from transformers import AutoTokenizer
49
+ import soundfile as sf
50
 
51
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
52
 
53
+ model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-mini-v1-jenny").to(device)
54
+ tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-mini-v1-jenny")
55
 
56
+ prompt = "Hey, how are you doing today? My name is Jenny, and I'm here to help you with any questions you have."
57
+ description = "Jenny speaks at an average pace with an animated delivery in a very confined sounding environment with clear audio quality."
58
 
59
+ input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
60
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
61
 
62
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
63
+ audio_arr = generation.cpu().numpy().squeeze()
64
+ sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
65
+ ```
66
 
67
+ ## Citation
68
 
69
+ If you found this repository useful, please consider citing this work and also the original Stability AI paper:
70
 
71
+ ```
72
+ @misc{lacombe-etal-2024-parler-tts,
73
+ author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
74
+ title = {Parler-TTS},
75
+ year = {2024},
76
+ publisher = {GitHub},
77
+ journal = {GitHub repository},
78
+ howpublished = {\url{https://github.com/huggingface/parler-tts}}
79
+ }
80
+ ```
81
 
82
+ ```
83
+ @misc{lyth2024natural,
84
+ title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations},
85
+ author={Dan Lyth and Simon King},
86
+ year={2024},
87
+ eprint={2402.01912},
88
+ archivePrefix={arXiv},
89
+ primaryClass={cs.SD}
90
+ }
91
+ ```
92
 
93
+ ## License
94
 
95
+ License - Attribution is required in software/websites/projects/interfaces (including voice interfaces) that generate audio in response to user action using this dataset. Atribution means: the voice must be referred to as "Jenny", and where at all practical, "Jenny (Dioco)". Attribution is not required when distributing the generated clips (although welcome). Commercial use is permitted. Don't do unfair things like claim the dataset is your own. No further restrictions apply.