Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMulti-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
A Neural Span-Based Continual Named Entity Recognition Model
Named Entity Recognition (NER) models capable of Continual Learning (CL) are realistically valuable in areas where entity types continuously increase (e.g., personal assistants). Meanwhile the learning paradigm of NER advances to new patterns such as the span-based methods. However, its potential to CL has not been fully explored. In this paper, we propose SpanKL, a simple yet effective Span-based model with Knowledge distillation (KD) to preserve memories and multi-Label prediction to prevent conflicts in CL-NER. Unlike prior sequence labeling approaches, the inherently independent modeling in span and entity level with the designed coherent optimization on SpanKL promotes its learning at each incremental step and mitigates the forgetting. Experiments on synthetic CL datasets derived from OntoNotes and Few-NERD show that SpanKL significantly outperforms previous SoTA in many aspects, and obtains the smallest gap from CL to the upper bound revealing its high practiced value. The code is available at https://github.com/Qznan/SpanKL.
ConvBERT: Improving BERT with Span-based Dynamic Convolution
Pre-trained language models like BERT and its variants have recently achieved impressive performance in various natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for generating the attention map from a global perspective, we observe some heads only need to learn local dependencies, which means the existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, while using less than 1/4 training cost. Code and pre-trained models will be released.
Extracting Radiological Findings With Normalized Anatomical Information Using a Span-Based BERT Relation Extraction Model
Medical imaging is critical to the diagnosis and treatment of numerous medical problems, including many forms of cancer. Medical imaging reports distill the findings and observations of radiologists, creating an unstructured textual representation of unstructured medical images. Large-scale use of this text-encoded information requires converting the unstructured text to a structured, semantic representation. We explore the extraction and normalization of anatomical information in radiology reports that is associated with radiological findings. We investigate this extraction and normalization task using a span-based relation extraction model that jointly extracts entities and relations using BERT. This work examines the factors that influence extraction and normalization performance, including the body part/organ system, frequency of occurrence, span length, and span diversity. It discusses approaches for improving performance and creating high-quality semantic representations of radiological phenomena.
Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy
Joint extraction of entities and relations aims to detect entity pairs along with their relations using a single model. Prior work typically solves this task in the extract-then-classify or unified labeling manner. However, these methods either suffer from the redundant entity pairs, or ignore the important inner structure in the process of extracting entities and relations. To address these limitations, in this paper, we first decompose the joint extraction task into two interrelated subtasks, namely HE extraction and TER extraction. The former subtask is to distinguish all head-entities that may be involved with target relations, and the latter is to identify corresponding tail-entities and relations for each extracted head-entity. Next, these two subtasks are further deconstructed into several sequence labeling problems based on our proposed span-based tagging scheme, which are conveniently solved by a hierarchical boundary tagger and a multi-span decoding algorithm. Owing to the reasonable decomposition strategy, our model can fully capture the semantic interdependency between different steps, as well as reduce noise from irrelevant entity pairs. Experimental results show that our method outperforms previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new state-of-the-art on three public datasets
Small Language Model Makes an Effective Long Text Extractor
Named Entity Recognition (NER) is a fundamental problem in natural language processing (NLP). However, the task of extracting longer entity spans (e.g., awards) from extended texts (e.g., homepages) is barely explored. Current NER methods predominantly fall into two categories: span-based methods and generation-based methods. Span-based methods require the enumeration of all possible token-pair spans, followed by classification on each span, resulting in substantial redundant computations and excessive GPU memory usage. In contrast, generation-based methods involve prompting or fine-tuning large language models (LLMs) to adapt to downstream NER tasks. However, these methods struggle with the accurate generation of longer spans and often incur significant time costs for effective fine-tuning. To address these challenges, this paper introduces a lightweight span-based NER method called SeNER, which incorporates a bidirectional arrow attention mechanism coupled with LogN-Scaling on the [CLS] token to embed long texts effectively, and comprises a novel bidirectional sliding-window plus-shaped attention (BiSPA) mechanism to reduce redundant candidate token-pair spans significantly and model interactions between token-pair spans simultaneously. Extensive experiments demonstrate that our method achieves state-of-the-art extraction accuracy on three long NER datasets and is capable of extracting entities from long texts in a GPU-memory-friendly manner. Code: https://github.com/THUDM/scholar-profiling/tree/main/sener
Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets
Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human judgement but without any insights about their behaviour across different error types. Challenge sets are used to probe specific dimensions of metric behaviour but there are very few such datasets and they either focus on a limited number of phenomena or a limited number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These phenomena range from simple alterations at the word/character level to more complex errors based on discourse and real-world knowledge. We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks. We benchmark metric performance, assess their incremental performance over successive campaigns, and measure their sensitivity to a range of linguistic phenomena. We also investigate claims that Large Language Models (LLMs) are effective as MT evaluators by evaluating on ACES. Our results demonstrate that different metric families struggle with different phenomena and that LLM-based methods fail to demonstrate reliable performance. Our analyses indicate that most metrics ignore the source sentence, tend to prefer surface-level overlap and end up incorporating properties of base models which are not always beneficial. We expand ACES to include error span annotations, denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics showing these metrics also need considerable improvement. Finally, we provide a set of recommendations for building better MT metrics, including focusing on error labels instead of scores, ensembling, designing strategies to explicitly focus on the source sentence, focusing on semantic content and choosing the right base model for representations.
Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments
Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.
Semantic Role Labeling Meets Definition Modeling: Using Natural Language to Describe Predicate-Argument Structures
One of the common traits of past and present approaches for Semantic Role Labeling (SRL) is that they rely upon discrete labels drawn from a predefined linguistic inventory to classify predicate senses and their arguments. However, we argue this need not be the case. In this paper, we present an approach that leverages Definition Modeling to introduce a generalized formulation of SRL as the task of describing predicate-argument structures using natural language definitions instead of discrete labels. Our novel formulation takes a first step towards placing interpretability and flexibility foremost, and yet our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance. We release our software for research purposes at https://github.com/SapienzaNLP/dsrl.
ToNER: Type-oriented Named Entity Recognition with Generative Language Model
In recent years, the fine-tuned generative models have been proven more powerful than the previous tagging-based or span-based models on named entity recognition (NER) task. It has also been found that the information related to entities, such as entity types, can prompt a model to achieve NER better. However, it is not easy to determine the entity types indeed existing in the given sentence in advance, and inputting too many potential entity types would distract the model inevitably. To exploit entity types' merit on promoting NER task, in this paper we propose a novel NER framework, namely ToNER based on a generative model. In ToNER, a type matching model is proposed at first to identify the entity types most likely to appear in the sentence. Then, we append a multiple binary classification task to fine-tune the generative model's encoder, so as to generate the refined representation of the input sentence. Moreover, we add an auxiliary task for the model to discover the entity types which further fine-tunes the model to output more accurate results. Our extensive experiments on some NER benchmarks verify the effectiveness of our proposed strategies in ToNER that are oriented towards entity types' exploitation.
An Autoregressive Text-to-Graph Framework for Joint Entity and Relation Extraction
In this paper, we propose a novel method for joint entity and relation extraction from unstructured text by framing it as a conditional sequence generation problem. In contrast to conventional generative information extraction models that are left-to-right token-level generators, our approach is span-based. It generates a linearized graph where nodes represent text spans and edges represent relation triplets. Our method employs a transformer encoder-decoder architecture with pointing mechanism on a dynamic vocabulary of spans and relation types. Our model can capture the structural characteristics and boundaries of entities and relations through span representations while simultaneously grounding the generated output in the original text thanks to the pointing mechanism. Evaluation on benchmark datasets validates the effectiveness of our approach, demonstrating competitive results. Code is available at https://github.com/urchade/ATG.
There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning
Knowledge-grounded conversation (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, the existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach.
UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG) that utilizes Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks. This span uncertainty enhances model calibration, improving robustness and mitigating semantic inconsistencies introduced by random chunking. Leveraging this insight, we propose an efficient unsupervised learning technique to train the retrieval model, alongside an effective data sampling and scaling strategy. UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results while using only 4% of the training data compared to other advanced open-source retrieval models under distribution shift settings. Our method demonstrates strong calibration through span uncertainty, leading to improved generalization and robustness in long-context RAG tasks. Additionally, UncertaintyRAG provides a lightweight retrieval model that can be integrated into any large language model with varying context window lengths, without the need for fine-tuning, showcasing the flexibility of our approach.
Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance
Document-level event argument extraction poses new challenges of long input and cross-sentence inference compared to its sentence-level counterpart. However, most prior works focus on capturing the relations between candidate arguments and the event trigger in each event, ignoring two crucial points: a) non-argument contextual clue information; b) the relevance among argument roles. In this paper, we propose a SCPRG (Span-trigger-based Contextual Pooling and latent Role Guidance) model, which contains two novel and effective modules for the above problem. The Span-Trigger-based Contextual Pooling(STCP) adaptively selects and aggregates the information of non-argument clue words based on the context attention weights of specific argument-trigger pairs from pre-trained model. The Role-based Latent Information Guidance (RLIG) module constructs latent role representations, makes them interact through role-interactive encoding to capture semantic relevance, and merges them into candidate arguments. Both STCP and RLIG introduce no more than 1% new parameters compared with the base model and can be easily applied to other event extraction models, which are compact and transplantable. Experiments on two public datasets show that our SCPRG outperforms previous state-of-the-art methods, with 1.13 F1 and 2.64 F1 improvements on RAMS and WikiEvents respectively. Further analyses illustrate the interpretability of our model.
nicolay-r at SemEval-2024 Task 3: Using Flan-T5 for Reasoning Emotion Cause in Conversations with Chain-of-Thought on Emotion States
Emotion expression is one of the essential traits of conversations. It may be self-related or caused by another speaker. The variety of reasons may serve as a source of the further emotion causes: conversation history, speaker's emotional state, etc. Inspired by the most recent advances in Chain-of-Thought, in this work, we exploit the existing three-hop reasoning approach (THOR) to perform large language model instruction-tuning for answering: emotion states (THOR-state), and emotion caused by one speaker to the other (THOR-cause). We equip THOR-cause with the reasoning revision (rr) for devising a reasoning path in fine-tuning. In particular, we rely on the annotated speaker emotion states to revise reasoning path. Our final submission, based on Flan-T5-base (250M) and the rule-based span correction technique, preliminary tuned with THOR-state and fine-tuned with THOR-cause-rr on competition training data, results in 3rd and 4th places (F1-proportional) and 5th place (F1-strict) among 15 participating teams. Our THOR implementation fork is publicly available: https://github.com/nicolay-r/THOR-ECAC
Towards Exploiting Background Knowledge for Building Conversation Systems
Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task i.e, given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge.
Diver: Large Language Model Decoding with Span-Level Mutual Information Verification
Large language models (LLMs) have shown impressive capabilities in adapting to various tasks when provided with task-specific instructions. However, LLMs using standard decoding strategies often struggle with deviations from the inputs. Intuitively, compliant LLM outputs should reflect the information present in the input, which can be measured by point-wise mutual information (PMI) scores. Therefore, we propose Diver, a novel approach that enhances LLM Decoding through span-level PMI verification. During inference, Diver first identifies divergence steps that may lead to multiple candidate spans. Subsequently, it calculates the PMI scores by assessing the log-likelihood gains of the input if the candidate spans are generated. Finally, the optimal span is selected based on the PMI re-ranked output distributions. We evaluate our method across various downstream tasks, and empirical results demonstrate that Diver significantly outperforms existing decoding methods in both performance and versatility.
Improving Pre-trained Language Model Sensitivity via Mask Specific losses: A case study on Biomedical NER
Adapting language models (LMs) to novel domains is often achieved through fine-tuning a pre-trained LM (PLM) on domain-specific data. Fine-tuning introduces new knowledge into an LM, enabling it to comprehend and efficiently perform a target domain task. Fine-tuning can however be inadvertently insensitive if it ignores the wide array of disparities (e.g in word meaning) between source and target domains. For instance, words such as chronic and pressure may be treated lightly in social conversations, however, clinically, these words are usually an expression of concern. To address insensitive fine-tuning, we propose Mask Specific Language Modeling (MSLM), an approach that efficiently acquires target domain knowledge by appropriately weighting the importance of domain-specific terms (DS-terms) during fine-tuning. MSLM jointly masks DS-terms and generic words, then learns mask-specific losses by ensuring LMs incur larger penalties for inaccurately predicting DS-terms compared to generic words. Results of our analysis show that MSLM improves LMs sensitivity and detection of DS-terms. We empirically show that an optimal masking rate not only depends on the LM, but also on the dataset and the length of sequences. Our proposed masking strategy outperforms advanced masking strategies such as span- and PMI-based masking.
Joint Automatic Speech Recognition And Structure Learning For Better Speech Understanding
Spoken language understanding (SLU) is a structure prediction task in the field of speech. Recently, many works on SLU that treat it as a sequence-to-sequence task have achieved great success. However, This method is not suitable for simultaneous speech recognition and understanding. In this paper, we propose a joint speech recognition and structure learning framework (JSRSL), an end-to-end SLU model based on span, which can accurately transcribe speech and extract structured content simultaneously. We conduct experiments on name entity recognition and intent classification using the Chinese dataset AISHELL-NER and the English dataset SLURP. The results show that our proposed method not only outperforms the traditional sequence-to-sequence method in both transcription and extraction capabilities but also achieves state-of-the-art performance on the two datasets.
A Supervised Word Alignment Method based on Cross-Language Span Prediction using Multilingual BERT
We present a novel supervised word alignment method based on cross-language span prediction. We first formalize a word alignment problem as a collection of independent predictions from a token in the source sentence to a span in the target sentence. As this is equivalent to a SQuAD v2.0 style question answering task, we then solve this problem by using multilingual BERT, which is fine-tuned on a manually created gold word alignment data. We greatly improved the word alignment accuracy by adding the context of the token to the question. In the experiments using five word alignment datasets among Chinese, Japanese, German, Romanian, French, and English, we show that the proposed method significantly outperformed previous supervised and unsupervised word alignment methods without using any bitexts for pretraining. For example, we achieved an F1 score of 86.7 for the Chinese-English data, which is 13.3 points higher than the previous state-of-the-art supervised methods.
ExaGPT: Example-Based Machine-Generated Text Detection for Human Interpretability
Detecting texts generated by Large Language Models (LLMs) could cause grave mistakes due to incorrect decisions, such as undermining student's academic dignity. LLM text detection thus needs to ensure the interpretability of the decision, which can help users judge how reliably correct its prediction is. When humans verify whether a text is human-written or LLM-generated, they intuitively investigate with which of them it shares more similar spans. However, existing interpretable detectors are not aligned with the human decision-making process and fail to offer evidence that users easily understand. To bridge this gap, we introduce ExaGPT, an interpretable detection approach grounded in the human decision-making process for verifying the origin of a text. ExaGPT identifies a text by checking whether it shares more similar spans with human-written vs. with LLM-generated texts from a datastore. This approach can provide similar span examples that contribute to the decision for each span in the text as evidence. Our human evaluation demonstrates that providing similar span examples contributes more effectively to judging the correctness of the decision than existing interpretable methods. Moreover, extensive experiments in four domains and three generators show that ExaGPT massively outperforms prior powerful detectors by up to +40.9 points of accuracy at a false positive rate of 1%.
SeaTurtleID2022: A long-span dataset for reliable sea turtle re-identification
This paper introduces the first public large-scale, long-span dataset with sea turtle photographs captured in the wild -- SeaTurtleID2022 (https://www.kaggle.com/datasets/wildlifedatasets/seaturtleid2022). The dataset contains 8729 photographs of 438 unique individuals collected within 13 years, making it the longest-spanned dataset for animal re-identification. All photographs include various annotations, e.g., identity, encounter timestamp, and body parts segmentation masks. Instead of standard "random" splits, the dataset allows for two realistic and ecologically motivated splits: (i) a time-aware closed-set with training, validation, and test data from different days/years, and (ii) a time-aware open-set with new unknown individuals in test and validation sets. We show that time-aware splits are essential for benchmarking re-identification methods, as random splits lead to performance overestimation. Furthermore, a baseline instance segmentation and re-identification performance over various body parts is provided. Finally, an end-to-end system for sea turtle re-identification is proposed and evaluated. The proposed system based on Hybrid Task Cascade for head instance segmentation and ArcFace-trained feature-extractor achieved an accuracy of 86.8%.
Multi-Span Acoustic Modelling using Raw Waveform Signals
Traditional automatic speech recognition (ASR) systems often use an acoustic model (AM) built on handcrafted acoustic features, such as log Mel-filter bank (FBANK) values. Recent studies found that AMs with convolutional neural networks (CNNs) can directly use the raw waveform signal as input. Given sufficient training data, these AMs can yield a competitive word error rate (WER) to those built on FBANK features. This paper proposes a novel multi-span structure for acoustic modelling based on the raw waveform with multiple streams of CNN input layers, each processing a different span of the raw waveform signal. Evaluation on both the single channel CHiME4 and AMI data sets show that multi-span AMs give a lower WER than FBANK AMs by an average of about 5% (relative). Analysis of the trained multi-span model reveals that the CNNs can learn filters that are rather different to the log Mel filters. Furthermore, the paper shows that a widely used single span raw waveform AM can be improved by using a smaller CNN kernel size and increased stride to yield improved WERs.
Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning
Class-Incremental Learning (CIL) requires a learning system to continually learn new classes without forgetting. Despite the strong performance of Pre-Trained Models (PTMs) in CIL, a critical issue persists: learning new classes often results in the overwriting of old ones. Excessive modification of the network causes forgetting, while minimal adjustments lead to an inadequate fit for new classes. As a result, it is desired to figure out a way of efficient model updating without harming former knowledge. In this paper, we propose ExpAndable Subspace Ensemble (EASE) for PTM-based CIL. To enable model updating without conflict, we train a distinct lightweight adapter module for each new task, aiming to create task-specific subspaces. These adapters span a high-dimensional feature space, enabling joint decision-making across multiple subspaces. As data evolves, the expanding subspaces render the old class classifiers incompatible with new-stage spaces. Correspondingly, we design a semantic-guided prototype complement strategy that synthesizes old classes' new features without using any old class instance. Extensive experiments on seven benchmark datasets verify EASE's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/CVPR24-Ease
Aspect-specific Context Modeling for Aspect-based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) aims at predicting sentiment polarity (SC) or extracting opinion span (OE) expressed towards a given aspect. Previous work in ABSA mostly relies on rather complicated aspect-specific feature induction. Recently, pretrained language models (PLMs), e.g., BERT, have been used as context modeling layers to simplify the feature induction structures and achieve state-of-the-art performance. However, such PLM-based context modeling can be not that aspect-specific. Therefore, a key question is left under-explored: how the aspect-specific context can be better modeled through PLMs? To answer the question, we attempt to enhance aspect-specific context modeling with PLM in a non-intrusive manner. We propose three aspect-specific input transformations, namely aspect companion, aspect prompt, and aspect marker. Informed by these transformations, non-intrusive aspect-specific PLMs can be achieved to promote the PLM to pay more attention to the aspect-specific context in a sentence. Additionally, we craft an adversarial benchmark for ABSA (advABSA) to see how aspect-specific modeling can impact model robustness. Extensive experimental results on standard and adversarial benchmarks for SC and OE demonstrate the effectiveness and robustness of the proposed method, yielding new state-of-the-art performance on OE and competitive performance on SC.
Dialogue-Based Relation Extraction
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross-sentence RE as most facts span multiple sentences. We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks. Considering the timeliness of communication in a dialogue, we design a new metric to evaluate the performance of RE methods in a conversational setting and investigate the performance of several representative RE methods on DialogRE. Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings. DialogRE is available at https://dataset.org/dialogre/.
FarFetched: Entity-centric Reasoning and Claim Validation for the Greek Language based on Textually Represented Environments
Our collective attention span is shortened by the flood of online information. With FarFetched, we address the need for automated claim validation based on the aggregated evidence derived from multiple online news sources. We introduce an entity-centric reasoning framework in which latent connections between events, actions, or statements are revealed via entity mentions and represented in a graph database. Using entity linking and semantic similarity, we offer a way for collecting and combining information from diverse sources in order to generate evidence relevant to the user's claim. Then, we leverage textual entailment recognition to quantitatively determine whether this assertion is credible, based on the created evidence. Our approach tries to fill the gap in automated claim validation for less-resourced languages and is showcased on the Greek language, complemented by the training of relevant semantic textual similarity (STS) and natural language inference (NLI) models that are evaluated on translated versions of common benchmarks.
Beyond Empirical Windowing: An Attention-Based Approach for Trust Prediction in Autonomous Vehicles
Humans' internal states play a key role in human-machine interaction, leading to the rise of human state estimation as a prominent field. Compared to swift state changes such as surprise and irritation, modeling gradual states like trust and satisfaction are further challenged by label sparsity: long time-series signals are usually associated with a single label, making it difficult to identify the critical span of state shifts. Windowing has been one widely-used technique to enable localized analysis of long time-series data. However, the performance of downstream models can be sensitive to the window size, and determining the optimal window size demands domain expertise and extensive search. To address this challenge, we propose a Selective Windowing Attention Network (SWAN), which employs window prompts and masked attention transformation to enable the selection of attended intervals with flexible lengths. We evaluate SWAN on the task of trust prediction on a new multimodal driving simulation dataset. Experiments show that SWAN significantly outperforms an existing empirical window selection baseline and neural network baselines including CNN-LSTM and Transformer. Furthermore, it shows robustness across a wide span of windowing ranges, compared to the traditional windowing approach.
Pre-train a Discriminative Text Encoder for Dense Retrieval via Contrastive Span Prediction
Dense retrieval has shown promising results in many information retrieval (IR) related tasks, whose foundation is high-quality text representation learning for effective search. Some recent studies have shown that autoencoder-based language models are able to boost the dense retrieval performance using a weak decoder. However, we argue that 1) it is not discriminative to decode all the input texts and, 2) even a weak decoder has the bypass effect on the encoder. Therefore, in this work, we introduce a novel contrastive span prediction task to pre-train the encoder alone, but still retain the bottleneck ability of the autoencoder. % Therefore, in this work, we propose to drop out the decoder and introduce a novel contrastive span prediction task to pre-train the encoder alone. The key idea is to force the encoder to generate the text representation close to its own random spans while far away from others using a group-wise contrastive loss. In this way, we can 1) learn discriminative text representations efficiently with the group-wise contrastive learning over spans and, 2) avoid the bypass effect of the decoder thoroughly. Comprehensive experiments over publicly available retrieval benchmark datasets show that our approach can outperform existing pre-training methods for dense retrieval significantly.
Cascaded Span Extraction and Response Generation for Document-Grounded Dialog
This paper summarizes our entries to both subtasks of the first DialDoc shared task which focuses on the agent response prediction task in goal-oriented document-grounded dialogs. The task is split into two subtasks: predicting a span in a document that grounds an agent turn and generating an agent response based on a dialog and grounding document. In the first subtask, we restrict the set of valid spans to the ones defined in the dataset, use a biaffine classifier to model spans, and finally use an ensemble of different models. For the second subtask, we use a cascaded model which grounds the response prediction on the predicted span instead of the full document. With these approaches, we obtain significant improvements in both subtasks compared to the baseline.
Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.
Interpreting CLIP's Image Representation via Text-Based Decomposition
We investigate the CLIP image encoder by analyzing how individual model components affect the final representation. We decompose the image representation as a sum across individual image patches, model layers, and attention heads, and use CLIP's text representation to interpret the summands. Interpreting the attention heads, we characterize each head's role by automatically finding text representations that span its output space, which reveals property-specific roles for many heads (e.g. location or shape). Next, interpreting the image patches, we uncover an emergent spatial localization within CLIP. Finally, we use this understanding to remove spurious features from CLIP and to create a strong zero-shot image segmenter. Our results indicate that a scalable understanding of transformer models is attainable and can be used to repair and improve models.
DRAGIN: Dynamic Retrieval Augmented Generation based on the Information Needs of Large Language Models
Dynamic retrieval augmented generation (RAG) paradigm actively decides when and what to retrieve during the text generation process of Large Language Models (LLMs). There are two key elements of this paradigm: identifying the optimal moment to activate the retrieval module (deciding when to retrieve) and crafting the appropriate query once retrieval is triggered (determining what to retrieve). However, current dynamic RAG methods fall short in both aspects. Firstly, the strategies for deciding when to retrieve often rely on static rules. Moreover, the strategies for deciding what to retrieve typically limit themselves to the LLM's most recent sentence or the last few tokens, while the LLM's real-time information needs may span across the entire context. To overcome these limitations, we introduce a new framework, DRAGIN, i.e., Dynamic Retrieval Augmented Generation based on the real-time Information Needs of LLMs. Our framework is specifically designed to make decisions on when and what to retrieve based on the LLM's real-time information needs during the text generation process. We evaluate DRAGIN along with existing methods comprehensively over 4 knowledge-intensive generation datasets. Experimental results show that DRAGIN achieves superior performance on all tasks, demonstrating the effectiveness of our method. We have open-sourced all the code, data, and models in GitHub: https://github.com/oneal2000/DRAGIN/tree/main
Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints
Ensuring reliable confidence scores from deep neural networks is of paramount significance in critical decision-making systems, particularly in real-world domains such as healthcare. Recent literature on calibrating deep segmentation networks has resulted in substantial progress. Nevertheless, these approaches are strongly inspired by the advancements in classification tasks, and thus their uncertainty is usually modeled by leveraging the information of individual pixels, disregarding the local structure of the object of interest. Indeed, only the recent Spatially Varying Label Smoothing (SVLS) approach considers pixel spatial relationships across classes, by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this work, we first present a constrained optimization perspective of SVLS and demonstrate that it enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint with the primary objective, potentially hindering the optimization process. Based on these observations, we propose NACL (Neighbor Aware CaLibration), a principled and simple solution based on equality constraints on the logit values, which enables to control explicitly both the enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive experiments on a wide variety of well-known segmentation benchmarks demonstrate the superior calibration performance of the proposed approach, without affecting its discriminative power. Furthermore, ablation studies empirically show the model agnostic nature of our approach, which can be used to train a wide span of deep segmentation networks.
WebSRC: A Dataset for Web-Based Structural Reading Comprehension
Web search is an essential way for humans to obtain information, but it's still a great challenge for machines to understand the contents of web pages. In this paper, we introduce the task of structural reading comprehension (SRC) on web. Given a web page and a question about it, the task is to find the answer from the web page. This task requires a system not only to understand the semantics of texts but also the structure of the web page. Moreover, we proposed WebSRC, a novel Web-based Structural Reading Comprehension dataset. WebSRC consists of 400K question-answer pairs, which are collected from 6.4K web pages. Along with the QA pairs, corresponding HTML source code, screenshots, and metadata are also provided in our dataset. Each question in WebSRC requires a certain structural understanding of a web page to answer, and the answer is either a text span on the web page or yes/no. We evaluate various baselines on our dataset to show the difficulty of our task. We also investigate the usefulness of structural information and visual features. Our dataset and baselines have been publicly available at https://x-lance.github.io/WebSRC/.
SSR-Speech: Towards Stable, Safe and Robust Zero-shot Text-based Speech Editing and Synthesis
In this paper, we introduce SSR-Speech, a neural codec autoregressive model designed for stable, safe, and robust zero-shot text-based speech editing and text-to-speech synthesis. SSR-Speech is built on a Transformer decoder and incorporates classifier-free guidance to enhance the stability of the generation process. A watermark Encodec is proposed to embed frame-level watermarks into the edited regions of the speech so that which parts were edited can be detected. In addition, the waveform reconstruction leverages the original unedited speech segments, providing superior recovery compared to the Encodec model. Our approach achieves the state-of-the-art performance in the RealEdit speech editing task and the LibriTTS text-to-speech task, surpassing previous methods. Furthermore, SSR-Speech excels in multi-span speech editing and also demonstrates remarkable robustness to background sounds. Source code and demos are released.
What and When to Look?: Temporal Span Proposal Network for Video Relation Detection
Identifying relations between objects is central to understanding the scene. While several works have been proposed for relation modeling in the image domain, there have been many constraints in the video domain due to challenging dynamics of spatio-temporal interactions (e.g., between which objects are there an interaction? when do relations start and end?). To date, two representative methods have been proposed to tackle Video Visual Relation Detection (VidVRD): segment-based and window-based. We first point out limitations of these methods and propose a novel approach named Temporal Span Proposal Network (TSPN). TSPN tells what to look: it sparsifies relation search space by scoring relationness of object pair, i.e., measuring how probable a relation exist. TSPN tells when to look: it simultaneously predicts start-end timestamps (i.e., temporal spans) and categories of the all possible relations by utilizing full video context. These two designs enable a win-win scenario: it accelerates training by 2X or more than existing methods and achieves competitive performance on two VidVRD benchmarks (ImageNet-VidVDR and VidOR). Moreover, comprehensive ablative experiments demonstrate the effectiveness of our approach. Codes are available at https://github.com/sangminwoo/Temporal-Span-Proposal-Network-VidVRD.
Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework
Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper we meticulously create a large amount of data connected with E-manuals and develop suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40% in ROUGE-L F1 scores over the most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.
Generating Novel, Designable, and Diverse Protein Structures by Equivariantly Diffusing Oriented Residue Clouds
Proteins power a vast array of functional processes in living cells. The capability to create new proteins with designed structures and functions would thus enable the engineering of cellular behavior and development of protein-based therapeutics and materials. Structure-based protein design aims to find structures that are designable (can be realized by a protein sequence), novel (have dissimilar geometry from natural proteins), and diverse (span a wide range of geometries). While advances in protein structure prediction have made it possible to predict structures of novel protein sequences, the combinatorially large space of sequences and structures limits the practicality of search-based methods. Generative models provide a compelling alternative, by implicitly learning the low-dimensional structure of complex data distributions. Here, we leverage recent advances in denoising diffusion probabilistic models and equivariant neural networks to develop Genie, a generative model of protein structures that performs discrete-time diffusion using a cloud of oriented reference frames in 3D space. Through in silico evaluations, we demonstrate that Genie generates protein backbones that are more designable, novel, and diverse than existing models. This indicates that Genie is capturing key aspects of the distribution of protein structure space and facilitates protein design with high success rates. Code for generating new proteins and training new versions of Genie is available at https://github.com/aqlaboratory/genie.
QE4PE: Word-level Quality Estimation for Human Post-Editing
Word-level quality estimation (QE) detects erroneous spans in machine translations, which can direct and facilitate human post-editing. While the accuracy of word-level QE systems has been assessed extensively, their usability and downstream influence on the speed, quality and editing choices of human post-editing remain understudied. Our QE4PE study investigates the impact of word-level QE on machine translation (MT) post-editing in a realistic setting involving 42 professional post-editors across two translation directions. We compare four error-span highlight modalities, including supervised and uncertainty-based word-level QE methods, for identifying potential errors in the outputs of a state-of-the-art neural MT model. Post-editing effort and productivity are estimated by behavioral logs, while quality improvements are assessed by word- and segment-level human annotation. We find that domain, language and editors' speed are critical factors in determining highlights' effectiveness, with modest differences between human-made and automated QE highlights underlining a gap between accuracy and usability in professional workflows.
Multiscale Video Pretraining for Long-Term Activity Forecasting
Long-term activity forecasting is an especially challenging research problem because it requires understanding the temporal relationships between observed actions, as well as the variability and complexity of human activities. Despite relying on strong supervision via expensive human annotations, state-of-the-art forecasting approaches often generalize poorly to unseen data. To alleviate this issue, we propose Multiscale Video Pretraining (MVP), a novel self-supervised pretraining approach that learns robust representations for forecasting by learning to predict contextualized representations of future video clips over multiple timescales. MVP is based on our observation that actions in videos have a multiscale nature, where atomic actions typically occur at a short timescale and more complex actions may span longer timescales. We compare MVP to state-of-the-art self-supervised video learning approaches on downstream long-term forecasting tasks including long-term action anticipation and video summary prediction. Our comprehensive experiments across the Ego4D and Epic-Kitchens-55/100 datasets demonstrate that MVP out-performs state-of-the-art methods by significant margins. Notably, MVP obtains a relative performance gain of over 20% accuracy in video summary forecasting over existing methods.
Neural models for Factual Inconsistency Classification with Explanations
Factual consistency is one of the most important requirements when editing high quality documents. It is extremely important for automatic text generation systems like summarization, question answering, dialog modeling, and language modeling. Still, automated factual inconsistency detection is rather under-studied. Existing work has focused on (a) finding fake news keeping a knowledge base in context, or (b) detecting broad contradiction (as part of natural language inference literature). However, there has been no work on detecting and explaining types of factual inconsistencies in text, without any knowledge base in context. In this paper, we leverage existing work in linguistics to formally define five types of factual inconsistencies. Based on this categorization, we contribute a novel dataset, FICLE (Factual Inconsistency CLassification with Explanation), with ~8K samples where each sample consists of two sentences (claim and context) annotated with type and span of inconsistency. When the inconsistency relates to an entity type, it is labeled as well at two levels (coarse and fine-grained). Further, we leverage this dataset to train a pipeline of four neural models to predict inconsistency type with explanations, given a (claim, context) sentence pair. Explanations include inconsistent claim fact triple, inconsistent context span, inconsistent claim component, coarse and fine-grained inconsistent entity types. The proposed system first predicts inconsistent spans from claim and context; and then uses them to predict inconsistency types and inconsistent entity types (when inconsistency is due to entities). We experiment with multiple Transformer-based natural language classification as well as generative models, and find that DeBERTa performs the best. Our proposed methods provide a weighted F1 of ~87% for inconsistency type classification across the five classes.
Neural Implicit Dictionary via Mixture-of-Expert Training
Representing visual signals by coordinate-based deep fully-connected networks has been shown advantageous in fitting complex details and solving inverse problems than discrete grid-based representation. However, acquiring such a continuous Implicit Neural Representation (INR) requires tedious per-scene training on tons of signal measurements, which limits its practicality. In this paper, we present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID) from a data collection and representing INR as a functional combination of basis sampled from the dictionary. Our NID assembles a group of coordinate-based subnetworks which are tuned to span the desired function space. After training, one can instantly and robustly acquire an unseen scene representation by solving the coding coefficients. To parallelly optimize a large group of networks, we borrow the idea from Mixture-of-Expert (MoE) to design and train our network with a sparse gating mechanism. Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data. We further demonstrate various applications of NID in image inpainting and occlusion removal, which are considered to be challenging with vanilla INR. Our codes are available in https://github.com/VITA-Group/Neural-Implicit-Dict.
Agent-to-Sim: Learning Interactive Behavior Models from Casual Longitudinal Videos
We present Agent-to-Sim (ATS), a framework for learning interactive behavior models of 3D agents from casual longitudinal video collections. Different from prior works that rely on marker-based tracking and multiview cameras, ATS learns natural behaviors of animal and human agents non-invasively through video observations recorded over a long time-span (e.g., a month) in a single environment. Modeling 3D behavior of an agent requires persistent 3D tracking (e.g., knowing which point corresponds to which) over a long time period. To obtain such data, we develop a coarse-to-fine registration method that tracks the agent and the camera over time through a canonical 3D space, resulting in a complete and persistent spacetime 4D representation. We then train a generative model of agent behaviors using paired data of perception and motion of an agent queried from the 4D reconstruction. ATS enables real-to-sim transfer from video recordings of an agent to an interactive behavior simulator. We demonstrate results on pets (e.g., cat, dog, bunny) and human given monocular RGBD videos captured by a smartphone.
ERNIE-Code: Beyond English-Centric Cross-lingual Pretraining for Programming Languages
Software engineers working with the same programming language (PL) may speak different natural languages (NLs) and vice versa, erecting huge barriers to communication and working efficiency. Recent studies have demonstrated the effectiveness of generative pre-training in computer programs, yet they are always English-centric. In this work, we step towards bridging the gap between multilingual NLs and multilingual PLs for large language models (LLMs). We release ERNIE-Code, a unified pre-trained language model for 116 NLs and 6 PLs. We employ two methods for universal cross-lingual pre-training: span-corruption language modeling that learns patterns from monolingual NL or PL; and pivot-based translation language modeling that relies on parallel data of many NLs and PLs. Extensive results show that ERNIE-Code outperforms previous multilingual LLMs for PL or NL across a wide range of end tasks of code intelligence, including multilingual code-to-text, text-to-code, code-to-code, and text-to-text generation. We further show its advantage of zero-shot prompting on multilingual code summarization and text-to-text translation. We release our code and pre-trained checkpoints.
Recognizing Emotion Cause in Conversations
We address the problem of recognizing emotion cause in conversations, define two novel sub-tasks of this problem, and provide a corresponding dialogue-level dataset, along with strong Transformer-based baselines. The dataset is available at https://github.com/declare-lab/RECCON. Introduction: Recognizing the cause behind emotions in text is a fundamental yet under-explored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamics among the interlocutors. Method: We introduce the task of Recognizing Emotion Cause in CONversations with an accompanying dataset named RECCON, containing over 1,000 dialogues and 10,000 utterance cause-effect pairs. Furthermore, we define different cause types based on the source of the causes, and establish strong Transformer-based baselines to address two different sub-tasks on this dataset: causal span extraction and causal emotion entailment. Result: Our Transformer-based baselines, which leverage contextual pre-trained embeddings, such as RoBERTa, outperform the state-of-the-art emotion cause extraction approaches Conclusion: We introduce a new task highly relevant for (explainable) emotion-aware artificial intelligence: recognizing emotion cause in conversations, provide a new highly challenging publicly available dialogue-level dataset for this task, and give strong baseline results on this dataset.
CNN-generated images are surprisingly easy to spot... for now
In this work we ask whether it is possible to create a "universal" detector for telling apart real images from these generated by a CNN, regardless of architecture or dataset used. To test this, we collect a dataset consisting of fake images generated by 11 different CNN-based image generator models, chosen to span the space of commonly used architectures today (ProGAN, StyleGAN, BigGAN, CycleGAN, StarGAN, GauGAN, DeepFakes, cascaded refinement networks, implicit maximum likelihood estimation, second-order attention super-resolution, seeing-in-the-dark). We demonstrate that, with careful pre- and post-processing and data augmentation, a standard image classifier trained on only one specific CNN generator (ProGAN) is able to generalize surprisingly well to unseen architectures, datasets, and training methods (including the just released StyleGAN2). Our findings suggest the intriguing possibility that today's CNN-generated images share some common systematic flaws, preventing them from achieving realistic image synthesis. Code and pre-trained networks are available at https://peterwang512.github.io/CNNDetection/ .
Sparse Modular Activation for Efficient Sequence Modeling
Linear State Space Models (SSMs) have demonstrated strong performance in a variety of sequence modeling tasks due to their efficient encoding of the recurrent structure. However, in more comprehensive tasks like language modeling and machine translation, self-attention-based models still outperform SSMs. Hybrid models employing both SSM and self-attention generally show promising performance, but current approaches apply attention modules statically and uniformly to all elements in the input sequences, leading to sub-optimal quality-efficiency trade-offs. In this work, we introduce Sparse Modular Activation (SMA), a general mechanism enabling neural networks to sparsely and dynamically activate sub-modules for sequence elements in a differentiable manner. Through allowing each element to skip non-activated sub-modules, SMA reduces computation and memory consumption at both training and inference stages of sequence modeling. As a specific instantiation of SMA, we design a novel neural architecture, SeqBoat, which employs SMA to sparsely activate a Gated Attention Unit (GAU) based on the state representations learned from an SSM. By constraining the GAU to only conduct local attention on the activated inputs, SeqBoat can achieve linear inference complexity with theoretically infinite attention span, and provide substantially better quality-efficiency trade-off than the chunking-based models. With experiments on a wide range of tasks, including language modeling, speech classification and long-range arena, SeqBoat brings new state-of-the-art results among hybrid models with linear complexity and reveals the amount of attention needed for each task through the learned sparse activation patterns.
Towards Benchmarking and Improving the Temporal Reasoning Capability of Large Language Models
Reasoning about time is of fundamental importance. Many facts are time-dependent. For example, athletes change teams from time to time, and different government officials are elected periodically. Previous time-dependent question answering (QA) datasets tend to be biased in either their coverage of time spans or question types. In this paper, we introduce a comprehensive probing dataset \tempreason to evaluate the temporal reasoning capability of large language models. Our dataset includes questions of three temporal reasoning levels. In addition, we also propose a novel learning framework to improve the temporal reasoning capability of large language models, based on temporal span extraction and time-sensitive reinforcement learning. We conducted experiments in closed book QA, open book QA, and reasoning QA settings and demonstrated the effectiveness of our approach. Our code and data are released on https://github.com/DAMO-NLP-SG/TempReason.
Key-Value Retrieval Networks for Task-Oriented Dialogue
Neural task-oriented dialogue systems often struggle to smoothly interface with a knowledge base. In this work, we seek to address this problem by proposing a new neural dialogue agent that is able to effectively sustain grounded, multi-domain discourse through a novel key-value retrieval mechanism. The model is end-to-end differentiable and does not need to explicitly model dialogue state or belief trackers. We also release a new dataset of 3,031 dialogues that are grounded through underlying knowledge bases and span three distinct tasks in the in-car personal assistant space: calendar scheduling, weather information retrieval, and point-of-interest navigation. Our architecture is simultaneously trained on data from all domains and significantly outperforms a competitive rule-based system and other existing neural dialogue architectures on the provided domains according to both automatic and human evaluation metrics.
Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction
Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.
MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines
MultiWOZ is a well-known task-oriented dialogue dataset containing over 10,000 annotated dialogues spanning 8 domains. It is extensively used as a benchmark for dialogue state tracking. However, recent works have reported presence of substantial noise in the dialogue state annotations. MultiWOZ 2.1 identified and fixed many of these erroneous annotations and user utterances, resulting in an improved version of this dataset. This work introduces MultiWOZ 2.2, which is a yet another improved version of this dataset. Firstly, we identify and fix dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1. Secondly, we redefine the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking). In addition, we introduce slot span annotations for these slots to standardize them across recent models, which previously used custom string matching heuristics to generate them. We also benchmark a few state of the art dialogue state tracking models on the corrected dataset to facilitate comparison for future work. In the end, we discuss best practices for dialogue data collection that can help avoid annotation errors.
Summary-Source Proposition-level Alignment: Task, Datasets and Supervised Baseline
Aligning sentences in a reference summary with their counterparts in source documents was shown as a useful auxiliary summarization task, notably for generating training data for salience detection. Despite its assessed utility, the alignment step was mostly approached with heuristic unsupervised methods, typically ROUGE-based, and was never independently optimized or evaluated. In this paper, we propose establishing summary-source alignment as an explicit task, while introducing two major novelties: (1) applying it at the more accurate proposition span level, and (2) approaching it as a supervised classification task. To that end, we created a novel training dataset for proposition-level alignment, derived automatically from available summarization evaluation data. In addition, we crowdsourced dev and test datasets, enabling model development and proper evaluation. Utilizing these data, we present a supervised proposition alignment baseline model, showing improved alignment-quality over the unsupervised approach.
Zero-shot Factual Consistency Evaluation Across Domains
This work addresses the challenge of factual consistency in text generation systems. We unify the tasks of Natural Language Inference, Summarization Evaluation, Factuality Verification and Factual Consistency Evaluation to train models capable of evaluating the factual consistency of source-target pairs across diverse domains. We rigorously evaluate these against eight baselines on a comprehensive benchmark suite comprising 22 datasets that span various tasks, domains, and document lengths. Results demonstrate that our method achieves state-of-the-art performance on this heterogeneous benchmark while addressing efficiency concerns and attaining cross-domain generalization.
SpanBERT: Improving Pre-training by Representing and Predicting Spans
We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random tokens, and (2) training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it. SpanBERT consistently outperforms BERT and our better-tuned baselines, with substantial gains on span selection tasks such as question answering and coreference resolution. In particular, with the same training data and model size as BERT-large, our single model obtains 94.6% and 88.7% F1 on SQuAD 1.1 and 2.0, respectively. We also achieve a new state of the art on the OntoNotes coreference resolution task (79.6\% F1), strong performance on the TACRED relation extraction benchmark, and even show gains on GLUE.
Blending Is All You Need: Cheaper, Better Alternative to Trillion-Parameters LLM
In conversational AI research, there's a noticeable trend towards developing models with a larger number of parameters, exemplified by models like ChatGPT. While these expansive models tend to generate increasingly better chat responses, they demand significant computational resources and memory. This study explores a pertinent question: Can a combination of smaller models collaboratively achieve comparable or enhanced performance relative to a singular large model? We introduce an approach termed "blending", a straightforward yet effective method of integrating multiple chat AIs. Our empirical evidence suggests that when specific smaller models are synergistically blended, they can potentially outperform or match the capabilities of much larger counterparts. For instance, integrating just three models of moderate size (6B/13B paramaeters) can rival or even surpass the performance metrics of a substantially larger model like ChatGPT (175B+ paramaters). This hypothesis is rigorously tested using A/B testing methodologies with a large user base on the Chai research platform over a span of thirty days. The findings underscore the potential of the "blending" strategy as a viable approach for enhancing chat AI efficacy without a corresponding surge in computational demands.
Augmenting Transformers with Recursively Composed Multi-grained Representations
We present ReCAT, a recursive composition augmented Transformer that is able to explicitly model hierarchical syntactic structures of raw texts without relying on gold trees during both learning and inference. Existing research along this line restricts data to follow a hierarchical tree structure and thus lacks inter-span communications. To overcome the problem, we propose a novel contextual inside-outside (CIO) layer that learns contextualized representations of spans through bottom-up and top-down passes, where a bottom-up pass forms representations of high-level spans by composing low-level spans, while a top-down pass combines information inside and outside a span. By stacking several CIO layers between the embedding layer and the attention layers in Transformer, the ReCAT model can perform both deep intra-span and deep inter-span interactions, and thus generate multi-grained representations fully contextualized with other spans. Moreover, the CIO layers can be jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong performance, and interpretability at the same time. We conduct experiments on various sentence-level and span-level tasks. Evaluation results indicate that ReCAT can significantly outperform vanilla Transformer models on all span-level tasks and baselines that combine recursive networks with Transformers on natural language inference tasks. More interestingly, the hierarchical structures induced by ReCAT exhibit strong consistency with human-annotated syntactic trees, indicating good interpretability brought by the CIO layers.
MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression
Sparse attention can effectively mitigate the significant memory and throughput demands of Large Language Models (LLMs) in long contexts. Existing methods typically employ a uniform sparse attention mask, applying the same sparse pattern across different attention heads and input lengths. However, this uniform approach fails to capture the diverse attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose the Mixture of Attention (MoA), which automatically tailors distinct sparse attention configurations to different heads and layers. MoA constructs and navigates a search space of various attention patterns and their scaling rules relative to input sequence lengths. It profiles the model, evaluates potential configurations, and pinpoints the optimal sparse attention compression plan. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer sequences, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by 3.9times with the same average attention span, boosting retrieval accuracy by 1.5-7.1times over the uniform-attention baseline across Vicuna-7B, Vicuna-13B, and Llama3-8B models. Moreover, MoA narrows the capability gaps between sparse and dense models, reducing the maximum relative performance drop from 9%-36% to within 5% across two long-context understanding benchmarks. MoA achieves a 1.2-1.4times GPU memory reduction and boosts decode throughput by 5.5-6.7 times for 7B and 13B dense models on a single GPU, with minimal impact on performance.