new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference

Multilingual transformers (XLM, mT5) have been shown to have remarkable transfer skills in zero-shot settings. Most transfer studies, however, rely on automatically translated resources (XNLI, XQuAD), making it hard to discern the particular linguistic knowledge that is being transferred, and the role of expert annotated monolingual datasets when developing task-specific models. We investigate the cross-lingual transfer abilities of XLM-R for Chinese and English natural language inference (NLI), with a focus on the recent large-scale Chinese dataset OCNLI. To better understand linguistic transfer, we created 4 categories of challenge and adversarial tasks (totaling 17 new datasets) for Chinese that build on several well-known resources for English (e.g., HANS, NLI stress-tests). We find that cross-lingual models trained on English NLI do transfer well across our Chinese tasks (e.g., in 3/4 of our challenge categories, they perform as well/better than the best monolingual models, even on 3/5 uniquely Chinese linguistic phenomena such as idioms, pro drop). These results, however, come with important caveats: cross-lingual models often perform best when trained on a mixture of English and high-quality monolingual NLI data (OCNLI), and are often hindered by automatically translated resources (XNLI-zh). For many phenomena, all models continue to struggle, highlighting the need for our new diagnostics to help benchmark Chinese and cross-lingual models. All new datasets/code are released at https://github.com/huhailinguist/ChineseNLIProbing.

ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale

Multi-task learning (MTL) has shown considerable practical benefits, particularly when using pre-trained language models (PLMs). While this is commonly achieved by simultaneously learning n tasks under a joint optimization procedure, recent methods such as AdapterFusion structure the problem into two distinct stages: (i) task learning, where knowledge specific to a task is encapsulated within sets of parameters (\eg adapters), and (ii) transfer, where this already learned knowledge is leveraged for a target task. This separation of concerns provides numerous benefits, such as promoting reusability, and addressing cases involving data privacy and societal concerns; on the flip side, current two-stage MTL methods come with the cost of introducing a substantial number of additional parameters. In this work, we address this issue by leveraging the usefulness of linearly scaling the output representations of source adapters for transfer learning. We introduce ScaLearn, a simple and highly parameter-efficient two-stage MTL method that capitalizes on the knowledge of the source tasks by learning a minimal set of scaling parameters that enable effective knowledge transfer to a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and HumSet) show that our ScaLearn, in addition to facilitating the benefits of two-stage MTL, consistently outperforms strong baselines with only a small number of transfer parameters - roughly 0.35% of those of AdapterFusion. Remarkably, we observe that ScaLearn maintains its strong abilities even when further reducing parameters through uniform scaling and layer-sharing, achieving similarly competitive results with only 8 transfer parameters for each target task. Our proposed approach thus demonstrates the power of simple scaling as a promise for more efficient task transfer.

Fast and Accurate Transferability Measurement by Evaluating Intra-class Feature Variance

Given a set of pre-trained models, how can we quickly and accurately find the most useful pre-trained model for a downstream task? Transferability measurement is to quantify how transferable is a pre-trained model learned on a source task to a target task. It is used for quickly ranking pre-trained models for a given task and thus becomes a crucial step for transfer learning. Existing methods measure transferability as the discrimination ability of a source model for a target data before transfer learning, which cannot accurately estimate the fine-tuning performance. Some of them restrict the application of transferability measurement in selecting the best supervised pre-trained models that have classifiers. It is important to have a general method for measuring transferability that can be applied in a variety of situations, such as selecting the best self-supervised pre-trained models that do not have classifiers, and selecting the best transferring layer for a target task. In this work, we propose TMI (TRANSFERABILITY MEASUREMENT WITH INTRA-CLASS FEATURE VARIANCE), a fast and accurate algorithm to measure transferability. We view transferability as the generalization of a pre-trained model on a target task by measuring intra-class feature variance. Intra-class variance evaluates the adaptability of the model to a new task, which measures how transferable the model is. Compared to previous studies that estimate how discriminative the models are, intra-class variance is more accurate than those as it does not require an optimal feature extractor and classifier. Extensive experiments on real-world datasets show that TMI outperforms competitors for selecting the top-5 best models, and exhibits consistently better correlation in 13 out of 17 cases.

Understanding the Role of Invariance in Transfer Learning

Transfer learning is a powerful technique for knowledge-sharing between different tasks. Recent work has found that the representations of models with certain invariances, such as to adversarial input perturbations, achieve higher performance on downstream tasks. These findings suggest that invariance may be an important property in the context of transfer learning. However, the relationship of invariance with transfer performance is not fully understood yet and a number of questions remain. For instance, how important is invariance compared to other factors of the pretraining task? How transferable is learned invariance? In this work, we systematically investigate the importance of representational invariance for transfer learning, as well as how it interacts with other parameters during pretraining. To do so, we introduce a family of synthetic datasets that allow us to precisely control factors of variation both in training and test data. Using these datasets, we a) show that for learning representations with high transfer performance, invariance to the right transformations is as, or often more, important than most other factors such as the number of training samples, the model architecture and the identity of the pretraining classes, b) show conditions under which invariance can harm the ability to transfer representations and c) explore how transferable invariance is between tasks. The code is available at https://github.com/tillspeicher/representation-invariance-transfer.

Language Versatilists vs. Specialists: An Empirical Revisiting on Multilingual Transfer Ability

Multilingual transfer ability, which reflects how well the models fine-tuned on one source language can be applied to other languages, has been well studied in multilingual pre-trained models (e.g., BLOOM). However, such ability has not been investigated for English-centric models (e.g., LLaMA). To fill this gap, we study the following research questions. First, does multilingual transfer ability exist in English-centric models and how does it compare with multilingual pretrained models? Second, does it only appears when English is the source language for the English-centric model? Third, how does it vary in different tasks? We take multilingual reasoning ability as our focus and conduct extensive experiments across four types of reasoning tasks. We find that the multilingual pretrained model does not always outperform an English-centric model. Furthermore, English appears to be a less suitable source language, and the choice of source language becomes less important when the English-centric model scales up. In addition, different types of tasks exhibit different multilingual transfer abilities. These findings demonstrate that English-centric models not only possess multilingual transfer ability but may even surpass the transferability of multilingual pretrained models if well-trained. By showing the strength and weaknesses, the experiments also provide valuable insights into enhancing multilingual reasoning abilities for the English-centric models.

Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach

Estimating the transferability of publicly available pretrained models to a target task has assumed an important place for transfer learning tasks in recent years. Existing efforts propose metrics that allow a user to choose one model from a pool of pre-trained models without having to fine-tune each model individually and identify one explicitly. With the growth in the number of available pre-trained models and the popularity of model ensembles, it also becomes essential to study the transferability of multiple-source models for a given target task. The few existing efforts study transferability in such multi-source ensemble settings using just the outputs of the classification layer and neglect possible domain or task mismatch. Moreover, they overlook the most important factor while selecting the source models, viz., the cohesiveness factor between them, which can impact the performance and confidence in the prediction of the ensemble. To address these gaps, we propose a novel Optimal tranSport-based suBmOdular tRaNsferability metric (OSBORN) to estimate the transferability of an ensemble of models to a downstream task. OSBORN collectively accounts for image domain difference, task difference, and cohesiveness of models in the ensemble to provide reliable estimates of transferability. We gauge the performance of OSBORN on both image classification and semantic segmentation tasks. Our setup includes 28 source datasets, 11 target datasets, 5 model architectures, and 2 pre-training methods. We benchmark our method against current state-of-the-art metrics MS-LEEP and E-LEEP, and outperform them consistently using the proposed approach.

Diffusion-Based Neural Network Weights Generation

Transfer learning has gained significant attention in recent deep learning research due to its ability to accelerate convergence and enhance performance on new tasks. However, its success is often contingent on the similarity between source and target data, and training on numerous datasets can be costly, leading to blind selection of pretrained models with limited insight into their effectiveness. To address these challenges, we introduce D2NWG, a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning, conditioned on the target dataset. Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation, learning the weight distributions of models pretrained on various datasets. This allows for automatic generation of weights that generalize well across both seen and unseen tasks, outperforming state-of-the-art meta-learning methods and pretrained models. Moreover, our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques that rely on task-specific model collections or access to original training data. By modeling the parameter distribution of LLMs, D2NWG enables task-specific parameter generation without requiring additional fine-tuning or large collections of model variants. Extensive experiments show that our method consistently enhances the performance of diverse base models, regardless of their size or complexity, positioning it as a robust solution for scalable transfer learning.

Beyond Not-Forgetting: Continual Learning with Backward Knowledge Transfer

By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly.

Talking Models: Distill Pre-trained Knowledge to Downstream Models via Interactive Communication

Many recent breakthroughs in machine learning have been enabled by the pre-trained foundation models. By scaling up model parameters, training data, and computation resources, foundation models have significantly advanced the state-of-the-art in many applications. However, it is still an open question of how to use these models to perform downstream tasks efficiently. Knowledge distillation (KD) has been explored to tackle this challenge. KD transfers knowledge from a large teacher model to a smaller student model. While KD has been successful in improving student model performance, recent research has discovered that a powerful teacher does not necessarily lead to a powerful student, due to their huge capacity gap. In addition, the potential distribution shifts between the pre-training data and downstream tasks can make knowledge transfer in KD sub-optimal for improving downstream task performance. In this paper, we extend KD with an interactive communication process to help students of downstream tasks learn effectively from pre-trained foundation models. Our design is inspired by the way humans learn from teachers who can explain knowledge in a way that meets the students' needs. Specifically, we let each model (i.e., student and teacher) train two components: (1) an encoder encoding the model's hidden states to a message and (2) a decoder decoding any messages to its own hidden states. With encoder and decoder, not only can the teacher transfer rich information by encoding its hidden states, but also the student can send messages with information of downstream tasks to the teacher. Therefore, knowledge passing from teacher to student can be tailored to the student's capacity and downstream tasks' distributions. We conducted experiments on benchmark datasets to show that our communication mechanism outperforms state-of-the-art distillation techniques.

A Deep Learning Framework for Lifelong Machine Learning

Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learning a new concept or task with only a few examples. Several lines of machine learning research, such as lifelong machine learning, few-shot learning, and transfer learning attempt to capture these properties. However, most previous approaches can only demonstrate subsets of these properties, often by different complex mechanisms. In this work, we propose a simple yet powerful unified deep learning framework that supports almost all of these properties and approaches through one central mechanism. Experiments on toy examples support our claims. We also draw connections between many peculiarities of human learning (such as memory loss and "rain man") and our framework. As academics, we often lack resources required to build and train, deep neural networks with billions of parameters on hundreds of TPUs. Thus, while our framework is still conceptual, and our experiment results are surely not SOTA, we hope that this unified lifelong learning framework inspires new work towards large-scale experiments and understanding human learning in general. This paper is summarized in two short YouTube videos: https://youtu.be/gCuUyGETbTU (part 1) and https://youtu.be/XsaGI01b-1o (part 2).

Noise May Contain Transferable Knowledge: Understanding Semi-supervised Heterogeneous Domain Adaptation from an Empirical Perspective

Semi-supervised heterogeneous domain adaptation (SHDA) addresses learning across domains with distinct feature representations and distributions, where source samples are labeled while most target samples are unlabeled, with only a small fraction labeled. Moreover, there is no one-to-one correspondence between source and target samples. Although various SHDA methods have been developed to tackle this problem, the nature of the knowledge transferred across heterogeneous domains remains unclear. This paper delves into this question from an empirical perspective. We conduct extensive experiments on about 330 SHDA tasks, employing two supervised learning methods and seven representative SHDA methods. Surprisingly, our observations indicate that both the category and feature information of source samples do not significantly impact the performance of the target domain. Additionally, noise drawn from simple distributions, when used as source samples, may contain transferable knowledge. Based on this insight, we perform a series of experiments to uncover the underlying principles of transferable knowledge in SHDA. Specifically, we design a unified Knowledge Transfer Framework (KTF) for SHDA. Based on the KTF, we find that the transferable knowledge in SHDA primarily stems from the transferability and discriminability of the source domain. Consequently, ensuring those properties in source samples, regardless of their origin (e.g., image, text, noise), can enhance the effectiveness of knowledge transfer in SHDA tasks. The codes and datasets are available at https://github.com/yyyaoyuan/SHDA.

Resolving Interference When Merging Models

Transfer learning - i.e., further fine-tuning a pre-trained model on a downstream task - can confer significant advantages, including improved downstream performance, faster convergence, and better sample efficiency. These advantages have led to a proliferation of task-specific fine-tuned models, which typically can only perform a single task and do not benefit from one another. Recently, model merging techniques have emerged as a solution to combine multiple task-specific models into a single multitask model without performing additional training. However, existing merging methods often ignore the interference between parameters of different models, resulting in large performance drops when merging multiple models. In this paper, we demonstrate that prior merging techniques inadvertently lose valuable information due to two major sources of interference: (a) interference due to redundant parameter values and (b) disagreement on the sign of a given parameter's values across models. To address this, we propose our method, TrIm, Elect Sign & Merge (TIES-Merging), which introduces three novel steps when merging models: (1) resetting parameters that only changed a small amount during fine-tuning, (2) resolving sign conflicts, and (3) merging only the parameters that are in alignment with the final agreed-upon sign. We find that TIES-Merging outperforms several existing methods in diverse settings covering a range of modalities, domains, number of tasks, model sizes, architectures, and fine-tuning settings. We further analyze the impact of different types of interference on model parameters, highlight the importance of resolving sign interference. Our code is available at https://github.com/prateeky2806/ties-merging

N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning

While bigger and deeper neural network architectures continue to advance the state-of-the-art for many computer vision tasks, real-world adoption of these networks is impeded by hardware and speed constraints. Conventional model compression methods attempt to address this problem by modifying the architecture manually or using pre-defined heuristics. Since the space of all reduced architectures is very large, modifying the architecture of a deep neural network in this way is a difficult task. In this paper, we tackle this issue by introducing a principled method for learning reduced network architectures in a data-driven way using reinforcement learning. Our approach takes a larger `teacher' network as input and outputs a compressed `student' network derived from the `teacher' network. In the first stage of our method, a recurrent policy network aggressively removes layers from the large `teacher' model. In the second stage, another recurrent policy network carefully reduces the size of each remaining layer. The resulting network is then evaluated to obtain a reward -- a score based on the accuracy and compression of the network. Our approach uses this reward signal with policy gradients to train the policies to find a locally optimal student network. Our experiments show that we can achieve compression rates of more than 10x for models such as ResNet-34 while maintaining similar performance to the input `teacher' network. We also present a valuable transfer learning result which shows that policies which are pre-trained on smaller `teacher' networks can be used to rapidly speed up training on larger `teacher' networks.

Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts

In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge and the student network to achieve fast adaptation. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art and validates the effectiveness of each proposed component. Our code is available at https://github.com/n3il666/Meta-DMoE.

Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning

Pathology diagnosis based on EEG signals and decoding brain activity holds immense importance in understanding neurological disorders. With the advancement of artificial intelligence methods and machine learning techniques, the potential for accurate data-driven diagnoses and effective treatments has grown significantly. However, applying machine learning algorithms to real-world datasets presents diverse challenges at multiple levels. The scarcity of labelled data, especially in low regime scenarios with limited availability of real patient cohorts due to high costs of recruitment, underscores the vital deployment of scaling and transfer learning techniques. In this study, we explore a real-world pathology classification task to highlight the effectiveness of data and model scaling and cross-dataset knowledge transfer. As such, we observe varying performance improvements through data scaling, indicating the need for careful evaluation and labelling. Additionally, we identify the challenges of possible negative transfer and emphasize the significance of some key components to overcome distribution shifts and potential spurious correlations and achieve positive transfer. We see improvement in the performance of the target model on the target (NMT) datasets by using the knowledge from the source dataset (TUAB) when a low amount of labelled data was available. Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.

Continual Lifelong Learning with Neural Networks: A Review

Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.

Towards a Unified View of Parameter-Efficient Transfer Learning

Fine-tuning large pre-trained language models on downstream tasks has become the de-facto learning paradigm in NLP. However, conventional approaches fine-tune all the parameters of the pre-trained model, which becomes prohibitive as the model size and the number of tasks grow. Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance. While effective, the critical ingredients for success and the connections among the various methods are poorly understood. In this paper, we break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them. Specifically, we re-frame them as modifications to specific hidden states in pre-trained models, and define a set of design dimensions along which different methods vary, such as the function to compute the modification and the position to apply the modification. Through comprehensive empirical studies across machine translation, text summarization, language understanding, and text classification benchmarks, we utilize the unified view to identify important design choices in previous methods. Furthermore, our unified framework enables the transfer of design elements across different approaches, and as a result we are able to instantiate new parameter-efficient fine-tuning methods that tune less parameters than previous methods while being more effective, achieving comparable results to fine-tuning all parameters on all four tasks.

Prototype-guided Cross-task Knowledge Distillation for Large-scale Models

Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.

NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research

A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study of the actual learning algorithm and model architecture, there are several hurdles towards our quest to build such models, such as the choice of learning protocol, metric of success and data needed to validate research hypotheses. In this work, we introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time, and it serves as an ideal test bed to assess how well models can adapt to new tasks, and do so better and more efficiently as time goes by. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and well understood supervised learning problems. Moreover, we provide a reference implementation including strong baselines and an evaluation protocol to compare methods in terms of their trade-off between accuracy and compute.

On Giant's Shoulders: Effortless Weak to Strong by Dynamic Logits Fusion

Efficient fine-tuning of large language models for task-specific applications is imperative, yet the vast number of parameters in these models makes their training increasingly challenging. Despite numerous proposals for effective methods, a substantial memory overhead remains for gradient computations during updates. Can we fine-tune a series of task-specific small models and transfer their knowledge directly to a much larger model without additional training? In this paper, we explore weak-to-strong specialization using logit arithmetic, facilitating a direct answer to this question. Existing weak-to-strong methods often employ a static knowledge transfer ratio and a single small model for transferring complex knowledge, which leads to suboptimal performance. % To address this, To surmount these limitations, we propose a dynamic logit fusion approach that works with a series of task-specific small models, each specialized in a different task. This method adaptively allocates weights among these models at each decoding step, learning the weights through Kullback-Leibler divergence constrained optimization problems. We conduct extensive experiments across various benchmarks in both single-task and multi-task settings, achieving leading results. By transferring expertise from the 7B model to the 13B model, our method closes the performance gap by 96.4\% in single-task scenarios and by 86.3\% in multi-task scenarios compared to full fine-tuning of the 13B model. Notably, we achieve surpassing performance on unseen tasks. Moreover, we further demonstrate that our method can effortlessly integrate in-context learning for single tasks and task arithmetic for multi-task scenarios. (Our implementation is available in https://github.com/Facico/Dynamic-Logit-Fusion.)

Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning

Massive data is often considered essential for deep learning applications, but it also incurs significant computational and infrastructural costs. Therefore, dataset pruning (DP) has emerged as an effective way to improve data efficiency by identifying and removing redundant training samples without sacrificing performance. In this work, we aim to address the problem of DP for transfer learning, i.e., how to prune a source dataset for improved pretraining efficiency and lossless finetuning accuracy on downstream target tasks. To our best knowledge, the problem of DP for transfer learning remains open, as previous studies have primarily addressed DP and transfer learning as separate problems. By contrast, we establish a unified viewpoint to integrate DP with transfer learning and find that existing DP methods are not suitable for the transfer learning paradigm. We then propose two new DP methods, label mapping and feature mapping, for supervised and self-supervised pretraining settings respectively, by revisiting the DP problem through the lens of source-target domain mapping. Furthermore, we demonstrate the effectiveness of our approach on numerous transfer learning tasks. We show that source data classes can be pruned by up to 40% ~ 80% without sacrificing downstream performance, resulting in a significant 2 ~ 5 times speed-up during the pretraining stage. Besides, our proposal exhibits broad applicability and can improve other computationally intensive transfer learning techniques, such as adversarial pretraining. Codes are available at https://github.com/OPTML-Group/DP4TL.

Fantastic Gains and Where to Find Them: On the Existence and Prospect of General Knowledge Transfer between Any Pretrained Model

Training deep networks requires various design decisions regarding for instance their architecture, data augmentation, or optimization. In this work, we find these training variations to result in networks learning unique feature sets from the data. Using public model libraries comprising thousands of models trained on canonical datasets like ImageNet, we observe that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other -- independent of overall performance. Given any arbitrary pairing of pretrained models and no external rankings (such as separate test sets, e.g. due to data privacy), we investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation -- a task made particularly difficult as additional knowledge can be contained in stronger, equiperformant or weaker models. Yet facilitating robust transfer in scenarios agnostic to pretrained model pairings would unlock auxiliary gains and knowledge fusion from any model repository without restrictions on model and problem specifics - including from weaker, lower-performance models. This work therefore provides an initial, in-depth exploration on the viability of such general-purpose knowledge transfer. Across large-scale experiments, we first reveal the shortcomings of standard knowledge distillation techniques, and then propose a much more general extension through data partitioning for successful transfer between nearly all pretrained models, which we show can also be done unsupervised. Finally, we assess both the scalability and impact of fundamental model properties on successful model-agnostic knowledge transfer.

PANDA: Prompt Transfer Meets Knowledge Distillation for Efficient Model Adaptation

Prompt-tuning, which freezes pretrained language models (PLMs) and only fine-tunes few parameters of additional soft prompt, shows competitive performance against full-parameter fine-tuning (i.e.model-tuning) when the PLM has billions of parameters, but still performs poorly in the case of smaller PLMs. Hence, prompt transfer (PoT), which initializes the target prompt with the trained prompt of similar source tasks, is recently proposed to improve over prompt-tuning. However, such a vanilla PoT approach usually achieves sub-optimal performance, as (i) the PoT is sensitive to the similarity of source-target pair and (ii) directly fine-tuning the prompt initialized with source prompt on target task might lead to catastrophic forgetting of source knowledge. In response to these problems, we propose a new metric to accurately predict the prompt transferability (regarding (i)), and a novel PoT approach (namely PANDA) that leverages the knowledge distillation technique to transfer the "knowledge" from the source prompt to the target prompt in a subtle manner and alleviate the catastrophic forgetting effectively (regarding (ii)). Furthermore, to achieve adaptive prompt transfer for each source-target pair, we use our metric to control the knowledge transfer in our PANDA approach. Extensive and systematic experiments on 189 combinations of 21 source and 9 target datasets across 5 scales of PLMs demonstrate that: 1) our proposed metric works well to predict the prompt transferability; 2) our PANDA consistently outperforms the vanilla PoT approach by 2.3% average score (up to 24.1%) among all tasks and model sizes; 3) with our PANDA approach, prompt-tuning can achieve competitive and even better performance than model-tuning in various PLM scales scenarios. Code and models will be released upon acceptance.

Languages You Know Influence Those You Learn: Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer

Multi-lingual language models (LM), such as mBERT, XLM-R, mT5, mBART, have been remarkably successful in enabling natural language tasks in low-resource languages through cross-lingual transfer from high-resource ones. In this work, we try to better understand how such models, specifically mT5, transfer *any* linguistic and semantic knowledge across languages, even though no explicit cross-lingual signals are provided during pre-training. Rather, only unannotated texts from each language are presented to the model separately and independently of one another, and the model appears to implicitly learn cross-lingual connections. This raises several questions that motivate our study, such as: Are the cross-lingual connections between every language pair equally strong? What properties of source and target language impact the strength of cross-lingual transfer? Can we quantify the impact of those properties on the cross-lingual transfer? In our investigation, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by the model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology and phonology are good predictors of cross-lingual transfer, significantly more than just the lexical similarity of languages. For a given language, we are able to predict zero-shot performance, that increases on a logarithmic scale with the number of few-shot target language data points.

Unlock the Power: Competitive Distillation for Multi-Modal Large Language Models

Recently, multi-modal content generation has attracted lots of attention from researchers by investigating the utilization of visual instruction tuning based on large language models (LLMs). To enhance the performance and generalization ability of such LLMs, the practice of distilling knowledge from pretrained multi-modal models (a.k.a. teachers) to more compact multi-modal LLMs (students) has gained considerable interest. However, the prevailing paradigm of instructiontuning in multi-modal LLMs knowledge distillation is resource-intensive and unidirectional, neglecting the potential for mutual feedback between the student and teacher models. Thus, we propose an innovative Competitive Multi-modal Distillation framework (CoMD), which captures bidirectional feedback between teacher and student models and continually updates the multi-modal capabilities that the student model has learned. It comprises two stages: multi-modal pre-training and multi-modal competitive distillation. The first stage pre-trains the student model on a large number of filtered multi-modal datasets. The second stage facilitates a bidirectional knowledge transfer between the student and teacher models. Our experimental analysis of diverse datasets shows that our knowledge transfer method consistently improves the capabilities of the student model. Finally, the 7B-sized student model after four distillations surpassed the current state-of-the-art model LLaVA-13B on the ScienceQA and LLaVA Test dataset, also outperforms other strong baselines in the zero-shot setting.

How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition

Large language models (LLMs) with enormous pre-training tokens and parameter amounts emerge abilities, including math reasoning, code generation, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). The open-source community has studied on ad-hoc SFT for each ability, while proprietary LLMs are versatile for all abilities. It is important to investigate how to unlock them with multiple abilities via SFT. In this study, we specifically focus on the data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. From a scaling perspective, we investigate the relationship between model abilities and various factors including data amounts, data composition ratio, model parameters, and SFT strategies. Our experiments reveal that different abilities exhibit different scaling patterns, and larger models generally show superior performance with the same amount of data. Mathematical reasoning and code generation improve as data amounts increase consistently, while the general ability is enhanced with about a thousand samples and improves slowly. We find data composition results in various abilities improvements with low data amounts, while conflicts of abilities with high data amounts. Our experiments further show that composition data amount impacts performance, while the influence of composition ratio is insignificant. Regarding the SFT strategies, we evaluate sequential learning multiple abilities are prone to catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy learns specialized abilities first and then learns general abilities with a small amount of specialized data to prevent forgetting, offering a promising solution to learn multiple abilities with different scaling patterns.

HARD: Hard Augmentations for Robust Distillation

Knowledge distillation (KD) is a simple and successful method to transfer knowledge from a teacher to a student model solely based on functional activity. However, current KD has a few shortcomings: it has recently been shown that this method is unsuitable to transfer simple inductive biases like shift equivariance, struggles to transfer out of domain generalization, and optimization time is magnitudes longer compared to default non-KD model training. To improve these aspects of KD, we propose Hard Augmentations for Robust Distillation (HARD), a generally applicable data augmentation framework, that generates synthetic data points for which the teacher and the student disagree. We show in a simple toy example that our augmentation framework solves the problem of transferring simple equivariances with KD. We then apply our framework in real-world tasks for a variety of augmentation models, ranging from simple spatial transformations to unconstrained image manipulations with a pretrained variational autoencoder. We find that our learned augmentations significantly improve KD performance on in-domain and out-of-domain evaluation. Moreover, our method outperforms even state-of-the-art data augmentations and since the augmented training inputs can be visualized, they offer a qualitative insight into the properties that are transferred from the teacher to the student. Thus HARD represents a generally applicable, dynamically optimized data augmentation technique tailored to improve the generalization and convergence speed of models trained with KD.

Knowledge Composition using Task Vectors with Learned Anisotropic Scaling

Pre-trained models produce strong generic representations that can be adapted via fine-tuning. The learned weight difference relative to the pre-trained model, known as a task vector, characterises the direction and stride of fine-tuning. The significance of task vectors is such that simple arithmetic operations on them can be used to combine diverse representations from different domains. This paper builds on these properties of task vectors and aims to answer (1) whether components of task vectors, particularly parameter blocks, exhibit similar characteristics, and (2) how such blocks can be used to enhance knowledge composition and transfer. To this end, we introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level. We show that such linear combinations explicitly exploit the low intrinsic dimensionality of pre-trained models, with only a few coefficients being the learnable parameters. Furthermore, composition of parameter blocks leverages the already learned representations, thereby reducing the dependency on large amounts of data. We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives. In particular, we show that (1) learned anisotropic scaling allows task vectors to be more disentangled, causing less interference in composition; (2) task vector composition excels with scarce or no labeled data and is less prone to domain shift, thus leading to better generalisability; (3) mixing the most informative parameter blocks across different task vectors prior to training can reduce the memory footprint and improve the flexibility of knowledge transfer. Moreover, we show the potential of aTLAS as a PEFT method, particularly with less data, and demonstrate that its scalibility.

Merging Models with Fisher-Weighted Averaging

Averaging the parameters of models that have the same architecture and initialization can provide a means of combining their respective capabilities. In this paper, we take the perspective that this "merging" operation can be seen as choosing parameters that approximately maximize the joint likelihood of the posteriors of the models' parameters. Computing a simple average of the models' parameters therefore corresponds to making an isotropic Gaussian approximation to their posteriors. We develop an alternative merging procedure based on the Laplace approximation where we approximate each model's posterior as a Gaussian distribution whose precision matrix corresponds to its Fisher information. We first show that our "Fisher merging" technique provides a performance boost in settings where simple parameter averaging is currently used -- specifically, robust fine-tuning and model ensembling. Then, we compare merging to standard gradient-based transfer learning and demonstrate that merging enables a fundamentally different method for transferring capabilities across models. Specifically, we show that Fisher merging is competitive with gradient-based transfer learning approaches (while being significantly cheaper) in intermediate-task training and domain-adaptive pre-training. We also show that our merging procedure makes it possible to combine models in previously unexplored ways. We release our code to facilitate future research into methods for merging models.

Deep Learning for Identifying Iran's Cultural Heritage Buildings in Need of Conservation Using Image Classification and Grad-CAM

The cultural heritage buildings (CHB), which are part of mankind's history and identity, are in constant danger of damage or in extreme situations total destruction. That being said, it's of utmost importance to preserve them by identifying the existent, or presumptive, defects using novel methods so that renovation processes can be done in a timely manner and with higher accuracy. The main goal of this research is to use new deep learning (DL) methods in the process of preserving CHBs (situated in Iran); a goal that has been neglected especially in developing countries such as Iran, as these countries still preserve their CHBs using manual, and even archaic, methods that need direct human supervision. Having proven their effectiveness and performance when it comes to processing images, the convolutional neural networks (CNN) are a staple in computer vision (CV) literacy and this paper is not exempt. When lacking enough CHB images, training a CNN from scratch would be very difficult and prone to overfitting; that's why we opted to use a technique called transfer learning (TL) in which we used pre-trained ResNet, MobileNet, and Inception networks, for classification. Even more, the Grad-CAM was utilized to localize the defects to some extent. The final results were very favorable based on those of similar research. The final proposed model can pave the way for moving from manual to unmanned CHB conservation, hence an increase in accuracy and a decrease in human-induced errors.

ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation

Since real-world machine systems are running in non-stationary environments, Continual Test-Time Adaptation (CTTA) task is proposed to adapt the pre-trained model to continually changing target domains. Recently, existing methods mainly focus on model-based adaptation, which aims to leverage a self-training manner to extract the target domain knowledge. However, pseudo labels can be noisy and the updated model parameters are unreliable under dynamic data distributions, leading to error accumulation and catastrophic forgetting in the continual adaptation process. To tackle these challenges and maintain the model plasticity, we design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge. Specifically, we first comprehensively explore the different domain representations of the adapters with trainable high-rank or low-rank embedding spaces. Then we inject ViDAs into the pre-trained model, which leverages high-rank and low-rank features to adapt the current domain distribution and maintain the continual domain-shared knowledge, respectively. To exploit the low-rank and high-rank ViDAs more effectively, we further propose a Homeostatic Knowledge Allotment (HKA) strategy, which adaptively combines different knowledge from each ViDA. Extensive experiments conducted on four widely used benchmarks demonstrate that our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks. Note that, our method can be regarded as a novel transfer paradigm for large-scale models, delivering promising results in adaptation to continually changing distributions. Project page: https://sites.google.com/view/iclr2024-vida/home.

Model-Based Transfer Learning for Contextual Reinforcement Learning

Deep reinforcement learning (RL) is a powerful approach to complex decision making. However, one issue that limits its practical application is its brittleness, sometimes failing to train in the presence of small changes in the environment. Motivated by the success of zero-shot transfer-where pre-trained models perform well on related tasks-we consider the problem of selecting a good set of training tasks to maximize generalization performance across a range of tasks. Given the high cost of training, it is critical to select training tasks strategically, but not well understood how to do so. We hence introduce Model-Based Transfer Learning (MBTL), which layers on top of existing RL methods to effectively solve contextual RL problems. MBTL models the generalization performance in two parts: 1) the performance set point, modeled using Gaussian processes, and 2) performance loss (generalization gap), modeled as a linear function of contextual similarity. MBTL combines these two pieces of information within a Bayesian optimization (BO) framework to strategically select training tasks. We show theoretically that the method exhibits sublinear regret in the number of training tasks and discuss conditions to further tighten regret bounds. We experimentally validate our methods using urban traffic and standard continuous control benchmarks. The experimental results suggest that MBTL can achieve up to 50x improved sample efficiency compared with canonical independent training and multi-task training. Further experiments demonstrate the efficacy of BO and the insensitivity to the underlying RL algorithm and hyperparameters. This work lays the foundations for investigating explicit modeling of generalization, thereby enabling principled yet effective methods for contextual RL.

Exclusive Supermask Subnetwork Training for Continual Learning

Continual Learning (CL) methods focus on accumulating knowledge over time while avoiding catastrophic forgetting. Recently, Wortsman et al. (2020) proposed a CL method, SupSup, which uses a randomly initialized, fixed base network (model) and finds a supermask for each new task that selectively keeps or removes each weight to produce a subnetwork. They prevent forgetting as the network weights are not being updated. Although there is no forgetting, the performance of SupSup is sub-optimal because fixed weights restrict its representational power. Furthermore, there is no accumulation or transfer of knowledge inside the model when new tasks are learned. Hence, we propose ExSSNeT (Exclusive Supermask SubNEtwork Training), that performs exclusive and non-overlapping subnetwork weight training. This avoids conflicting updates to the shared weights by subsequent tasks to improve performance while still preventing forgetting. Furthermore, we propose a novel KNN-based Knowledge Transfer (KKT) module that utilizes previously acquired knowledge to learn new tasks better and faster. We demonstrate that ExSSNeT outperforms strong previous methods on both NLP and Vision domains while preventing forgetting. Moreover, ExSSNeT is particularly advantageous for sparse masks that activate 2-10% of the model parameters, resulting in an average improvement of 8.3% over SupSup. Furthermore, ExSSNeT scales to a large number of tasks (100). Our code is available at https://github.com/prateeky2806/exessnet.

CACTUS: An Open Dataset and Framework for Automated Cardiac Assessment and Classification of Ultrasound Images Using Deep Transfer Learning

Cardiac ultrasound (US) scanning is a commonly used techniques in cardiology to diagnose the health of the heart and its proper functioning. Therefore, it is necessary to consider ways to automate these tasks and assist medical professionals in classifying and assessing cardiac US images. Machine learning (ML) techniques are regarded as a prominent solution due to their success in numerous applications aimed at enhancing the medical field, including addressing the shortage of echography technicians. However, the limited availability of medical data presents a significant barrier to applying ML in cardiology, particularly regarding US images of the heart. This paper addresses this challenge by introducing the first open graded dataset for Cardiac Assessment and ClassificaTion of UltraSound (CACTUS), which is available online. This dataset contains images obtained from scanning a CAE Blue Phantom and representing various heart views and different quality levels, exceeding the conventional cardiac views typically found in the literature. Additionally, the paper introduces a Deep Learning (DL) framework consisting of two main components. The first component classifies cardiac US images based on the heart view using a Convolutional Neural Network (CNN). The second component uses Transfer Learning (TL) to fine-tune the knowledge from the first component and create a model for grading and assessing cardiac images. The framework demonstrates high performance in both classification and grading, achieving up to 99.43% accuracy and as low as 0.3067 error, respectively. To showcase its robustness, the framework is further fine-tuned using new images representing additional cardiac views and compared to several other state-of-the-art architectures. The framework's outcomes and performance in handling real-time scans were also assessed using a questionnaire answered by cardiac experts.

Classifying Textual Data with Pre-trained Vision Models through Transfer Learning and Data Transformations

Knowledge is acquired by humans through experience, and no boundary is set between the kinds of knowledge or skill levels we can achieve on different tasks at the same time. When it comes to Neural Networks, that is not the case. The breakthroughs in the field are extremely task and domain-specific. Vision and language are dealt with in separate manners, using separate methods and different datasets. Current text classification methods, mostly rely on obtaining contextual embeddings for input text samples, then training a classifier on the embedded dataset. Transfer learning in Language-related tasks in general, is heavily used in obtaining the contextual text embeddings for the input samples. In this work, we propose to use the knowledge acquired by benchmark Vision Models which are trained on ImageNet to help a much smaller architecture learn to classify text. A data transformation technique is used to create a new image dataset, where each image represents a sentence embedding from the last six layers of BERT, projected on a 2D plane using a t-SNE based method. We trained five models containing early layers sliced from vision models which are pretrained on ImageNet, on the created image dataset for the IMDB dataset embedded with the last six layers of BERT. Despite the challenges posed by the very different datasets, experimental results achieved by this approach which links large pretrained models on both language and vision, are very promising, without employing compute resources. Specifically, Sentiment Analysis is achieved by five different models on the same image dataset obtained after BERT embeddings are transformed into gray scale images. Index Terms: BERT, Convolutional Neural Networks, Domain Adaptation, image classification, Natural Language Processing, t-SNE, text classification, Transfer Learning

Scaling Laws for Downstream Task Performance of Large Language Models

Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the pretraining data and its size affect downstream performance (translation quality) as judged by two metrics: downstream cross-entropy and BLEU score. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and BLEU score improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream BLEU score with good accuracy using a log-law. However, there are also cases where moderate misalignment causes the BLEU score to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these observations, we provide new practical insights for choosing appropriate pretraining data.

Rethinking Model Ensemble in Transfer-based Adversarial Attacks

It is widely recognized that deep learning models lack robustness to adversarial examples. An intriguing property of adversarial examples is that they can transfer across different models, which enables black-box attacks without any knowledge of the victim model. An effective strategy to improve the transferability is attacking an ensemble of models. However, previous works simply average the outputs of different models, lacking an in-depth analysis on how and why model ensemble methods can strongly improve the transferability. In this paper, we rethink the ensemble in adversarial attacks and define the common weakness of model ensemble with two properties: 1) the flatness of loss landscape; and 2) the closeness to the local optimum of each model. We empirically and theoretically show that both properties are strongly correlated with the transferability and propose a Common Weakness Attack (CWA) to generate more transferable adversarial examples by promoting these two properties. Experimental results on both image classification and object detection tasks validate the effectiveness of our approach to improving the adversarial transferability, especially when attacking adversarially trained models. We also successfully apply our method to attack a black-box large vision-language model -- Google's Bard, showing the practical effectiveness. Code is available at https://github.com/huanranchen/AdversarialAttacks.

UniPT: Universal Parallel Tuning for Transfer Learning with Efficient Parameter and Memory

Fine-tuning pre-trained models has emerged as a powerful technique in numerous domains, owing to its ability to leverage enormous pre-existing knowledge and achieve remarkable performance on downstream tasks. However, updating the parameters of entire networks is computationally intensive. Although state-of-the-art parameter-efficient transfer learning (PETL) methods significantly reduce the trainable parameters and storage demand, almost all of them still need to back-propagate the gradients through large pre-trained networks. This memory-extensive characteristic extremely limits the applicability of PETL methods in real-world scenarios. To this end, we propose a new memory-efficient PETL strategy, dubbed Universal Parallel Tuning (UniPT). Specifically, we facilitate the transfer process via a lightweight learnable parallel network, which consists of two modules: 1) A parallel interaction module that decouples the inherently sequential connections and processes the intermediate activations detachedly of the pre-trained network. 2) A confidence aggregation module that learns optimal strategies adaptively for integrating cross-layer features. We evaluate UniPT with different backbones (e.g., VSEinfty, CLIP4Clip, Clip-ViL, and MDETR) on five challenging vision-and-language tasks (i.e., image-text retrieval, video-text retrieval, visual question answering, compositional question answering, and visual grounding). Extensive ablations on ten datasets have validated that our UniPT can not only dramatically reduce memory consumption and outperform the best memory-efficient competitor, but also achieve higher performance than existing PETL methods in a low-memory scenario on different architectures. Our code is publicly available at: https://github.com/Paranioar/UniPT.

Enhancing Visual Continual Learning with Language-Guided Supervision

Continual learning (CL) aims to empower models to learn new tasks without forgetting previously acquired knowledge. Most prior works concentrate on the techniques of architectures, replay data, regularization, \etc. However, the category name of each class is largely neglected. Existing methods commonly utilize the one-hot labels and randomly initialize the classifier head. We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks. In this paper, we revisit the role of the classifier head within the CL paradigm and replace the classifier with semantic knowledge from pretrained language models (PLMs). Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals during training. Such targets fully consider the semantic correlation between all classes across tasks. Empirical studies show that our approach mitigates forgetting by alleviating representation drifting and facilitating knowledge transfer across tasks. The proposed method is simple to implement and can seamlessly be plugged into existing methods with negligible adjustments. Extensive experiments based on eleven mainstream baselines demonstrate the effectiveness and generalizability of our approach to various protocols. For example, under the class-incremental learning setting on ImageNet-100, our method significantly improves the Top-1 accuracy by 3.2\% to 6.1\% while reducing the forgetting rate by 2.6\% to 13.1\%.

Revisiting the Superficial Alignment Hypothesis

The Superficial Alignment Hypothesis posits that almost all of a language model's abilities and knowledge are learned during pre-training, while post-training is about giving a model the right style and format. We re-examine these claims by empirically studying the scaling behavior of post-training with increasing finetuning examples and evaluating them using objective task-specific standardized benchmarks. Through experiments with the Llama-3, Mistral, and Llama-2 model families of multiple sizes, we observe that, similar to the pre-training scaling laws, post-training task performance scales as a power law against the number of finetuning examples. This power law relationship holds across a broad array of capabilities, including mathematical reasoning, coding, instruction following, and multihop-reasoning. In addition, for tasks like math and multihop reasoning, we observe that a handful of examples merely align the model stylistically but do not saturate performance on the benchmarks. Model performance is instead correlated with its reasoning ability and it improves significantly with more examples, illustrating the need for holistic evaluation programs leveraging objective benchmarks in addition to measurement of alignment to human preferences. We also observe that language models are not necessarily limited to using knowledge learned during pre-training. With appropriate post-training, a model's ability to integrate new knowledge greatly improves on downstream tasks like multihop question-answering. Taken together, these results shed new light on the Superficial Alignment Hypothesis, suggesting that it is, at best, an over-simplification.

VL-Adapter: Parameter-Efficient Transfer Learning for Vision-and-Language Tasks

Recently, fine-tuning language models pre-trained on large text corpora have provided huge improvements on vision-and-language (V&L) tasks as well as on pure language tasks. However, fine-tuning the entire parameter set of pre-trained models becomes impractical since the model size is growing rapidly. Hence, in this paper, we introduce adapter-based parameter-efficient transfer learning techniques to V&L models such as VL-BART and VLT5. We evaluate our methods in a unified multi-task setup on both image-text and video-text benchmarks. For the image-text tasks, we use four diverse V&L datasets: VQAv2, GQA, NLVR2 , and MSCOCO image captioning. For video-text tasks, we use TVQA, How2QA, TVC, and YC2C. With careful training and thorough experiments, we benchmark three popular adapter-based methods (Adapter, Hyperformer, Compacter) against the standard full fine-tuning and the recently proposed prompt-tuning approach. We also enhance the efficiency and performance of adapters by sharing their weights to attain knowledge across tasks. Our results demonstrate that training the adapter with the weight-sharing technique (4.18% of total parameters for image-text tasks and 3.39% for video-text tasks) can match the performance of fine-tuning the entire model. Lastly, we present a comprehensive analysis including the combination of adapter and task-specific prompts and the impact of V&L pre-training on adapters. Our code is available at: https://github.com/ylsung/VL_adapter.

Distilling from Similar Tasks for Transfer Learning on a Budget

We address the challenge of getting efficient yet accurate recognition systems with limited labels. While recognition models improve with model size and amount of data, many specialized applications of computer vision have severe resource constraints both during training and inference. Transfer learning is an effective solution for training with few labels, however often at the expense of a computationally costly fine-tuning of large base models. We propose to mitigate this unpleasant trade-off between compute and accuracy via semi-supervised cross-domain distillation from a set of diverse source models. Initially, we show how to use task similarity metrics to select a single suitable source model to distill from, and that a good selection process is imperative for good downstream performance of a target model. We dub this approach DistillNearest. Though effective, DistillNearest assumes a single source model matches the target task, which is not always the case. To alleviate this, we propose a weighted multi-source distillation method to distill multiple source models trained on different domains weighted by their relevance for the target task into a single efficient model (named DistillWeighted). Our methods need no access to source data, and merely need features and pseudo-labels of the source models. When the goal is accurate recognition under computational constraints, both DistillNearest and DistillWeighted approaches outperform both transfer learning from strong ImageNet initializations as well as state-of-the-art semi-supervised techniques such as FixMatch. Averaged over 8 diverse target tasks our multi-source method outperforms the baselines by 5.6%-points and 4.5%-points, respectively.

Rethinking Supervised Pre-training for Better Downstream Transferring

The pretrain-finetune paradigm has shown outstanding performance on many applications of deep learning, where a model is pre-trained on a upstream large dataset (e.g. ImageNet), and is then fine-tuned to different downstream tasks. Though for most cases, the pre-training stage is conducted based on supervised methods, recent works on self-supervised pre-training have shown powerful transferability and even outperform supervised pre-training on multiple downstream tasks. It thus remains an open question how to better generalize supervised pre-training model to downstream tasks. In this paper, we argue that the worse transferability of existing supervised pre-training methods arise from the negligence of valuable intra-class semantic difference. This is because these methods tend to push images from the same class close to each other despite of the large diversity in their visual contents, a problem to which referred as "overfit of upstream tasks". To alleviate this problem, we propose a new supervised pre-training method based on Leave-One-Out K-Nearest-Neighbor, or LOOK for short. It relieves the problem of overfitting upstream tasks by only requiring each image to share its class label with most of its k nearest neighbors, thus allowing each class to exhibit a multi-mode distribution and consequentially preserving part of intra-class difference for better transferring to downstream tasks. We developed efficient implementation of the proposed method that scales well to large datasets. Experimental studies on multiple downstream tasks show that LOOK outperforms other state-of-the-art methods for supervised and self-supervised pre-training.

Deep Knowledge Tracing with Learning Curves

Knowledge tracing (KT) has recently been an active research area of computational pedagogy. The task is to model students' mastery level of knowledge concepts based on their responses to the questions in the past, as well as predict the probabilities that they correctly answer subsequent questions in the future. KT tasks were historically solved using statistical modeling methods such as Bayesian inference and factor analysis, but recent advances in deep learning have led to the successive proposals that leverage deep neural networks, including long short-term memory networks, memory-augmented networks and self-attention networks. While those deep models demonstrate superior performance over the traditional approaches, they all neglect the explicit modeling of the learning curve theory, which generally says that more practice on the same knowledge concept enhances one's mastery level of the concept. Based on this theory, we propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper. The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question, and fuses the learnt feature with the feature representing her overall latent knowledge state obtained using a classic LSTM network. The fused feature is then fed into a second LSTM network to predict the student's response to the next question. Experimental results show that CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models. We also conduct extensive sensitivity analysis and ablation study to show the stability of the results and justify the particular architecture of CAKT, respectively.

Efficiently Robustify Pre-trained Models

A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models towards real-world settings is still a less-explored topic. In this work, we first benchmark the performance of these models under different perturbations and datasets thereby representing real-world shifts, and highlight their degrading performance under these shifts. We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks and can also lead them to forget some of the desired characterstics. Finally, we propose a simple and cost-effective method to solve this problem, inspired by knowledge transfer literature. It involves robustifying smaller models, at a lower computation cost, and then use them as teachers to tune a fraction of these large scale networks, reducing the overall computational overhead. We evaluate our proposed method under various vision perturbations including ImageNet-C,R,S,A datasets and also for transfer learning, zero-shot evaluation setups on different datasets. Benchmark results show that our method is able to induce robustness to these large scale models efficiently, requiring significantly lower time and also preserves the transfer learning, zero-shot properties of the original model which none of the existing methods are able to achieve.

Breast Tumor Classification Using EfficientNet Deep Learning Model

Precise breast cancer classification on histopathological images has the potential to greatly improve the diagnosis and patient outcome in oncology. The data imbalance problem largely stems from the inherent imbalance within medical image datasets, where certain tumor subtypes may appear much less frequently. This constitutes a considerable limitation in biased model predictions that can overlook critical but rare classes. In this work, we adopted EfficientNet, a state-of-the-art convolutional neural network (CNN) model that balances high accuracy with computational cost efficiency. To address data imbalance, we introduce an intensive data augmentation pipeline and cost-sensitive learning, improving representation and ensuring that the model does not overly favor majority classes. This approach provides the ability to learn effectively from rare tumor types, improving its robustness. Additionally, we fine-tuned the model using transfer learning, where weights in the beginning trained on a binary classification task were adopted to multi-class classification, improving the capability to detect complex patterns within the BreakHis dataset. Our results underscore significant improvements in the binary classification performance, achieving an exceptional recall increase for benign cases from 0.92 to 0.95, alongside an accuracy enhancement from 97.35 % to 98.23%. Our approach improved the performance of multi-class tasks from 91.27% with regular augmentation to 94.54% with intensive augmentation, reaching 95.04% with transfer learning. This framework demonstrated substantial gains in precision in the minority classes, such as Mucinous carcinoma and Papillary carcinoma, while maintaining high recall consistently across these critical subtypes, as further confirmed by confusion matrix analysis.

Adapt-infty: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection

Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of lifelong adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. To address this, we reframe the problem of Lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. Based on empirical analyses that show that selecting the best data subset using a static importance measure is often ineffective for multi-task datasets with evolving distributions, we propose Adapt-infty, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, which would result in excessive computation, we further introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. Training with samples selected by Adapt-infty alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original datasets.

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Language agents have shown some ability to interact with an external environment, e.g., a virtual world such as ScienceWorld, to perform complex tasks, e.g., growing a plant, without the startup costs of reinforcement learning. However, despite their zero-shot capabilities, these agents to date do not continually improve over time beyond performance refinement on a specific task. Here we present CLIN, the first language-based agent to achieve this, so that it continually improves over multiple trials, including when both the environment and task are varied, and without requiring parameter updates. Our approach is to use a persistent, dynamic, textual memory centered on causal abstractions (rather than general "helpful hints") that is regularly updated after each trial so that the agent gradually learns useful knowledge for new trials. In the ScienceWorld benchmark, CLIN is able to continually improve on repeated trials on the same task and environment, outperforming state-of-the-art reflective language agents like Reflexion by 23 absolute points. CLIN can also transfer its learning to new environments (or new tasks), improving its zero-shot performance by 4 points (13 for new tasks) and can further improve performance there through continual memory updates, enhancing performance by an additional 17 points (7 for new tasks). This suggests a new architecture for agents built on frozen models that can still continually and rapidly improve over time.

SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning

Parameter-efficient transfer learning (PETL) has emerged as a flourishing research field for adapting large pre-trained models to downstream tasks, greatly reducing trainable parameters while grappling with memory challenges during fine-tuning. To address it, memory-efficient series (METL) avoid backpropagating gradients through the large backbone. However, they compromise by exclusively relying on frozen intermediate outputs and limiting the exhaustive exploration of prior knowledge from pre-trained models. Moreover, the dependency and redundancy between cross-layer features are frequently overlooked, thereby submerging more discriminative representations and causing an inherent performance gap (vs. conventional PETL methods). Hence, we propose an innovative METL strategy called SHERL for resource-limited scenarios to decouple the entire adaptation into two successive and complementary processes. In the early route, intermediate outputs are consolidated via an anti-redundancy operation, enhancing their compatibility for subsequent interactions; thereby in the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead and regulate these fairly flexible features into more adaptive and powerful representations for new domains. Extensive ablations on vision-and-language and language-only tasks show that SHERL combines the strengths of both parameter and memory-efficient techniques, performing on-par or better across diverse architectures with lower memory during fine-tuning. Our code is publicly available at: https://github.com/Paranioar/SHERL.

CAFA: Class-Aware Feature Alignment for Test-Time Adaptation

Despite recent advancements in deep learning, deep neural networks continue to suffer from performance degradation when applied to new data that differs from training data. Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time. TTA can be applied to pretrained networks without modifying their training procedures, enabling them to utilize a well-formed source distribution for adaptation. One possible approach is to align the representation space of test samples to the source distribution (i.e., feature alignment). However, performing feature alignment in TTA is especially challenging in that access to labeled source data is restricted during adaptation. That is, a model does not have a chance to learn test data in a class-discriminative manner, which was feasible in other adaptation tasks (e.g., unsupervised domain adaptation) via supervised losses on the source data. Based on this observation, we propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously 1) encourages a model to learn target representations in a class-discriminative manner and 2) effectively mitigates the distribution shifts at test time. Our method does not require any hyper-parameters or additional losses, which are required in previous approaches. We conduct extensive experiments on 6 different datasets and show our proposed method consistently outperforms existing baselines.

LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems

Interestingly, LLMs yet struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the word "strawberry". There are several popular conjectures (e.g., tokenization, architecture and training data) regarding the reason for deficiency of LLMs in simple word-based counting problems, sharing the similar belief that such failure stems from model pretraining hence probably inevitable during deployment. In this paper, we carefully design multiple evaluation settings to investigate validity of prevalent conjectures. Meanwhile, we measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks. Although specialized LLMs suffer from counting problems as well, we find conjectures about inherent deficiency of LLMs invalid and further seek opportunities to elicit knowledge and capabilities from LLMs that are beneficial to counting tasks. Compared with strategies such as finetuning and in-context learning that are commonly adopted to enhance performance on new or challenging tasks, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks with more accurate responses. We hope our conjecture validation design could provide insights into the study of future critical failure modes of LLMs. Based on challenges in transferring advanced capabilities to much simpler tasks, we call for more attention to model capability acquisition and evaluation. We also highlight the importance of cultivating consciousness of "reasoning before responding" during model pretraining.

Why do Learning Rates Transfer? Reconciling Optimization and Scaling Limits for Deep Learning

Recently, there has been growing evidence that if the width and depth of a neural network are scaled toward the so-called rich feature learning limit (muP and its depth extension), then some hyperparameters - such as the learning rate - exhibit transfer from small to very large models, thus reducing the cost of hyperparameter tuning. From an optimization perspective, this phenomenon is puzzling, as it implies that the loss landscape is remarkably consistent across very different model sizes. In this work, we find empirical evidence that learning rate transfer can be attributed to the fact that under muP and its depth extension, the largest eigenvalue of the training loss Hessian (i.e. the sharpness) is largely independent of the width and depth of the network for a sustained period of training time. On the other hand, we show that under the neural tangent kernel (NTK) regime, the sharpness exhibits very different dynamics at different scales, thus preventing learning rate transfer. But what causes these differences in the sharpness dynamics? Through a connection between the spectra of the Hessian and the NTK matrix, we argue that the cause lies in the presence (for muP) or progressive absence (for the NTK regime) of feature learning, which results in a different evolution of the NTK, and thus of the sharpness. We corroborate our claims with a substantial suite of experiments, covering a wide range of datasets and architectures: from ResNets and Vision Transformers trained on benchmark vision datasets to Transformers-based language models trained on WikiText

A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

KIND: Knowledge Integration and Diversion in Diffusion Models

Pre-trained models have become the preferred backbone due to the expansion of model parameters, with techniques like Parameter-Efficient Fine-Tuning (PEFTs) typically fixing the parameters of these models. However, pre-trained models may not always be optimal, especially when there are discrepancies between training tasks and target tasks, potentially resulting in negative transfer. To address this, we introduce KIND, which performs Knowledge INtegration and Diversion in diffusion models. KIND first integrates knowledge by decomposing parameter matrices of models using U, Sigma, and V matrices, formally inspired by singular value decomposition (SVD). Then it explicitly partitions the components of these matrices into learngenes and tailors to condense common and class-specific knowledge, respectively, through a class gate. In this way, KIND redefines traditional pre-training methods by adjusting training objectives from maximizing model performance on current tasks to condensing transferable common knowledge, leveraging the Learngene framework. We conduct experiments on ImageNet-1K and compare KIND with PEFT and other learngene methods. Results indicate that KIND achieves state-of-the-art performance compared to other PEFT and learngene methods. Specifically, the images generated by KIND achieves more than 6.54 and 1.07 decrease in FID and sFID on DiT-L/2, utilizing only 45.4M trainable parameters and saving at least 35.4G FLOPs in computational cost.

Learning Transferable Visual Models From Natural Language Supervision

State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.

OmniGen: Unified Image Generation

In this work, we introduce OmniGen, a new diffusion model for unified image generation. Unlike popular diffusion models (e.g., Stable Diffusion), OmniGen no longer requires additional modules such as ControlNet or IP-Adapter to process diverse control conditions. OmniGenis characterized by the following features: 1) Unification: OmniGen not only demonstrates text-to-image generation capabilities but also inherently supports other downstream tasks, such as image editing, subject-driven generation, and visual-conditional generation. Additionally, OmniGen can handle classical computer vision tasks by transforming them into image generation tasks, such as edge detection and human pose recognition. 2) Simplicity: The architecture of OmniGen is highly simplified, eliminating the need for additional text encoders. Moreover, it is more user-friendly compared to existing diffusion models, enabling complex tasks to be accomplished through instructions without the need for extra preprocessing steps (e.g., human pose estimation), thereby significantly simplifying the workflow of image generation. 3) Knowledge Transfer: Through learning in a unified format, OmniGen effectively transfers knowledge across different tasks, manages unseen tasks and domains, and exhibits novel capabilities. We also explore the model's reasoning capabilities and potential applications of chain-of-thought mechanism. This work represents the first attempt at a general-purpose image generation model, and there remain several unresolved issues. We will open-source the related resources at https://github.com/VectorSpaceLab/OmniGen to foster advancements in this field.

Does Continual Learning Equally Forget All Parameters?

Distribution shift (e.g., task or domain shift) in continual learning (CL) usually results in catastrophic forgetting of neural networks. Although it can be alleviated by repeatedly replaying buffered data, the every-step replay is time-consuming. In this paper, we study which modules in neural networks are more prone to forgetting by investigating their training dynamics during CL. Our proposed metrics show that only a few modules are more task-specific and sensitively alter between tasks, while others can be shared across tasks as common knowledge. Hence, we attribute forgetting mainly to the former and find that finetuning them only on a small buffer at the end of any CL method can bring non-trivial improvement. Due to the small number of finetuned parameters, such ``Forgetting Prioritized Finetuning (FPF)'' is efficient in computation. We further propose a more efficient and simpler method that entirely removes the every-step replay and replaces them by only k-times of FPF periodically triggered during CL. Surprisingly, this ``k-FPF'' performs comparably to FPF and outperforms the SOTA CL methods but significantly reduces their computational overhead and cost. In experiments on several benchmarks of class- and domain-incremental CL, FPF consistently improves existing CL methods by a large margin, and k-FPF further excels in efficiency without degrading the accuracy. We also empirically studied the impact of buffer size, epochs per task, and finetuning modules on the cost and accuracy of our methods.

A Good Student is Cooperative and Reliable: CNN-Transformer Collaborative Learning for Semantic Segmentation

In this paper, we strive to answer the question "how to collaboratively learn convolutional neural network (CNN)-based and vision transformer (ViT)-based models by selecting and exchanging the reliable knowledge between them for semantic segmentation?" Accordingly, we propose an online knowledge distillation (KD) framework that can simultaneously learn compact yet effective CNN-based and ViT-based models with two key technical breakthroughs to take full advantage of CNNs and ViT while compensating their limitations. Firstly, we propose heterogeneous feature distillation (HFD) to improve students' consistency in low-layer feature space by mimicking heterogeneous features between CNNs and ViT. Secondly, to facilitate the two students to learn reliable knowledge from each other, we propose bidirectional selective distillation (BSD) that can dynamically transfer selective knowledge. This is achieved by 1) region-wise BSD determining the directions of knowledge transferred between the corresponding regions in the feature space and 2) pixel-wise BSD discerning which of the prediction knowledge to be transferred in the logit space. Extensive experiments on three benchmark datasets demonstrate that our proposed framework outperforms the state-of-the-art online distillation methods by a large margin, and shows its efficacy in learning collaboratively between ViT-based and CNN-based models.

Transformer as Linear Expansion of Learngene

We propose expanding the shared Transformer module to produce and initialize Transformers of varying depths, enabling adaptation to diverse resource constraints. Drawing an analogy to genetic expansibility, we term such module as learngene. To identify the expansion mechanism, we delve into the relationship between the layer's position and its corresponding weight value, and find that linear function appropriately approximates this relationship. Building on this insight, we present Transformer as Linear Expansion of learnGene (TLEG), a novel approach for flexibly producing and initializing Transformers of diverse depths. Specifically, to learn learngene, we firstly construct an auxiliary Transformer linearly expanded from learngene, after which we train it through employing soft distillation. Subsequently, we can produce and initialize Transformers of varying depths via linearly expanding the well-trained learngene, thereby supporting diverse downstream scenarios. Extensive experiments on ImageNet-1K demonstrate that TLEG achieves comparable or better performance in contrast to many individual models trained from scratch, while reducing around 2x training cost. When transferring to several downstream classification datasets, TLEG surpasses existing initialization methods by a large margin (e.g., +6.87% on iNat 2019 and +7.66% on CIFAR-100). Under the situation where we need to produce models of varying depths adapting for different resource constraints, TLEG achieves comparable results while reducing around 19x parameters stored to initialize these models and around 5x pre-training costs, in contrast to the pre-training and fine-tuning approach. When transferring a fixed set of parameters to initialize different models, TLEG presents better flexibility and competitive performance while reducing around 2.9x parameters stored to initialize, compared to the pre-training approach.

Language Models Meet World Models: Embodied Experiences Enhance Language Models

While large language models (LMs) have shown remarkable capabilities across numerous tasks, they often struggle with simple reasoning and planning in physical environments, such as understanding object permanence or planning household activities. The limitation arises from the fact that LMs are trained only on written text and miss essential embodied knowledge and skills. In this paper, we propose a new paradigm of enhancing LMs by finetuning them with world models, to gain diverse embodied knowledge while retaining their general language capabilities. Our approach deploys an embodied agent in a world model, particularly a simulator of the physical world (VirtualHome), and acquires a diverse set of embodied experiences through both goal-oriented planning and random exploration. These experiences are then used to finetune LMs to teach diverse abilities of reasoning and acting in the physical world, e.g., planning and completing goals, object permanence and tracking, etc. Moreover, it is desirable to preserve the generality of LMs during finetuning, which facilitates generalizing the embodied knowledge across tasks rather than being tied to specific simulations. We thus further introduce the classical elastic weight consolidation (EWC) for selective weight updates, combined with low-rank adapters (LoRA) for training efficiency. Extensive experiments show our approach substantially improves base LMs on 18 downstream tasks by 64.28% on average. In particular, the small LMs (1.3B and 6B) enhanced by our approach match or even outperform much larger LMs (e.g., ChatGPT).

Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series

Large pre-trained models for zero/few-shot learning excel in language and vision domains but encounter challenges in multivariate time series (TS) due to the diverse nature and scarcity of publicly available pre-training data. Consequently, there has been a recent surge in utilizing pre-trained large language models (LLMs) with token adaptations for TS forecasting. These approaches employ cross-domain transfer learning and surprisingly yield impressive results. However, these models are typically very slow and large (~billion parameters) and do not consider cross-channel correlations. To address this, we present Tiny Time Mixers (TTM), a significantly small model based on the lightweight TSMixer architecture. TTM marks the first success in developing fast and tiny general pre-trained models (<1M parameters), exclusively trained on public TS datasets, with effective transfer learning capabilities for forecasting. To tackle the complexity of pre-training on multiple datasets with varied temporal resolutions, we introduce several novel enhancements such as adaptive patching, dataset augmentation via downsampling, and resolution prefix tuning. Moreover, we employ a multi-level modeling strategy to effectively model channel correlations and infuse exogenous signals during fine-tuning, a crucial capability lacking in existing benchmarks. TTM shows significant accuracy gains (12-38\%) over popular benchmarks in few/zero-shot forecasting. It also drastically reduces the compute needs as compared to LLM-TS methods, with a 14X cut in learnable parameters, 106X less total parameters, and substantial reductions in fine-tuning (65X) and inference time (54X). In fact, TTM's zero-shot often surpasses the few-shot results in many popular benchmarks, highlighting the efficacy of our approach. Code and pre-trained models will be open-sourced.