9 AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of large language models (LLMs) for 3D Cartesian space navigation. AlphaSpace employs a semantics-based tokenization strategy, encoding height information through specialized semantic tokens, and integrates primarily symbolic synthetic reasoning data. This approach enables LLMs to accurately manipulate objects by positioning them at specific [x, y, z] coordinates. Experimental results demonstrate that AlphaSpace significantly outperforms existing models on manipulation subtasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet. 3 authors · Mar 24 2
1 Mapping distributional to model-theoretic semantic spaces: a baseline Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset. 1 authors · Jul 10, 2016
- Multi-Word Tokenization for Sequence Compression Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation. 4 authors · Feb 15, 2024 2
1 Vec-Tok Speech: speech vectorization and tokenization for neural speech generation Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at https://github.com/BakerBunker/VecTok . 8 authors · Oct 11, 2023
- Learnable Item Tokenization for Generative Recommendation Utilizing powerful Large Language Models (LLMs) for generative recommendation has attracted much attention. Nevertheless, a crucial challenge is transforming recommendation data into the language space of LLMs through effective item tokenization. Current approaches, such as ID, textual, and codebook-based identifiers, exhibit shortcomings in encoding semantic information, incorporating collaborative signals, or handling code assignment bias. To address these limitations, we propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), which integrates hierarchical semantics, collaborative signals, and code assignment diversity to satisfy the essential requirements of identifiers. LETTER incorporates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias. We instantiate LETTER on two models and propose a ranking-guided generation loss to augment their ranking ability theoretically. Experiments on three datasets validate the superiority of LETTER, advancing the state-of-the-art in the field of LLM-based generative recommendation. 8 authors · May 12, 2024
- MINERS: Multilingual Language Models as Semantic Retrievers Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning. 3 authors · Jun 11, 2024
- ExLM: Rethinking the Impact of [MASK] Tokens in Masked Language Models Masked Language Models (MLMs) have achieved remarkable success in many self-supervised representation learning tasks. MLMs are trained by randomly masking portions of the input sequences with [MASK] tokens and learning to reconstruct the original content based on the remaining context. This paper explores the impact of [MASK] tokens on MLMs. Analytical studies show that masking tokens can introduce the corrupted semantics problem, wherein the corrupted context may convey multiple, ambiguous meanings. This problem is also a key factor affecting the performance of MLMs on downstream tasks. Based on these findings, we propose a novel enhanced-context MLM, ExLM. Our approach expands [MASK] tokens in the input context and models the dependencies between these expanded states. This enhancement increases context capacity and enables the model to capture richer semantic information, effectively mitigating the corrupted semantics problem during pre-training. Experimental results demonstrate that ExLM achieves significant performance improvements in both text modeling and SMILES modeling tasks. Further analysis confirms that ExLM enriches semantic representations through context enhancement, and effectively reduces the semantic multimodality commonly observed in MLMs. 8 authors · Jan 23
- Retrieval-Augmented Semantic Parsing: Using Large Language Models to Improve Generalization Open-domain semantic parsing remains a challenging task, as models often rely on heuristics and struggle to handle unseen concepts. In this paper, we investigate the potential of large language models (LLMs) for this task and introduce Retrieval-Augmented Semantic Parsing (RASP), a simple yet effective approach that integrates external lexical knowledge into the parsing process. Our experiments not only show that LLMs outperform previous encoder-decoder baselines for semantic parsing, but that RASP further enhances their ability to predict unseen concepts, nearly doubling the performance of previous models on out-of-distribution concepts. These findings highlight the promise of leveraging large language models and retrieval mechanisms for robust and open-domain semantic parsing. 3 authors · Dec 13, 2024
- Coreferential Reasoning Learning for Language Representation Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most existing language representation models cannot explicitly handle coreference, which is essential to the coherent understanding of the whole discourse. To address this issue, we present CorefBERT, a novel language representation model that can capture the coreferential relations in context. The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks that require coreferential reasoning, while maintaining comparable performance to previous models on other common NLP tasks. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/CorefBERT. 7 authors · Apr 14, 2020
- Constrained Language Models Yield Few-Shot Semantic Parsers We explore the use of large pretrained language models as few-shot semantic parsers. The goal in semantic parsing is to generate a structured meaning representation given a natural language input. However, language models are trained to generate natural language. To bridge the gap, we use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation. Our results demonstrate that with only a small amount of data and very little code to convert into English-like representations, our blueprint for rapidly bootstrapping semantic parsers leads to surprisingly effective performance on multiple community tasks, greatly exceeding baseline methods also trained on the same limited data. 10 authors · Apr 18, 2021
- Deep contextualized word representations We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals. 7 authors · Feb 14, 2018
- Nugget: Neural Agglomerative Embeddings of Text Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content. 2 authors · Oct 2, 2023
- How Should We Extract Discrete Audio Tokens from Self-Supervised Models? Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications. 7 authors · Jun 15, 2024
- LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts Decentralized Finance (DeFi) incidents stemming from the exploitation of smart contract vulnerabilities have culminated in financial damages exceeding 3 billion US dollars. Existing defense mechanisms typically focus on detecting and reacting to malicious transactions executed by attackers that target victim contracts. However, with the emergence of private transaction pools where transactions are sent directly to miners without first appearing in public mempools, current detection tools face significant challenges in identifying attack activities effectively. Based on the fact that most attack logic rely on deploying one or more intermediate smart contracts as supporting components to the exploitation of victim contracts, in this paper, we propose a new direction for detecting DeFi attacks that focuses on identifying adversarial contracts instead of adversarial transactions. Our approach allows us to leverage common attack patterns, code semantics and intrinsic characteristics found in malicious smart contracts to build the LookAhead system based on Machine Learning (ML) classifiers and a transformer model that is able to effectively distinguish adversarial contracts from benign ones, and make just-in-time predictions of potential zero-day attacks. Our contributions are three-fold: First, we construct a comprehensive dataset consisting of features extracted and constructed from recent contracts deployed on the Ethereum and BSC blockchains. Secondly, we design a condensed representation of smart contract programs called Pruned Semantic-Control Flow Tokenization (PSCFT) and use it to train a combination of ML models that understand the behaviour of malicious codes based on function calls, control flows and other pattern-conforming features. Lastly, we provide the complete implementation of LookAhead and the evaluation of its performance metrics for detecting adversarial contracts. 7 authors · Jan 14, 2024
1 Retrofitting Word Vectors to Semantic Lexicons Vector space word representations are learned from distributional information of words in large corpora. Although such statistics are semantically informative, they disregard the valuable information that is contained in semantic lexicons such as WordNet, FrameNet, and the Paraphrase Database. This paper proposes a method for refining vector space representations using relational information from semantic lexicons by encouraging linked words to have similar vector representations, and it makes no assumptions about how the input vectors were constructed. Evaluated on a battery of standard lexical semantic evaluation tasks in several languages, we obtain substantial improvements starting with a variety of word vector models. Our refinement method outperforms prior techniques for incorporating semantic lexicons into the word vector training algorithms. 6 authors · Nov 15, 2014
- On the Origins of Linear Representations in Large Language Models Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To that end, we introduce a simple latent variable model to abstract and formalize the concept dynamics of the next token prediction. We use this formalism to show that the next token prediction objective (softmax with cross-entropy) and the implicit bias of gradient descent together promote the linear representation of concepts. Experiments show that linear representations emerge when learning from data matching the latent variable model, confirming that this simple structure already suffices to yield linear representations. We additionally confirm some predictions of the theory using the LLaMA-2 large language model, giving evidence that the simplified model yields generalizable insights. 5 authors · Mar 6, 2024
- Improving Unsupervised Constituency Parsing via Maximizing Semantic Information Unsupervised constituency parsers organize phrases within a sentence into a tree-shaped syntactic constituent structure that reflects the organization of sentence semantics. However, the traditional objective of maximizing sentence log-likelihood (LL) does not explicitly account for the close relationship between the constituent structure and the semantics, resulting in a weak correlation between LL values and parsing accuracy. In this paper, we introduce a novel objective for training unsupervised parsers: maximizing the information between constituent structures and sentence semantics (SemInfo). We introduce a bag-of-substrings model to represent the semantics and apply the probability-weighted information metric to estimate the SemInfo. Additionally, we develop a Tree Conditional Random Field (TreeCRF)-based model to apply the SemInfo maximization objective to Probabilistic Context-Free Grammar (PCFG) induction, the state-of-the-art method for unsupervised constituency parsing. Experiments demonstrate that SemInfo correlates more strongly with parsing accuracy than LL. Our algorithm significantly enhances parsing accuracy by an average of 7.85 points across five PCFG variants and in four languages, achieving new state-of-the-art results in three of the four languages. 4 authors · Oct 3, 2024
- Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings. 3 authors · Mar 7, 2017
1 KLUE: Korean Language Understanding Evaluation We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. We build all of the tasks from scratch from diverse source corpora while respecting copyrights, to ensure accessibility for anyone without any restrictions. With ethical considerations in mind, we carefully design annotation protocols. Along with the benchmark tasks and data, we provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task. We furthermore release the pretrained language models (PLM), KLUE-BERT and KLUE-RoBERTa, to help reproducing baseline models on KLUE and thereby facilitate future research. We make a few interesting observations from the preliminary experiments using the proposed KLUE benchmark suite, already demonstrating the usefulness of this new benchmark suite. First, we find KLUE-RoBERTa-large outperforms other baselines, including multilingual PLMs and existing open-source Korean PLMs. Second, we see minimal degradation in performance even when we replace personally identifiable information from the pretraining corpus, suggesting that privacy and NLU capability are not at odds with each other. Lastly, we find that using BPE tokenization in combination with morpheme-level pre-tokenization is effective in tasks involving morpheme-level tagging, detection and generation. In addition to accelerating Korean NLP research, our comprehensive documentation on creating KLUE will facilitate creating similar resources for other languages in the future. KLUE is available at https://klue-benchmark.com. 31 authors · May 20, 2021
1 Greed is All You Need: An Evaluation of Tokenizer Inference Methods While subword tokenizers such as BPE and WordPiece are typically used to build vocabularies for NLP models, the method of decoding text into a sequence of tokens from these vocabularies is often left unspecified, or ill-suited to the method in which they were constructed. We provide a controlled analysis of seven tokenizer inference methods across four different algorithms and three vocabulary sizes, performed on a novel intrinsic evaluation suite we curated for English, combining measures rooted in morphology, cognition, and information theory. We show that for the most commonly used tokenizers, greedy inference performs surprisingly well; and that SaGe, a recently-introduced contextually-informed tokenizer, outperforms all others on morphological alignment. 4 authors · Mar 2, 2024
2 Pixel Sentence Representation Learning Pretrained language models are long known to be subpar in capturing sentence and document-level semantics. Though heavily investigated, transferring perturbation-based methods from unsupervised visual representation learning to NLP remains an unsolved problem. This is largely due to the discreteness of subword units brought by tokenization of language models, limiting small perturbations of inputs to form semantics-preserved positive pairs. In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process. Drawing from cognitive and linguistic sciences, we introduce an unsupervised visual sentence representation learning framework, employing visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to texts to be perceived as continuous. Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision, achieving comparable performance in semantic textual similarity (STS) to existing state-of-the-art NLP methods. Additionally, we unveil our method's inherent zero-shot cross-lingual transferability and a unique leapfrogging pattern across languages during iterative training. To our knowledge, this is the first representation learning method devoid of traditional language models for understanding sentence and document semantics, marking a stride closer to human-like textual comprehension. Our code is available at https://github.com/gowitheflow-1998/Pixel-Linguist 10 authors · Feb 12, 2024
- Semantic Role Labeling: A Systematical Survey Semantic role labeling (SRL) is a central natural language processing (NLP) task aiming to understand the semantic roles within texts, facilitating a wide range of downstream applications. While SRL has garnered extensive and enduring research, there is currently a lack of a comprehensive survey that thoroughly organizes and synthesizes the field. This paper aims to review the entire research trajectory of the SRL community over the past two decades. We begin by providing a complete definition of SRL. To offer a comprehensive taxonomy, we categorize SRL methodologies into four key perspectives: model architectures, syntax feature modeling, application scenarios, and multi-modal extensions. Further, we discuss SRL benchmarks, evaluation metrics, and paradigm modeling approaches, while also exploring practical applications across various domains. Finally, we analyze future research directions in SRL, addressing the evolving role of SRL in the age of large language models (LLMs) and its potential impact on the broader NLP landscape. We maintain a public repository and consistently update related resources at: https://github.com/DreamH1gh/Awesome-SRL 7 authors · Feb 9
- SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SEMAXIS, a simple yet powerful framework to characterize word semantics using many semantic axes in word- vector spaces beyond sentiment. We demonstrate that SEMAXIS can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SEMAXIS outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons. 3 authors · Jun 14, 2018
1 Revisiting a Pain in the Neck: Semantic Phrase Processing Benchmark for Language Models We introduce LexBench, a comprehensive evaluation suite enabled to test language models (LMs) on ten semantic phrase processing tasks. Unlike prior studies, it is the first work to propose a framework from the comparative perspective to model the general semantic phrase (i.e., lexical collocation) and three fine-grained semantic phrases, including idiomatic expression, noun compound, and verbal construction. Thanks to \ourbenchmark, we assess the performance of 15 LMs across model architectures and parameter scales in classification, extraction, and interpretation tasks. Through the experiments, we first validate the scaling law and find that, as expected, large models excel better than the smaller ones in most tasks. Second, we investigate further through the scaling semantic relation categorization and find that few-shot LMs still lag behind vanilla fine-tuned models in the task. Third, through human evaluation, we find that the performance of strong models is comparable to the human level regarding semantic phrase processing. Our benchmarking findings can serve future research aiming to improve the generic capability of LMs on semantic phrase comprehension. Our source code and data are available at https://github.com/jacklanda/LexBench 4 authors · May 5, 2024
- RetroMAE v2: Duplex Masked Auto-Encoder For Pre-Training Retrieval-Oriented Language Models To better support retrieval applications such as web search and question answering, growing effort is made to develop retrieval-oriented language models. Most of the existing works focus on improving the semantic representation capability for the contextualized embedding of [CLS] token. However, recent study shows that the ordinary tokens besides [CLS] may provide extra information, which helps to produce a better representation effect. As such, it's necessary to extend the current methods where all contextualized embeddings can be jointly pre-trained for the retrieval tasks. With this motivation, we propose a new pre-training method: duplex masked auto-encoder, a.k.a. DupMAE, which targets on improving the semantic representation capacity for the contextualized embeddings of both [CLS] and ordinary tokens. It introduces two decoding tasks: one is to reconstruct the original input sentence based on the [CLS] embedding, the other one is to minimize the bag-of-words loss (BoW) about the input sentence based on the entire ordinary tokens' embeddings. The two decoding losses are added up to train a unified encoding model. The embeddings from [CLS] and ordinary tokens, after dimension reduction and aggregation, are concatenated as one unified semantic representation for the input. DupMAE is simple but empirically competitive: with a small decoding cost, it substantially contributes to the model's representation capability and transferability, where remarkable improvements are achieved on MS MARCO and BEIR benchmarks. 2 authors · Nov 16, 2022
- KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization. 3 authors · Mar 21
- Open Sentence Embeddings for Portuguese with the Serafim PT* encoders family Sentence encoder encode the semantics of their input, enabling key downstream applications such as classification, clustering, or retrieval. In this paper, we present Serafim PT*, a family of open-source sentence encoders for Portuguese with various sizes, suited to different hardware/compute budgets. Each model exhibits state-of-the-art performance and is made openly available under a permissive license, allowing its use for both commercial and research purposes. Besides the sentence encoders, this paper contributes a systematic study and lessons learned concerning the selection criteria of learning objectives and parameters that support top-performing encoders. 5 authors · Jul 28, 2024
- Bad Form: Comparing Context-Based and Form-Based Few-Shot Learning in Distributional Semantic Models Word embeddings are an essential component in a wide range of natural language processing applications. However, distributional semantic models are known to struggle when only a small number of context sentences are available. Several methods have been proposed to obtain higher-quality vectors for these words, leveraging both this context information and sometimes the word forms themselves through a hybrid approach. We show that the current tasks do not suffice to evaluate models that use word-form information, as such models can easily leverage word forms in the training data that are related to word forms in the test data. We introduce 3 new tasks, allowing for a more balanced comparison between models. Furthermore, we show that hyperparameters that have largely been ignored in previous work can consistently improve the performance of both baseline and advanced models, achieving a new state of the art on 4 out of 6 tasks. 3 authors · Oct 1, 2019
- Tokenization Is More Than Compression Tokenization is a foundational step in Natural Language Processing (NLP) tasks, bridging raw text and language models. Existing tokenization approaches like Byte-Pair Encoding (BPE) originate from the field of data compression, and it has been suggested that the effectiveness of BPE stems from its ability to condense text into a relatively small number of tokens. We test the hypothesis that fewer tokens lead to better downstream performance by introducing PathPiece, a new tokenizer that segments a document's text into the minimum number of tokens for a given vocabulary. Through extensive experimentation we find this hypothesis not to be the case, casting doubt on the understanding of the reasons for effective tokenization. To examine which other factors play a role, we evaluate design decisions across all three phases of tokenization: pre-tokenization, vocabulary construction, and segmentation, offering new insights into the design of effective tokenizers. Specifically, we illustrate the importance of pre-tokenization and the benefits of using BPE to initialize vocabulary construction. We train 64 language models with varying tokenization, ranging in size from 350M to 2.4B parameters, all of which are made publicly available. 7 authors · Feb 28, 2024 1
- A Probabilistic Generative Grammar for Semantic Parsing Domain-general semantic parsing is a long-standing goal in natural language processing, where the semantic parser is capable of robustly parsing sentences from domains outside of which it was trained. Current approaches largely rely on additional supervision from new domains in order to generalize to those domains. We present a generative model of natural language utterances and logical forms and demonstrate its application to semantic parsing. Our approach relies on domain-independent supervision to generalize to new domains. We derive and implement efficient algorithms for training, parsing, and sentence generation. The work relies on a novel application of hierarchical Dirichlet processes (HDPs) for structured prediction, which we also present in this manuscript. This manuscript is an excerpt of chapter 4 from the Ph.D. thesis of Saparov (2022), where the model plays a central role in a larger natural language understanding system. This manuscript provides a new simplified and more complete presentation of the work first introduced in Saparov, Saraswat, and Mitchell (2017). The description and proofs of correctness of the training algorithm, parsing algorithm, and sentence generation algorithm are much simplified in this new presentation. We also describe the novel application of hierarchical Dirichlet processes for structured prediction. In addition, we extend the earlier work with a new model of word morphology, which utilizes the comprehensive morphological data from Wiktionary. 1 authors · Jun 20, 2016
- Dependency-based Hybrid Trees for Semantic Parsing We propose a novel dependency-based hybrid tree model for semantic parsing, which converts natural language utterance into machine interpretable meaning representations. Unlike previous state-of-the-art models, the semantic information is interpreted as the latent dependency between the natural language words in our joint representation. Such dependency information can capture the interactions between the semantics and natural language words. We integrate a neural component into our model and propose an efficient dynamic-programming algorithm to perform tractable inference. Through extensive experiments on the standard multilingual GeoQuery dataset with eight languages, we demonstrate that our proposed approach is able to achieve state-of-the-art performance across several languages. Analysis also justifies the effectiveness of using our new dependency-based representation. 2 authors · Aug 31, 2018
- Towards Unsupervised Recognition of Semantic Differences in Related Documents Automatically highlighting words that cause semantic differences between two documents could be useful for a wide range of applications. We formulate recognizing semantic differences (RSD) as a token-level regression task and study three unsupervised approaches that rely on a masked language model. To assess the approaches, we begin with basic English sentences and gradually move to more complex, cross-lingual document pairs. Our results show that an approach based on word alignment and sentence-level contrastive learning has a robust correlation to gold labels. However, all unsupervised approaches still leave a large margin of improvement. Code to reproduce our experiments is available at https://github.com/ZurichNLP/recognizing-semantic-differences 2 authors · May 22, 2023
- Polyglot Semantic Parsing in APIs Traditional approaches to semantic parsing (SP) work by training individual models for each available parallel dataset of text-meaning pairs. In this paper, we explore the idea of polyglot semantic translation, or learning semantic parsing models that are trained on multiple datasets and natural languages. In particular, we focus on translating text to code signature representations using the software component datasets of Richardson and Kuhn (2017a,b). The advantage of such models is that they can be used for parsing a wide variety of input natural languages and output programming languages, or mixed input languages, using a single unified model. To facilitate modeling of this type, we develop a novel graph-based decoding framework that achieves state-of-the-art performance on the above datasets, and apply this method to two other benchmark SP tasks. 3 authors · Mar 19, 2018
- Semantics-aware BERT for Language Understanding The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural language inference tasks. However, the existing language representation models including ELMo, GPT and BERT only exploit plain context-sensitive features such as character or word embeddings. They rarely consider incorporating structured semantic information which can provide rich semantics for language representation. To promote natural language understanding, we propose to incorporate explicit contextual semantics from pre-trained semantic role labeling, and introduce an improved language representation model, Semantics-aware BERT (SemBERT), which is capable of explicitly absorbing contextual semantics over a BERT backbone. SemBERT keeps the convenient usability of its BERT precursor in a light fine-tuning way without substantial task-specific modifications. Compared with BERT, semantics-aware BERT is as simple in concept but more powerful. It obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks. 7 authors · Sep 5, 2019
- Learn Your Tokens: Word-Pooled Tokenization for Language Modeling Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness. 4 authors · Oct 17, 2023
- BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models Retrieval augmentation addresses many critical problems in large language models such as hallucination, staleness, and privacy leaks. However, running retrieval-augmented language models (LMs) is slow and difficult to scale due to processing large amounts of retrieved text. We introduce binary token representations (BTR), which use 1-bit vectors to precompute every token in passages, significantly reducing computation during inference. Despite the potential loss of accuracy, our new calibration techniques and training objectives restore performance. Combined with offline and runtime compression, this only requires 127GB of disk space for encoding 3 billion tokens in Wikipedia. Our experiments show that on five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art inference by up to 4x and reduces storage by over 100x while maintaining over 95% task performance. 4 authors · Oct 2, 2023
- SEFD: Semantic-Enhanced Framework for Detecting LLM-Generated Text The widespread adoption of large language models (LLMs) has created an urgent need for robust tools to detect LLM-generated text, especially in light of paraphrasing techniques that often evade existing detection methods. To address this challenge, we present a novel semantic-enhanced framework for detecting LLM-generated text (SEFD) that leverages a retrieval-based mechanism to fully utilize text semantics. Our framework improves upon existing detection methods by systematically integrating retrieval-based techniques with traditional detectors, employing a carefully curated retrieval mechanism that strikes a balance between comprehensive coverage and computational efficiency. We showcase the effectiveness of our approach in sequential text scenarios common in real-world applications, such as online forums and Q\&A platforms. Through comprehensive experiments across various LLM-generated texts and detection methods, we demonstrate that our framework substantially enhances detection accuracy in paraphrasing scenarios while maintaining robustness for standard LLM-generated content. 6 authors · Nov 17, 2024
- WangchanBERTa: Pretraining transformer-based Thai Language Models Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts. 4 authors · Jan 23, 2021
2 A Latent Variable Model Approach to PMI-based Word Embeddings Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space. 5 authors · Feb 11, 2015
- MANTa: Efficient Gradient-Based Tokenization for Robust End-to-End Language Modeling Static subword tokenization algorithms have been an essential component of recent works on language modeling. However, their static nature results in important flaws that degrade the models' downstream performance and robustness. In this work, we propose MANTa, a Module for Adaptive Neural TokenizAtion. MANTa is a differentiable tokenizer trained end-to-end with the language model. The resulting system offers a trade-off between the expressiveness of byte-level models and the speed of models trained using subword tokenization. In addition, our tokenizer is highly explainable since it produces an explicit segmentation of sequences into blocks. We evaluate our pre-trained model on several English datasets from different domains as well as on synthetic noise. We find that MANTa improves robustness to character perturbations and out-of-domain data. We then show that MANTa performs comparably to other models on the general-domain GLUE benchmark. Finally, we show that it is considerably faster than strictly byte-level models. 4 authors · Dec 14, 2022
3 Distributed Representations of Words and Phrases and their Compositionality The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 5 authors · Oct 16, 2013
1 Hubness Reduction Improves Sentence-BERT Semantic Spaces Semantic representations of text, i.e. representations of natural language which capture meaning by geometry, are essential for areas such as information retrieval and document grouping. High-dimensional trained dense vectors have received much attention in recent years as such representations. We investigate the structure of semantic spaces that arise from embeddings made with Sentence-BERT and find that the representations suffer from a well-known problem in high dimensions called hubness. Hubness results in asymmetric neighborhood relations, such that some texts (the hubs) are neighbours of many other texts while most texts (so-called anti-hubs), are neighbours of few or no other texts. We quantify the semantic quality of the embeddings using hubness scores and error rate of a neighbourhood based classifier. We find that when hubness is high, we can reduce error rate and hubness using hubness reduction methods. We identify a combination of two methods as resulting in the best reduction. For example, on one of the tested pretrained models, this combined method can reduce hubness by about 75% and error rate by about 9%. Thus, we argue that mitigating hubness in the embedding space provides better semantic representations of text. 2 authors · Nov 30, 2023
172 LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding. 7 authors · Feb 20 3
1 Compositional Semantic Parsing with Large Language Models Humans can reason compositionally when presented with new tasks. Previous research shows that appropriate prompting techniques enable large language models (LLMs) to solve artificial compositional generalization tasks such as SCAN. In this work, we identify additional challenges in more realistic semantic parsing tasks with larger vocabulary and refine these prompting techniques to address them. Our best method is based on least-to-most prompting: it decomposes the problem using prompting-based syntactic parsing, then uses this decomposition to select appropriate exemplars and to sequentially generate the semantic parse. This method allows us to set a new state of the art for CFQ while requiring only 1% of the training data used by traditional approaches. Due to the general nature of our approach, we expect similar efforts will lead to new results in other tasks and domains, especially for knowledge-intensive applications. 8 authors · Sep 29, 2022
- Evidence of Meaning in Language Models Trained on Programs We present evidence that language models can learn meaning despite being trained only to perform next token prediction on text, specifically a corpus of programs. Each program is preceded by a specification in the form of (textual) input-output examples. Working with programs enables us to precisely define concepts relevant to meaning in language (e.g., correctness and semantics), making program synthesis well-suited as an intermediate testbed for characterizing the presence (or absence) of meaning in language models. We first train a Transformer model on the corpus of programs, then probe the trained model's hidden states as it completes a program given a specification. Despite providing no inductive bias toward learning the semantics of the language, we find that a linear probe is able to extract abstractions of both current and future program states from the model states. Moreover, there is a strong, statistically significant correlation between the accuracy of the probe and the model's ability to generate a program that implements the specification. To evaluate whether the semantics are represented in the model states rather than learned by the probe, we design a novel experimental procedure that intervenes on the semantics of the language while preserving the lexicon and syntax. We also demonstrate that the model learns to generate correct programs that are, on average, shorter than those in the training set, which is evidence that language model outputs may differ from the training distribution in semantically meaningful ways. In summary, this paper does not propose any new techniques for training language models, but develops an experimental framework for and provides insights into the acquisition and representation of (formal) meaning in language models. 2 authors · May 18, 2023
1 SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods. 1 authors · Apr 24, 2024
- Ultra-High Dimensional Sparse Representations with Binarization for Efficient Text Retrieval The semantic matching capabilities of neural information retrieval can ameliorate synonymy and polysemy problems of symbolic approaches. However, neural models' dense representations are more suitable for re-ranking, due to their inefficiency. Sparse representations, either in symbolic or latent form, are more efficient with an inverted index. Taking the merits of the sparse and dense representations, we propose an ultra-high dimensional (UHD) representation scheme equipped with directly controllable sparsity. UHD's large capacity and minimal noise and interference among the dimensions allow for binarized representations, which are highly efficient for storage and search. Also proposed is a bucketing method, where the embeddings from multiple layers of BERT are selected/merged to represent diverse linguistic aspects. We test our models with MS MARCO and TREC CAR, showing that our models outperforms other sparse models 7 authors · Apr 14, 2021
- Infusing clinical knowledge into tokenisers for language models This study introduces a novel knowledge enhanced tokenisation mechanism, K-Tokeniser, for clinical text processing. Technically, at initialisation stage, K-Tokeniser populates global representations of tokens based on semantic types of domain concepts (such as drugs or diseases) from either a domain ontology like Unified Medical Language System or the training data of the task related corpus. At training or inference stage, sentence level localised context will be utilised for choosing the optimal global token representation to realise the semantic-based tokenisation. To avoid pretraining using the new tokeniser, an embedding initialisation approach is proposed to generate representations for new tokens. Using three transformer-based language models, a comprehensive set of experiments are conducted on four real-world datasets for evaluating K-Tokeniser in a wide range of clinical text analytics tasks including clinical concept and relation extraction, automated clinical coding, clinical phenotype identification, and clinical research article classification. Overall, our models demonstrate consistent improvements over their counterparts in all tasks. In particular, substantial improvements are observed in the automated clinical coding task with 13\% increase on Micro F_1 score. Furthermore, K-Tokeniser also shows significant capacities in facilitating quicker converge of language models. Specifically, using K-Tokeniser, the language models would only require 50\% of the training data to achieve the best performance of the baseline tokeniser using all training data in the concept extraction task and less than 20\% of the data for the automated coding task. It is worth mentioning that all these improvements require no pre-training process, making the approach generalisable. 10 authors · Jun 20, 2024
- Exploiting Twitter as Source of Large Corpora of Weakly Similar Pairs for Semantic Sentence Embeddings Semantic sentence embeddings are usually supervisedly built minimizing distances between pairs of embeddings of sentences labelled as semantically similar by annotators. Since big labelled datasets are rare, in particular for non-English languages, and expensive, recent studies focus on unsupervised approaches that require not-paired input sentences. We instead propose a language-independent approach to build large datasets of pairs of informal texts weakly similar, without manual human effort, exploiting Twitter's intrinsic powerful signals of relatedness: replies and quotes of tweets. We use the collected pairs to train a Transformer model with triplet-like structures, and we test the generated embeddings on Twitter NLP similarity tasks (PIT and TURL) and STSb. We also introduce four new sentence ranking evaluation benchmarks of informal texts, carefully extracted from the initial collections of tweets, proving not only that our best model learns classical Semantic Textual Similarity, but also excels on tasks where pairs of sentences are not exact paraphrases. Ablation studies reveal how increasing the corpus size influences positively the results, even at 2M samples, suggesting that bigger collections of Tweets still do not contain redundant information about semantic similarities. 2 authors · Oct 5, 2021
- Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data Most available semantic parsing datasets, comprising of pairs of natural utterances and logical forms, were collected solely for the purpose of training and evaluation of natural language understanding systems. As a result, they do not contain any of the richness and variety of natural-occurring utterances, where humans ask about data they need or are curious about. In this work, we release SEDE, a dataset with 12,023 pairs of utterances and SQL queries collected from real usage on the Stack Exchange website. We show that these pairs contain a variety of real-world challenges which were rarely reflected so far in any other semantic parsing dataset, propose an evaluation metric based on comparison of partial query clauses that is more suitable for real-world queries, and conduct experiments with strong baselines, showing a large gap between the performance on SEDE compared to other common datasets. 3 authors · Jun 9, 2021
- WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach Producing the embedding of a sentence in an unsupervised way is valuable to natural language matching and retrieval problems in practice. In this work, we conduct a thorough examination of pretrained model based unsupervised sentence embeddings. We study on four pretrained models and conduct massive experiments on seven datasets regarding sentence semantics. We have there main findings. First, averaging all tokens is better than only using [CLS] vector. Second, combining both top andbottom layers is better than only using top layers. Lastly, an easy whitening-based vector normalization strategy with less than 10 lines of code consistently boosts the performance. 8 authors · Apr 5, 2021
1 From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model's robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift. 5 authors · May 23, 2023
- Lexically Grounded Subword Segmentation We present three innovations in tokenization and subword segmentation. First, we propose to use unsupervised morphological analysis with Morfessor as pre-tokenization. Second, we present an algebraic method for obtaining subword embeddings grounded in a word embedding space. Based on that, we design a novel subword segmentation algorithm that uses the embeddings, ensuring that the procedure considers lexical meaning. Third, we introduce an efficient segmentation algorithm based on a subword bigram model that can be initialized with the lexically aware segmentation method to avoid using Morfessor and large embedding tables at inference time. We evaluate the proposed approaches using two intrinsic metrics and measure their performance on two downstream tasks: part-of-speech tagging and machine translation. Our experiments show significant improvements in the morphological plausibility of the segmentation when evaluated using segmentation precision on morpheme boundaries and improved R\'enyi efficiency in 8 languages. Although the proposed tokenization methods do not have a large impact on automatic translation quality, we observe consistent performance gains in the arguably more morphological task of part-of-speech tagging. 2 authors · Jun 19, 2024
- WiC: the Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Representations By design, word embeddings are unable to model the dynamic nature of words' semantics, i.e., the property of words to correspond to potentially different meanings. To address this limitation, dozens of specialized meaning representation techniques such as sense or contextualized embeddings have been proposed. However, despite the popularity of research on this topic, very few evaluation benchmarks exist that specifically focus on the dynamic semantics of words. In this paper we show that existing models have surpassed the performance ceiling of the standard evaluation dataset for the purpose, i.e., Stanford Contextual Word Similarity, and highlight its shortcomings. To address the lack of a suitable benchmark, we put forward a large-scale Word in Context dataset, called WiC, based on annotations curated by experts, for generic evaluation of context-sensitive representations. WiC is released in https://pilehvar.github.io/wic/. 2 authors · Aug 28, 2018
- Tokenization Standards for Linguistic Integrity: Turkish as a Benchmark Tokenization is a fundamental preprocessing step in NLP, directly impacting large language models' (LLMs) ability to capture syntactic, morphosyntactic, and semantic structures. This paper introduces a novel framework for systematically evaluating tokenization strategies, addressing challenges in morphologically rich and low-resource languages. Using a Turkish dataset of 6,200 multiple-choice questions from the Massive Multitask Language Understanding (MMLU) benchmark, the framework assesses tokenizers across five key metrics: vocabulary size, token count, processing time, language-specific token percentages (\%TR), and token purity. These metrics provide a structured approach to evaluating how well tokenizers preserve linguistic structures. While \%TR measures the proportion of valid words in the target language, \%Pure assesses the alignment of tokens with meaningful linguistic units, such as roots and valid morphemes, minimizing semantic fragmentation. The findings reveal that \%TR, introduced as a critical metric, exhibits a stronger correlation with downstream performance (e.g., MMLU scores) than token purity, emphasizing its role in improving model accuracy. Additionally, larger model parameters do not necessarily yield better tokenization quality or enhanced results, highlighting the importance of tailored tokenization strategies that prioritize linguistic alignment. This framework sets a new standard for developing robust tokenization methods optimized for morphologically complex and low-resource languages. Future work will refine morphological analysis, explore domain-specific customizations, and conduct cross-linguistic evaluations to further enhance tokenization practices. 6 authors · Feb 10
3 Flexibly Scaling Large Language Models Contexts Through Extensible Tokenization Large language models (LLMs) are in need of sufficient contexts to handle many critical applications, such as retrieval augmented generation and few-shot learning. However, due to the constrained window size, the LLMs can only access to the information within a limited context. Although the size of context window can be extended by fine-tuning, it will result in a substantial cost in both training and inference stage. In this paper, we present Extensible Tokenization as an alternative method which realizes the flexible scaling of LLMs' context. Extensible Tokenization stands as a midware in between of the tokenized context and the LLM, which transforms the raw token embeddings into the extensible embeddings. Such embeddings provide a more compact representation for the long context, on top of which the LLM is able to perceive more information with the same context window. Extensible Tokenization is also featured by its flexibility: the scaling factor can be flexibly determined within a feasible scope, leading to the extension of an arbitrary context length at the inference time. Besides, Extensible Tokenization is introduced as a drop-in component, which can be seamlessly plugged into not only the LLM itself and but also its fine-tuned derivatives, bringing in the extended contextual information while fully preserving the LLM's existing capabilities. We perform comprehensive experiments on long-context language modeling and understanding tasks, which verify Extensible Tokenization as an effective, efficient, flexible, and compatible method to extend LLM's context. Our model and source code will be made publicly available. 4 authors · Jan 15, 2024
- R-grams: Unsupervised Learning of Semantic Units in Natural Language This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques. In contrast to previous work which has primarily been focused on subword units for machine translation, we are interested in the general properties of such segments above the word level. We call these segments r-grams, and discuss their properties and the effect they have on the token frequency distribution. The proposed approach is evaluated by demonstrating its viability in embedding techniques, both in monolingual and multilingual test settings. We also provide a number of qualitative examples of the proposed methodology, demonstrating its viability as a language-invariant segmentation procedure. 3 authors · Aug 14, 2018
- Learning High-Quality and General-Purpose Phrase Representations Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ https://github.com/tigerchen52/PEARL abstract 3 authors · Jan 18, 2024
- Semantic Specialization for Knowledge-based Word Sense Disambiguation A promising approach for knowledge-based Word Sense Disambiguation (WSD) is to select the sense whose contextualized embeddings computed for its definition sentence are closest to those computed for a target word in a given sentence. This approach relies on the similarity of the sense and context embeddings computed by a pre-trained language model. We propose a semantic specialization for WSD where contextualized embeddings are adapted to the WSD task using solely lexical knowledge. The key idea is, for a given sense, to bring semantically related senses and contexts closer and send different/unrelated senses farther away. We realize this idea as the joint optimization of the Attract-Repel objective for sense pairs and the self-training objective for context-sense pairs while controlling deviations from the original embeddings. The proposed method outperformed previous studies that adapt contextualized embeddings. It achieved state-of-the-art performance on knowledge-based WSD when combined with the reranking heuristic that uses the sense inventory. We found that the similarity characteristics of specialized embeddings conform to the key idea. We also found that the (dis)similarity of embeddings between the related/different/unrelated senses correlates well with the performance of WSD. 2 authors · Apr 22, 2023
- Assessing Word Importance Using Models Trained for Semantic Tasks Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model's weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training. 3 authors · May 31, 2023
16 Frame Representation Hypothesis: Multi-Token LLM Interpretability and Concept-Guided Text Generation Interpretability is a key challenge in fostering trust for Large Language Models (LLMs), which stems from the complexity of extracting reasoning from model's parameters. We present the Frame Representation Hypothesis, a theoretically robust framework grounded in the Linear Representation Hypothesis (LRH) to interpret and control LLMs by modeling multi-token words. Prior research explored LRH to connect LLM representations with linguistic concepts, but was limited to single token analysis. As most words are composed of several tokens, we extend LRH to multi-token words, thereby enabling usage on any textual data with thousands of concepts. To this end, we propose words can be interpreted as frames, ordered sequences of vectors that better capture token-word relationships. Then, concepts can be represented as the average of word frames sharing a common concept. We showcase these tools through Top-k Concept-Guided Decoding, which can intuitively steer text generation using concepts of choice. We verify said ideas on Llama 3.1, Gemma 2, and Phi 3 families, demonstrating gender and language biases, exposing harmful content, but also potential to remediate them, leading to safer and more transparent LLMs. Code is available at https://github.com/phvv-me/frame-representation-hypothesis.git 4 authors · Dec 10, 2024 4
- Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis We propose using automatically generated natural language definitions of contextualised word usages as interpretable word and word sense representations. Given a collection of usage examples for a target word, and the corresponding data-driven usage clusters (i.e., word senses), a definition is generated for each usage with a specialised Flan-T5 language model, and the most prototypical definition in a usage cluster is chosen as the sense label. We demonstrate how the resulting sense labels can make existing approaches to semantic change analysis more interpretable, and how they can allow users -- historical linguists, lexicographers, or social scientists -- to explore and intuitively explain diachronic trajectories of word meaning. Semantic change analysis is only one of many possible applications of the `definitions as representations' paradigm. Beyond being human-readable, contextualised definitions also outperform token or usage sentence embeddings in word-in-context semantic similarity judgements, making them a new promising type of lexical representation for NLP. 4 authors · May 19, 2023
4 MoC: Mixtures of Text Chunking Learners for Retrieval-Augmented Generation System Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline. This paper initially introduces a dual-metric evaluation method, comprising Boundary Clarity and Chunk Stickiness, to enable the direct quantification of chunking quality. Leveraging this assessment method, we highlight the inherent limitations of traditional and semantic chunking in handling complex contextual nuances, thereby substantiating the necessity of integrating LLMs into chunking process. To address the inherent trade-off between computational efficiency and chunking precision in LLM-based approaches, we devise the granularity-aware Mixture-of-Chunkers (MoC) framework, which consists of a three-stage processing mechanism. Notably, our objective is to guide the chunker towards generating a structured list of chunking regular expressions, which are subsequently employed to extract chunks from the original text. Extensive experiments demonstrate that both our proposed metrics and the MoC framework effectively settle challenges of the chunking task, revealing the chunking kernel while enhancing the performance of the RAG system. 8 authors · Mar 12 3
1 MEXMA: Token-level objectives improve sentence representations Current pre-trained cross-lingual sentence encoders approaches use sentence-level objectives only. This can lead to loss of information, especially for tokens, which then degrades the sentence representation. We propose MEXMA, a novel approach that integrates both sentence-level and token-level objectives. The sentence representation in one language is used to predict masked tokens in another language, with both the sentence representation and all tokens directly updating the encoder. We show that adding token-level objectives greatly improves the sentence representation quality across several tasks. Our approach outperforms current pre-trained cross-lingual sentence encoders on bi-text mining as well as several downstream tasks. We also analyse the information encoded in our tokens, and how the sentence representation is built from them. 4 authors · Sep 19, 2024
1 Experimental Support for a Categorical Compositional Distributional Model of Meaning Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model. 2 authors · Jun 20, 2011
1 Tokenization with Factorized Subword Encoding In recent years, language models have become increasingly larger and more complex. However, the input representations for these models continue to rely on simple and greedy subword tokenization methods. In this paper, we propose a novel tokenization method that factorizes subwords onto discrete triplets using a VQ-VAE model. The effectiveness of the proposed tokenization method, referred to as the Factorizer, is evaluated on language modeling and morpho-syntactic tasks for 7 diverse languages. Results indicate that this method is more appropriate and robust for morphological tasks than the commonly used byte-pair encoding (BPE) tokenization algorithm. 2 authors · Jun 13, 2023
- DefSent: Sentence Embeddings using Definition Sentences Sentence embedding methods using natural language inference (NLI) datasets have been successfully applied to various tasks. However, these methods are only available for limited languages due to relying heavily on the large NLI datasets. In this paper, we propose DefSent, a sentence embedding method that uses definition sentences from a word dictionary, which performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks than conventional methods. Since dictionaries are available for many languages, DefSent is more broadly applicable than methods using NLI datasets without constructing additional datasets. We demonstrate that DefSent performs comparably on unsupervised semantics textual similarity (STS) tasks and slightly better on SentEval tasks to the methods using large NLI datasets. Our code is publicly available at https://github.com/hpprc/defsent . 3 authors · May 10, 2021
- Beyond Word Embeddings: Learning Entity and Concept Representations from Large Scale Knowledge Bases Text representations using neural word embeddings have proven effective in many NLP applications. Recent researches adapt the traditional word embedding models to learn vectors of multiword expressions (concepts/entities). However, these methods are limited to textual knowledge bases (e.g., Wikipedia). In this paper, we propose a novel and simple technique for integrating the knowledge about concepts from two large scale knowledge bases of different structure (Wikipedia and Probase) in order to learn concept representations. We adapt the efficient skip-gram model to seamlessly learn from the knowledge in Wikipedia text and Probase concept graph. We evaluate our concept embedding models on two tasks: (1) analogical reasoning, where we achieve a state-of-the-art performance of 91% on semantic analogies, (2) concept categorization, where we achieve a state-of-the-art performance on two benchmark datasets achieving categorization accuracy of 100% on one and 98% on the other. Additionally, we present a case study to evaluate our model on unsupervised argument type identification for neural semantic parsing. We demonstrate the competitive accuracy of our unsupervised method and its ability to better generalize to out of vocabulary entity mentions compared to the tedious and error prone methods which depend on gazetteers and regular expressions. 3 authors · Dec 31, 2017
1 NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector. Such a shallow lookup results in a linear growth of memory consumption for storing the embedding matrix and incurs high computational costs when working with real-world KGs. Drawing parallels with subword tokenization commonly used in NLP, we explore the landscape of more parameter-efficient node embedding strategies with possibly sublinear memory requirements. To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece, a vocabulary of subword/sub-entity units is constructed from anchor nodes in a graph with known relation types. Given such a fixed-size vocabulary, it is possible to bootstrap an encoding and embedding for any entity, including those unseen during training. Experiments show that NodePiece performs competitively in node classification, link prediction, and relation prediction tasks while retaining less than 10% of explicit nodes in a graph as anchors and often having 10x fewer parameters. To this end, we show that a NodePiece-enabled model outperforms existing shallow models on a large OGB WikiKG 2 graph having 70x fewer parameters. 4 authors · Jun 22, 2021
- S^3 -- Semantic Signal Separation Topic models are useful tools for discovering latent semantic structures in large textual corpora. Topic modeling historically relied on bag-of-words representations of language. This approach makes models sensitive to the presence of stop words and noise, and does not utilize potentially useful contextual information. Recent efforts have been oriented at incorporating contextual neural representations in topic modeling and have been shown to outperform classical topic models. These approaches are, however, typically slow, volatile and still require preprocessing for optimal results. We present Semantic Signal Separation (S^3), a theory-driven topic modeling approach in neural embedding spaces. S^3 conceptualizes topics as independent axes of semantic space, and uncovers these with blind-source separation. Our approach provides the most diverse, highly coherent topics, requires no preprocessing, and is demonstrated to be the fastest contextually sensitive topic model to date. We offer an implementation of S^3, among other approaches, in the Turftopic Python package. 6 authors · Jun 13, 2024
- Semantic Representation and Inference for NLP Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review). 1 authors · Jun 15, 2021
- The Code2Text Challenge: Text Generation in Source Code Libraries We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets. 3 authors · Jul 31, 2017
- SESA: Supervised Explicit Semantic Analysis In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable. 2 authors · Aug 10, 2017
- A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences. 2 authors · Aug 8, 2023
2 Rethinking Tokenization: Crafting Better Tokenizers for Large Language Models Tokenization significantly influences language models(LMs)' performance. This paper traces the evolution of tokenizers from word-level to subword-level, analyzing how they balance tokens and types to enhance model adaptability while controlling complexity. Despite subword tokenizers like Byte Pair Encoding (BPE) overcoming many word tokenizer limitations, they encounter difficulties in handling non-Latin languages and depend heavily on extensive training data and computational resources to grasp the nuances of multiword expressions (MWEs). This article argues that tokenizers, more than mere technical tools, should drawing inspiration from the cognitive science about human language processing. This study then introduces the "Principle of Least Effort" from cognitive science, that humans naturally seek to reduce cognitive effort, and discusses the benefits of this principle for tokenizer development. Based on this principle, the paper proposes that the Less-is-Better (LiB) model could be a new approach for LLM tokenizer. The LiB model can autonomously learn an integrated vocabulary consisting of subwords, words, and MWEs, which effectively reduces both the numbers of tokens and types. Comparative evaluations show that the LiB tokenizer outperforms existing word and BPE tokenizers, presenting an innovative method for tokenizer development, and hinting at the possibility of future cognitive science-based tokenizers being more efficient. 1 authors · Mar 1, 2024 3
- The ACL OCL Corpus: Advancing Open Science in Computational Linguistics We present ACL OCL, a scholarly corpus derived from the ACL Anthology to assist Open scientific research in the Computational Linguistics domain. Integrating and enhancing the previous versions of the ACL Anthology, the ACL OCL contributes metadata, PDF files, citation graphs and additional structured full texts with sections, figures, and links to a large knowledge resource (Semantic Scholar). The ACL OCL spans seven decades, containing 73K papers, alongside 210K figures. We spotlight how ACL OCL applies to observe trends in computational linguistics. By detecting paper topics with a supervised neural model, we note that interest in "Syntax: Tagging, Chunking and Parsing" is waning and "Natural Language Generation" is resurging. Our dataset is available from HuggingFace (https://huggingface.co/datasets/WINGNUS/ACL-OCL). 5 authors · May 24, 2023
- Pre-trained Models for Natural Language Processing: A Survey Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. 6 authors · Mar 18, 2020
1 Assessing the Importance of Frequency versus Compositionality for Subword-based Tokenization in NMT Subword tokenization is the de facto standard for tokenization in neural language models and machine translation systems. Three advantages are frequently cited in favor of subwords: shorter encoding of frequent tokens, compositionality of subwords, and ability to deal with unknown words. As their relative importance is not entirely clear yet, we propose a tokenization approach that enables us to separate frequency (the first advantage) from compositionality. The approach uses Huffman coding to tokenize words, by order of frequency, using a fixed amount of symbols. Experiments with CS-DE, EN-FR and EN-DE NMT show that frequency alone accounts for 90%-95% of the scores reached by BPE, hence compositionality has less importance than previously thought. 5 authors · Jun 2, 2023
- Meaning Representations from Trajectories in Autoregressive Models We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: https://github.com/tianyu139/meaning-as-trajectories 6 authors · Oct 23, 2023
34 Copy Is All You Need The dominant text generation models compose the output by sequentially selecting words from a fixed vocabulary. In this paper, we formulate text generation as progressively copying text segments (e.g., words or phrases) from an existing text collection. We compute the contextualized representations of meaningful text segments and index them using efficient vector search toolkits. The task of text generation is then decomposed into a series of copy-and-paste operations: at each time step, we seek suitable text spans from the text collection rather than selecting from a standalone vocabulary. Experiments on the standard language modeling benchmark (WikiText-103) show that our approach achieves better generation quality according to both automatic and human evaluations. Besides, its inference efficiency is comparable to token-level autoregressive models thanks to the reduction of decoding steps. We also show that our approach allows for effective domain adaptation by simply switching to domain-specific text collection without extra training. Finally, we observe that our approach attains additional performance gains by simply scaling up to larger text collections, again without further training.Our source codes are publicly available at \url{https://github.com/gmftbyGMFTBY/Copyisallyouneed.} 5 authors · Jul 13, 2023 4
- MUSS: Multilingual Unsupervised Sentence Simplification by Mining Paraphrases Progress in sentence simplification has been hindered by a lack of labeled parallel simplification data, particularly in languages other than English. We introduce MUSS, a Multilingual Unsupervised Sentence Simplification system that does not require labeled simplification data. MUSS uses a novel approach to sentence simplification that trains strong models using sentence-level paraphrase data instead of proper simplification data. These models leverage unsupervised pretraining and controllable generation mechanisms to flexibly adjust attributes such as length and lexical complexity at inference time. We further present a method to mine such paraphrase data in any language from Common Crawl using semantic sentence embeddings, thus removing the need for labeled data. We evaluate our approach on English, French, and Spanish simplification benchmarks and closely match or outperform the previous best supervised results, despite not using any labeled simplification data. We push the state of the art further by incorporating labeled simplification data. 5 authors · May 1, 2020
1 Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations We introduce sub-sentence encoder, a contrastively-learned contextual embedding model for fine-grained semantic representation of text. In contrast to the standard practice with sentence embeddings, where the meaning of an entire sequence of text is encoded into a fixed-length vector, the sub-sentence encoder learns to produce distinct contextual embeddings corresponding to different atomic propositions, i.e. atomic units of meaning expressed within a text sequence. The sub-sentence embeddings are contrastively learned to recognize (inferred) semantic equivalence between propositions across different text sequences. Our experiments show the effectiveness of sub-sentence encoders in applications, such as retrieving supporting facts for fine-grained text attribution or recognizing the conditional semantic similarity between texts. In practice, we demonstrate that sub-sentence encoders keep the same level of inference cost and space complexity compared to sentence encoders. 10 authors · Nov 7, 2023
- Exploring Non-Verbal Predicates in Semantic Role Labeling: Challenges and Opportunities Although we have witnessed impressive progress in Semantic Role Labeling (SRL), most of the research in the area is carried out assuming that the majority of predicates are verbs. Conversely, predicates can also be expressed using other parts of speech, e.g., nouns and adjectives. However, non-verbal predicates appear in the benchmarks we commonly use to measure progress in SRL less frequently than in some real-world settings -- newspaper headlines, dialogues, and tweets, among others. In this paper, we put forward a new PropBank dataset which boasts wide coverage of multiple predicate types. Thanks to it, we demonstrate empirically that standard benchmarks do not provide an accurate picture of the current situation in SRL and that state-of-the-art systems are still incapable of transferring knowledge across different predicate types. Having observed these issues, we also present a novel, manually-annotated challenge set designed to give equal importance to verbal, nominal, and adjectival predicate-argument structures. We use such dataset to investigate whether we can leverage different linguistic resources to promote knowledge transfer. In conclusion, we claim that SRL is far from "solved", and its integration with other semantic tasks might enable significant improvements in the future, especially for the long tail of non-verbal predicates, thereby facilitating further research on SRL for non-verbal predicates. 3 authors · Jul 4, 2023
1 Biomedical Language Models are Robust to Sub-optimal Tokenization As opposed to general English, many concepts in biomedical terminology have been designed in recent history by biomedical professionals with the goal of being precise and concise. This is often achieved by concatenating meaningful biomedical morphemes to create new semantic units. Nevertheless, most modern biomedical language models (LMs) are pre-trained using standard domain-specific tokenizers derived from large scale biomedical corpus statistics without explicitly leveraging the agglutinating nature of biomedical language. In this work, we first find that standard open-domain and biomedical tokenizers are largely unable to segment biomedical terms into meaningful components. Therefore, we hypothesize that using a tokenizer which segments biomedical terminology more accurately would enable biomedical LMs to improve their performance on downstream biomedical NLP tasks, especially ones which involve biomedical terms directly such as named entity recognition (NER) and entity linking. Surprisingly, we find that pre-training a biomedical LM using a more accurate biomedical tokenizer does not improve the entity representation quality of a language model as measured by several intrinsic and extrinsic measures such as masked language modeling prediction (MLM) accuracy as well as NER and entity linking performance. These quantitative findings, along with a case study which explores entity representation quality more directly, suggest that the biomedical pre-training process is quite robust to instances of sub-optimal tokenization. 3 authors · Jun 30, 2023
- DReSD: Dense Retrieval for Speculative Decoding Speculative decoding (SD) accelerates Large Language Model (LLM) generation by using an efficient draft model to propose the next few tokens, which are verified by the LLM in a single forward call, reducing latency while preserving its outputs. We focus on retrieval-based SD where the draft model retrieves the next tokens from a non-parametric datastore. Sparse retrieval (REST), which operates on the surface form of strings, is currently the dominant paradigm due to its simplicity and scalability. However, its effectiveness is limited due to the usage of short contexts and exact string matching. Instead, we introduce Dense Retrieval for Speculative Decoding (DReSD), a novel framework that uses approximate nearest neighbour search with contextualised token embeddings to retrieve the most semantically relevant token sequences for SD. Extensive experiments show that DReSD achieves (on average) 87% higher acceptance rates, 65% longer accepted tokens and 19% faster generation speeds compared to sparse retrieval (REST). 3 authors · Feb 21
- Incorporating Context into Subword Vocabularies Most current popular subword tokenizers are trained based on word frequency statistics over a corpus, without considering information about co-occurrence or context. Nevertheless, the resulting vocabularies are used in language models' highly contextualized settings. We present SaGe, a tokenizer that tailors subwords for their downstream use by baking in the contextualized signal at the vocabulary creation phase. We show that SaGe does a better job than current widespread tokenizers in keeping token contexts cohesive, while not incurring a large price in terms of encoding efficiency or domain robustness. SaGe improves performance on English GLUE classification tasks as well as on NER, and on Inference and NER in Turkish, demonstrating its robustness to language properties such as morphological exponence and agglutination. 2 authors · Oct 13, 2022
- Direct parsing to sentiment graphs This paper demonstrates how a graph-based semantic parser can be applied to the task of structured sentiment analysis, directly predicting sentiment graphs from text. We advance the state of the art on 4 out of 5 standard benchmark sets. We release the source code, models and predictions. 6 authors · Mar 24, 2022
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
5 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art performance on sentence-pair regression tasks like semantic textual similarity (STS). However, it requires that both sentences are fed into the network, which causes a massive computational overhead: Finding the most similar pair in a collection of 10,000 sentences requires about 50 million inference computations (~65 hours) with BERT. The construction of BERT makes it unsuitable for semantic similarity search as well as for unsupervised tasks like clustering. In this publication, we present Sentence-BERT (SBERT), a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. This reduces the effort for finding the most similar pair from 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while maintaining the accuracy from BERT. We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning tasks, where it outperforms other state-of-the-art sentence embeddings methods. 2 authors · Aug 27, 2019
- Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications. 11 authors · Dec 20, 2021
1 Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models Many use cases require retrieving smaller portions of text, and dense vector-based retrieval systems often perform better with shorter text segments, as the semantics are less likely to be "over-compressed" in the embeddings. Consequently, practitioners often split text documents into smaller chunks and encode them separately. However, chunk embeddings created in this way can lose contextual information from surrounding chunks, resulting in suboptimal representations. In this paper, we introduce a novel method called "late chunking," which leverages long context embedding models to first embed all tokens of the long text, with chunking applied after the transformer model and just before mean pooling. The resulting chunk embeddings capture the full contextual information, leading to superior results across various retrieval tasks without the need for additional training. Moreover, our method is generic enough to be applied to any long-context embedding model. 4 authors · Sep 6, 2024
- MIReAD: Simple Method for Learning High-quality Representations from Scientific Documents Learning semantically meaningful representations from scientific documents can facilitate academic literature search and improve performance of recommendation systems. Pre-trained language models have been shown to learn rich textual representations, yet they cannot provide powerful document-level representations for scientific articles. We propose MIReAD, a simple method that learns high-quality representations of scientific papers by fine-tuning transformer model to predict the target journal class based on the abstract. We train MIReAD on more than 500,000 PubMed and arXiv abstracts across over 2,000 journal classes. We show that MIReAD produces representations that can be used for similar papers retrieval, topic categorization and literature search. Our proposed approach outperforms six existing models for representation learning on scientific documents across four evaluation standards. 2 authors · May 6, 2023
2 Retrieving Texts based on Abstract Descriptions In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model. 5 authors · May 21, 2023
- Retrieval is Accurate Generation Standard language models generate text by selecting tokens from a fixed, finite, and standalone vocabulary. We introduce a novel method that selects context-aware phrases from a collection of supporting documents. One of the most significant challenges for this paradigm shift is determining the training oracles, because a string of text can be segmented in various ways and each segment can be retrieved from numerous possible documents. To address this, we propose to initialize the training oracles using linguistic heuristics and, more importantly, bootstrap the oracles through iterative self-reinforcement. Extensive experiments show that our model not only outperforms standard language models on a variety of knowledge-intensive tasks but also demonstrates improved generation quality in open-ended text generation. For instance, compared to the standard language model counterpart, our model raises the accuracy from 23.47% to 36.27% on OpenbookQA, and improves the MAUVE score from 42.61% to 81.58% in open-ended text generation. Remarkably, our model also achieves the best performance and the lowest latency among several retrieval-augmented baselines. In conclusion, we assert that retrieval is more accurate generation and hope that our work will encourage further research on this new paradigm shift. 7 authors · Feb 27, 2024
- Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings. 6 authors · Oct 13, 2021
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods, however, exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity. 3 authors · Jul 9, 2023
- A Language for Function Signature Representations Recent work by (Richardson and Kuhn, 2017a,b; Richardson et al., 2018) looks at semantic parser induction and question answering in the domain of source code libraries and APIs. In this brief note, we formalize the representations being learned in these studies and introduce a simple domain specific language and a systematic translation from this language to first-order logic. By recasting the target representations in terms of classical logic, we aim to broaden the applicability of existing code datasets for investigating more complex natural language understanding and reasoning problems in the software domain. 1 authors · Mar 31, 2018
- Just Rank: Rethinking Evaluation with Word and Sentence Similarities Word and sentence embeddings are useful feature representations in natural language processing. However, intrinsic evaluation for embeddings lags far behind, and there has been no significant update since the past decade. Word and sentence similarity tasks have become the de facto evaluation method. It leads models to overfit to such evaluations, negatively impacting embedding models' development. This paper first points out the problems using semantic similarity as the gold standard for word and sentence embedding evaluations. Further, we propose a new intrinsic evaluation method called EvalRank, which shows a much stronger correlation with downstream tasks. Extensive experiments are conducted based on 60+ models and popular datasets to certify our judgments. Finally, the practical evaluation toolkit is released for future benchmarking purposes. 3 authors · Mar 5, 2022
- BERTweet: A pre-trained language model for English Tweets We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al., 2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks: Part-of-speech tagging, Named-entity recognition and text classification. We release BERTweet under the MIT License to facilitate future research and applications on Tweet data. Our BERTweet is available at https://github.com/VinAIResearch/BERTweet 3 authors · May 20, 2020 1
- Concrete Sentence Spaces for Compositional Distributional Models of Meaning Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors. 5 authors · Dec 31, 2010
1 Evaluating Embedding APIs for Information Retrieval The ever-increasing size of language models curtails their widespread access to the community, thereby galvanizing many companies and startups into offering access to large language models through APIs. One particular API, suitable for dense retrieval, is the semantic embedding API that builds vector representations of a given text. With a growing number of APIs at our disposal, in this paper, our goal is to analyze semantic embedding APIs in realistic retrieval scenarios in order to assist practitioners and researchers in finding suitable services according to their needs. Specifically, we wish to investigate the capabilities of existing APIs on domain generalization and multilingual retrieval. For this purpose, we evaluate the embedding APIs on two standard benchmarks, BEIR, and MIRACL. We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective on English, in contrast to the standard practice, i.e., employing them as first-stage retrievers. For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best albeit at a higher cost. We hope our work lays the groundwork for thoroughly evaluating APIs that are critical in search and more broadly, in information retrieval. 7 authors · May 10, 2023
5 SAGE: A Framework of Precise Retrieval for RAG Retrieval-augmented generation (RAG) has demonstrated significant proficiency in conducting question-answering (QA) tasks within a specified corpus. Nonetheless, numerous failure instances of RAG in QA still exist. These failures are not solely attributable to the limitations of Large Language Models (LLMs); instead, they predominantly arise from the retrieval of inaccurate information for LLMs due to two limitations: (1) Current RAG methods segment the corpus without considering semantics, making it difficult to find relevant context due to impaired correlation between questions and the segments. (2) There is a trade-off between missing essential context with fewer context retrieved and getting irrelevant context with more context retrieved. In this paper, we introduce a RAG framework (SAGE), to overcome these limitations. First, to address the segmentation issue without considering semantics, we propose to train a semantic segmentation model. This model is trained to segment the corpus into semantically complete chunks. Second, to ensure that only the most relevant chunks are retrieved while the irrelevant ones are ignored, we design a chunk selection algorithm to dynamically select chunks based on the decreasing speed of the relevance score, leading to a more relevant selection. Third, to further ensure the precision of the retrieved chunks, we propose letting LLMs assess whether retrieved chunks are excessive or lacking and then adjust the amount of context accordingly. Experiments show that SAGE outperforms baselines by 61.25% in the quality of QA on average. Moreover, by avoiding retrieving noisy context, SAGE lowers the cost of the tokens consumed in LLM inference and achieves a 49.41% enhancement in cost efficiency on average. Additionally, our work offers valuable insights for boosting RAG. 3 authors · Mar 3 2
- PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search While contextualized word embeddings have been a de-facto standard, learning contextualized phrase embeddings is less explored and being hindered by the lack of a human-annotated benchmark that tests machine understanding of phrase semantics given a context sentence or paragraph (instead of phrases alone). To fill this gap, we propose PiC -- a dataset of ~28K of noun phrases accompanied by their contextual Wikipedia pages and a suite of three tasks for training and evaluating phrase embeddings. Training on PiC improves ranking models' accuracy and remarkably pushes span-selection (SS) models (i.e., predicting the start and end index of the target phrase) near-human accuracy, which is 95% Exact Match (EM) on semantic search given a query phrase and a passage. Interestingly, we find evidence that such impressive performance is because the SS models learn to better capture the common meaning of a phrase regardless of its actual context. SotA models perform poorly in distinguishing two senses of the same phrase in two contexts (~60% EM) and in estimating the similarity between two different phrases in the same context (~70% EM). 4 authors · Jul 19, 2022
- Analyzing Cognitive Plausibility of Subword Tokenization Subword tokenization has become the de-facto standard for tokenization, although comparative evaluations of subword vocabulary quality across languages are scarce. Existing evaluation studies focus on the effect of a tokenization algorithm on the performance in downstream tasks, or on engineering criteria such as the compression rate. We present a new evaluation paradigm that focuses on the cognitive plausibility of subword tokenization. We analyze the correlation of the tokenizer output with the response time and accuracy of human performance on a lexical decision task. We compare three tokenization algorithms across several languages and vocabulary sizes. Our results indicate that the UnigramLM algorithm yields less cognitively plausible tokenization behavior and a worse coverage of derivational morphemes, in contrast with prior work. 2 authors · Oct 20, 2023
- Introducing various Semantic Models for Amharic: Experimentation and Evaluation with multiple Tasks and Datasets The availability of different pre-trained semantic models enabled the quick development of machine learning components for downstream applications. Despite the availability of abundant text data for low resource languages, only a few semantic models are publicly available. Publicly available pre-trained models are usually built as a multilingual version of semantic models that can not fit well for each language due to context variations. In this work, we introduce different semantic models for Amharic. After we experiment with the existing pre-trained semantic models, we trained and fine-tuned nine new different models using a monolingual text corpus. The models are build using word2Vec embeddings, distributional thesaurus (DT), contextual embeddings, and DT embeddings obtained via network embedding algorithms. Moreover, we employ these models for different NLP tasks and investigate their impact. We find that newly trained models perform better than pre-trained multilingual models. Furthermore, models based on contextual embeddings from RoBERTA perform better than the word2Vec models. 5 authors · Nov 2, 2020
- Give your Text Representation Models some Love: the Case for Basque Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available. 7 authors · Mar 31, 2020
1 Large Language Models as Annotators: Enhancing Generalization of NLP Models at Minimal Cost State-of-the-art supervised NLP models achieve high accuracy but are also susceptible to failures on inputs from low-data regimes, such as domains that are not represented in training data. As an approximation to collecting ground-truth labels for the specific domain, we study the use of large language models (LLMs) for annotating inputs and improving the generalization of NLP models. Specifically, given a budget for LLM annotations, we present an algorithm for sampling the most informative inputs to annotate and retrain the NLP model. We find that popular active learning strategies such as uncertainty-based sampling do not work well. Instead, we propose a sampling strategy based on the difference in prediction scores between the base model and the finetuned NLP model, utilizing the fact that most NLP models are finetuned from a base model. Experiments with classification (semantic similarity) and ranking (semantic search) tasks show that our sampling strategy leads to significant gains in accuracy for both the training and target domains. 2 authors · Jun 27, 2023
- UIUC_BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for Structuring Scholarly NLP Contributions We propose a cascade of neural models that performs sentence classification, phrase recognition, and triple extraction to automatically structure the scholarly contributions of NLP publications. To identify the most important contribution sentences in a paper, we used a BERT-based classifier with positional features (Subtask 1). A BERT-CRF model was used to recognize and characterize relevant phrases in contribution sentences (Subtask 2). We categorized the triples into several types based on whether and how their elements were expressed in text, and addressed each type using separate BERT-based classifiers as well as rules (Subtask 3). Our system was officially ranked second in Phase 1 evaluation and first in both parts of Phase 2 evaluation. After fixing a submission error in Pharse 1, our approach yields the best results overall. In this paper, in addition to a system description, we also provide further analysis of our results, highlighting its strengths and limitations. We make our code publicly available at https://github.com/Liu-Hy/nlp-contrib-graph. 3 authors · May 12, 2021
2 How Easily do Irrelevant Inputs Skew the Responses of Large Language Models? By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading contents. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. Resources are available at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information. 6 authors · Apr 4, 2024
- Lexical Knowledge Internalization for Neural Dialog Generation We propose knowledge internalization (KI), which aims to complement the lexical knowledge into neural dialog models. Instead of further conditioning the knowledge-grounded dialog (KGD) models on externally retrieved knowledge, we seek to integrate knowledge about each input token internally into the model's parameters. To tackle the challenge due to the large scale of lexical knowledge, we adopt the contrastive learning approach and create an effective token-level lexical knowledge retriever that requires only weak supervision mined from Wikipedia. We demonstrate the effectiveness and general applicability of our approach on various datasets and diversified model structures. 5 authors · May 4, 2022
- Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks Contextualized representations from a pre-trained language model are central to achieve a high performance on downstream NLP task. The pre-trained BERT and A Lite BERT (ALBERT) models can be fine-tuned to give state-ofthe-art results in sentence-pair regressions such as semantic textual similarity (STS) and natural language inference (NLI). Although BERT-based models yield the [CLS] token vector as a reasonable sentence embedding, the search for an optimal sentence embedding scheme remains an active research area in computational linguistics. This paper explores on sentence embedding models for BERT and ALBERT. In particular, we take a modified BERT network with siamese and triplet network structures called Sentence-BERT (SBERT) and replace BERT with ALBERT to create Sentence-ALBERT (SALBERT). We also experiment with an outer CNN sentence-embedding network for SBERT and SALBERT. We evaluate performances of all sentence-embedding models considered using the STS and NLI datasets. The empirical results indicate that our CNN architecture improves ALBERT models substantially more than BERT models for STS benchmark. Despite significantly fewer model parameters, ALBERT sentence embedding is highly competitive to BERT in downstream NLP evaluations. 4 authors · Jan 26, 2021
1 TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop. 5 authors · Oct 24, 2023
- Integrating Multi-scale Contextualized Information for Byte-based Neural Machine Translation Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified once it is learned, making it hard to adapt to new words. Second, in multilingual translation, the imbalance in data volumes across different languages spreads to the vocabulary, exacerbating translations involving low-resource languages. While byte-based tokenization addresses these issues, byte-based models struggle with the low information density inherent in UTF-8 byte sequences. Previous works enhance token semantics through local contextualization but fail to select an appropriate contextualizing scope based on the input. Consequently, we propose the Multi-Scale Contextualization (MSC) method, which learns contextualized information of varying scales across different hidden state dimensions. It then leverages the attention module to dynamically integrate the multi-scale contextualized information. Experiments show that MSC significantly outperforms subword-based and other byte-based methods in both multilingual and out-of-domain scenarios. Code can be found in https://github.com/ictnlp/Multiscale-Contextualization. 2 authors · May 29, 2024 2
- Multi hash embeddings in spaCy The distributed representation of symbols is one of the key technologies in machine learning systems today, playing a pivotal role in modern natural language processing. Traditional word embeddings associate a separate vector with each word. While this approach is simple and leads to good performance, it requires a lot of memory for representing a large vocabulary. To reduce the memory footprint, the default embedding layer in spaCy is a hash embeddings layer. It is a stochastic approximation of traditional embeddings that provides unique vectors for a large number of words without explicitly storing a separate vector for each of them. To be able to compute meaningful representations for both known and unknown words, hash embeddings represent each word as a summary of the normalized word form, subword information and word shape. Together, these features produce a multi-embedding of a word. In this technical report we lay out a bit of history and introduce the embedding methods in spaCy in detail. Second, we critically evaluate the hash embedding architecture with multi-embeddings on Named Entity Recognition datasets from a variety of domains and languages. The experiments validate most key design choices behind spaCy's embedders, but we also uncover a few surprising results. 6 authors · Dec 19, 2022
1 ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems Retrieval-Augmented Generation (RAG) systems using large language models (LLMs) often generate inaccurate responses due to the retrieval of irrelevant or loosely related information. Existing methods, which operate at the document level, fail to effectively filter out such content. We propose LLM-driven chunk filtering, ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level. Our approach employs semantic chunking to divide documents into coherent sections and utilizes LLM-based relevance scoring to assess each chunk's alignment with the user's query. By filtering out less pertinent chunks before the generation phase, we significantly reduce hallucinations and improve factual accuracy. Experiments show that our method outperforms existing RAG models, achieving higher accuracy on tasks requiring precise information retrieval. This advancement enhances the reliability of RAG systems, making them particularly beneficial for applications like fact-checking and multi-hop reasoning. 4 authors · Oct 25, 2024
- SEAL : Interactive Tool for Systematic Error Analysis and Labeling With the advent of Transformers, large language models (LLMs) have saturated well-known NLP benchmarks and leaderboards with high aggregate performance. However, many times these models systematically fail on tail data or rare groups not obvious in aggregate evaluation. Identifying such problematic data groups is even more challenging when there are no explicit labels (e.g., ethnicity, gender, etc.) and further compounded for NLP datasets due to the lack of visual features to characterize failure modes (e.g., Asian males, animals indoors, waterbirds on land, etc.). This paper introduces an interactive Systematic Error Analysis and Labeling (\seal) tool that uses a two-step approach to first identify high error slices of data and then, in the second step, introduce methods to give human-understandable semantics to those underperforming slices. We explore a variety of methods for coming up with coherent semantics for the error groups using language models for semantic labeling and a text-to-image model for generating visual features. SEAL toolkit and demo screencast is available at https://huggingface.co/spaces/nazneen/seal. 5 authors · Oct 11, 2022
- HICL: Hashtag-Driven In-Context Learning for Social Media Natural Language Understanding Natural language understanding (NLU) is integral to various social media applications. However, existing NLU models rely heavily on context for semantic learning, resulting in compromised performance when faced with short and noisy social media content. To address this issue, we leverage in-context learning (ICL), wherein language models learn to make inferences by conditioning on a handful of demonstrations to enrich the context and propose a novel hashtag-driven in-context learning (HICL) framework. Concretely, we pre-train a model #Encoder, which employs #hashtags (user-annotated topic labels) to drive BERT-based pre-training through contrastive learning. Our objective here is to enable #Encoder to gain the ability to incorporate topic-related semantic information, which allows it to retrieve topic-related posts to enrich contexts and enhance social media NLU with noisy contexts. To further integrate the retrieved context with the source text, we employ a gradient-based method to identify trigger terms useful in fusing information from both sources. For empirical studies, we collected 45M tweets to set up an in-context NLU benchmark, and the experimental results on seven downstream tasks show that HICL substantially advances the previous state-of-the-art results. Furthermore, we conducted extensive analyzes and found that: (1) combining source input with a top-retrieved post from #Encoder is more effective than using semantically similar posts; (2) trigger words can largely benefit in merging context from the source and retrieved posts. 7 authors · Aug 19, 2023
- Automatic WordNet Construction using Word Sense Induction through Sentence Embeddings Language resources such as wordnets remain indispensable tools for different natural language tasks and applications. However, for low-resource languages such as Filipino, existing wordnets are old and outdated, and producing new ones may be slow and costly in terms of time and resources. In this paper, we propose an automatic method for constructing a wordnet from scratch using only an unlabeled corpus and a sentence embeddings-based language model. Using this, we produce FilWordNet, a new wordnet that supplants and improves the outdated Filipino WordNet. We evaluate our automatically-induced senses and synsets by matching them with senses from the Princeton WordNet, as well as comparing the synsets to the old Filipino WordNet. We empirically show that our method can induce existing, as well as potentially new, senses and synsets automatically without the need for human supervision. 6 authors · Apr 7, 2022
- POLYGLOT-NER: Massive Multilingual Named Entity Recognition The increasing diversity of languages used on the web introduces a new level of complexity to Information Retrieval (IR) systems. We can no longer assume that textual content is written in one language or even the same language family. In this paper, we demonstrate how to build massive multilingual annotators with minimal human expertise and intervention. We describe a system that builds Named Entity Recognition (NER) annotators for 40 major languages using Wikipedia and Freebase. Our approach does not require NER human annotated datasets or language specific resources like treebanks, parallel corpora, and orthographic rules. The novelty of approach lies therein - using only language agnostic techniques, while achieving competitive performance. Our method learns distributed word representations (word embeddings) which encode semantic and syntactic features of words in each language. Then, we automatically generate datasets from Wikipedia link structure and Freebase attributes. Finally, we apply two preprocessing stages (oversampling and exact surface form matching) which do not require any linguistic expertise. Our evaluation is two fold: First, we demonstrate the system performance on human annotated datasets. Second, for languages where no gold-standard benchmarks are available, we propose a new method, distant evaluation, based on statistical machine translation. 4 authors · Oct 14, 2014
- Top2Vec: Distributed Representations of Topics Topic modeling is used for discovering latent semantic structure, usually referred to as topics, in a large collection of documents. The most widely used methods are Latent Dirichlet Allocation and Probabilistic Latent Semantic Analysis. Despite their popularity they have several weaknesses. In order to achieve optimal results they often require the number of topics to be known, custom stop-word lists, stemming, and lemmatization. Additionally these methods rely on bag-of-words representation of documents which ignore the ordering and semantics of words. Distributed representations of documents and words have gained popularity due to their ability to capture semantics of words and documents. We present top2vec, which leverages joint document and word semantic embedding to find topic vectors. This model does not require stop-word lists, stemming or lemmatization, and it automatically finds the number of topics. The resulting topic vectors are jointly embedded with the document and word vectors with distance between them representing semantic similarity. Our experiments demonstrate that top2vec finds topics which are significantly more informative and representative of the corpus trained on than probabilistic generative models. 1 authors · Aug 19, 2020 2
2 BERTScore: Evaluating Text Generation with BERT We propose BERTScore, an automatic evaluation metric for text generation. Analogously to common metrics, BERTScore computes a similarity score for each token in the candidate sentence with each token in the reference sentence. However, instead of exact matches, we compute token similarity using contextual embeddings. We evaluate using the outputs of 363 machine translation and image captioning systems. BERTScore correlates better with human judgments and provides stronger model selection performance than existing metrics. Finally, we use an adversarial paraphrase detection task to show that BERTScore is more robust to challenging examples when compared to existing metrics. 5 authors · Apr 21, 2019 1
- Learning Word Vectors for 157 Languages Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models. 5 authors · Feb 19, 2018
- Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration Phrase representations derived from BERT often do not exhibit complex phrasal compositionality, as the model relies instead on lexical similarity to determine semantic relatedness. In this paper, we propose a contrastive fine-tuning objective that enables BERT to produce more powerful phrase embeddings. Our approach (Phrase-BERT) relies on a dataset of diverse phrasal paraphrases, which is automatically generated using a paraphrase generation model, as well as a large-scale dataset of phrases in context mined from the Books3 corpus. Phrase-BERT outperforms baselines across a variety of phrase-level similarity tasks, while also demonstrating increased lexical diversity between nearest neighbors in the vector space. Finally, as a case study, we show that Phrase-BERT embeddings can be easily integrated with a simple autoencoder to build a phrase-based neural topic model that interprets topics as mixtures of words and phrases by performing a nearest neighbor search in the embedding space. Crowdsourced evaluations demonstrate that this phrase-based topic model produces more coherent and meaningful topics than baseline word and phrase-level topic models, further validating the utility of Phrase-BERT. 3 authors · Sep 13, 2021
- A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions This paper presents a comprehensive study of Retrieval-Augmented Generation (RAG), tracing its evolution from foundational concepts to the current state of the art. RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs, addressing key limitations of LLMs. The study explores the basic architecture of RAG, focusing on how retrieval and generation are integrated to handle knowledge-intensive tasks. A detailed review of the significant technological advancements in RAG is provided, including key innovations in retrieval-augmented language models and applications across various domains such as question-answering, summarization, and knowledge-based tasks. Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency. Furthermore, the paper examines ongoing challenges such as scalability, bias, and ethical concerns in deployment. Future research directions are proposed, focusing on improving the robustness of RAG models, expanding the scope of application of RAG models, and addressing societal implications. This survey aims to serve as a foundational resource for researchers and practitioners in understanding the potential of RAG and its trajectory in natural language processing. 3 authors · Oct 3, 2024
- SpEL: Structured Prediction for Entity Linking Entity linking is a prominent thread of research focused on structured data creation by linking spans of text to an ontology or knowledge source. We revisit the use of structured prediction for entity linking which classifies each individual input token as an entity, and aggregates the token predictions. Our system, called SpEL (Structured prediction for Entity Linking) is a state-of-the-art entity linking system that uses some new ideas to apply structured prediction to the task of entity linking including: two refined fine-tuning steps; a context sensitive prediction aggregation strategy; reduction of the size of the model's output vocabulary, and; we address a common problem in entity-linking systems where there is a training vs. inference tokenization mismatch. Our experiments show that we can outperform the state-of-the-art on the commonly used AIDA benchmark dataset for entity linking to Wikipedia. Our method is also very compute efficient in terms of number of parameters and speed of inference. 2 authors · Oct 23, 2023
6 Efficient Estimation of Word Representations in Vector Space We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities. 4 authors · Jan 16, 2013
- Learning semantic sentence representations from visually grounded language without lexical knowledge Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics. 2 authors · Mar 27, 2019
- A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance. 4 authors · Feb 2, 2024
- Chunk-Distilled Language Modeling We introduce Chunk-Distilled Language Modeling (CD-LM), an approach to text generation that addresses two challenges in current large language models (LLMs): the inefficiency of token-level generation, and the difficulty of adapting to new data and knowledge. Our method combines deep network-based LLMs with a straightforward retrieval module, which allows the generation of multi-token text chunks at a single decoding step. Our retrieval framework enables flexible construction of model- or domain-specific datastores, either leveraging the internal knowledge of existing models, or incorporating expert insights from human-annotated corpora. This adaptability allows for enhanced control over the language model's distribution without necessitating additional training. We present the CD-LM formulation along with performance metrics demonstrating its ability to improve language model performance and efficiency across a diverse set of downstream tasks. Code and data will be made publicly available. 3 authors · Dec 31, 2024
- BanglaAutoKG: Automatic Bangla Knowledge Graph Construction with Semantic Neural Graph Filtering Knowledge Graphs (KGs) have proven essential in information processing and reasoning applications because they link related entities and give context-rich information, supporting efficient information retrieval and knowledge discovery; presenting information flow in a very effective manner. Despite being widely used globally, Bangla is relatively underrepresented in KGs due to a lack of comprehensive datasets, encoders, NER (named entity recognition) models, POS (part-of-speech) taggers, and lemmatizers, hindering efficient information processing and reasoning applications in the language. Addressing the KG scarcity in Bengali, we propose BanglaAutoKG, a pioneering framework that is able to automatically construct Bengali KGs from any Bangla text. We utilize multilingual LLMs to understand various languages and correlate entities and relations universally. By employing a translation dictionary to identify English equivalents and extracting word features from pre-trained BERT models, we construct the foundational KG. To reduce noise and align word embeddings with our goal, we employ graph-based polynomial filters. Lastly, we implement a GNN-based semantic filter, which elevates contextual understanding and trims unnecessary edges, culminating in the formation of the definitive KG. Empirical findings and case studies demonstrate the universal effectiveness of our model, capable of autonomously constructing semantically enriched KGs from any text. 4 authors · Apr 4, 2024
- Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi. 4 authors · Aug 19, 2021
- Semantic Models for the First-stage Retrieval: A Comprehensive Review Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics. 6 authors · Mar 8, 2021
- Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training 3 authors · May 26, 2023
- The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations We introduce a new test of how well language models capture meaning in children's books. Unlike standard language modelling benchmarks, it distinguishes the task of predicting syntactic function words from that of predicting lower-frequency words, which carry greater semantic content. We compare a range of state-of-the-art models, each with a different way of encoding what has been previously read. We show that models which store explicit representations of long-term contexts outperform state-of-the-art neural language models at predicting semantic content words, although this advantage is not observed for syntactic function words. Interestingly, we find that the amount of text encoded in a single memory representation is highly influential to the performance: there is a sweet-spot, not too big and not too small, between single words and full sentences that allows the most meaningful information in a text to be effectively retained and recalled. Further, the attention over such window-based memories can be trained effectively through self-supervision. We then assess the generality of this principle by applying it to the CNN QA benchmark, which involves identifying named entities in paraphrased summaries of news articles, and achieve state-of-the-art performance. 4 authors · Nov 6, 2015
1 Dense X Retrieval: What Retrieval Granularity Should We Use? Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information. 8 authors · Dec 11, 2023
- LMentry: A Language Model Benchmark of Elementary Language Tasks As the performance of large language models rapidly improves, benchmarks are getting larger and more complex as well. We present LMentry, a benchmark that avoids this "arms race" by focusing on a compact set of tasks that are trivial to humans, e.g. writing a sentence containing a specific word, identifying which words in a list belong to a specific category, or choosing which of two words is longer. LMentry is specifically designed to provide quick and interpretable insights into the capabilities and robustness of large language models. Our experiments reveal a wide variety of failure cases that, while immediately obvious to humans, pose a considerable challenge for large language models, including OpenAI's latest 175B-parameter instruction-tuned model, TextDavinci002. LMentry complements contemporary evaluation approaches of large language models, providing a quick, automatic, and easy-to-run "unit test", without resorting to large benchmark suites of complex tasks. 3 authors · Nov 3, 2022
1 VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area. 3 authors · Jul 31, 2023
- Composition-contrastive Learning for Sentence Embeddings Vector representations of natural language are ubiquitous in search applications. Recently, various methods based on contrastive learning have been proposed to learn textual representations from unlabelled data; by maximizing alignment between minimally-perturbed embeddings of the same text, and encouraging a uniform distribution of embeddings across a broader corpus. Differently, we propose maximizing alignment between texts and a composition of their phrasal constituents. We consider several realizations of this objective and elaborate the impact on representations in each case. Experimental results on semantic textual similarity tasks show improvements over baselines that are comparable with state-of-the-art approaches. Moreover, this work is the first to do so without incurring costs in auxiliary training objectives or additional network parameters. 2 authors · Jul 14, 2023
- Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs). However, these systems face challenges in effectively integrating external knowledge with the LLM's internal knowledge, often leading to issues with misleading or unhelpful information. This work aims to provide a systematic study on knowledge checking in RAG systems. We conduct a comprehensive analysis of LLM representation behaviors and demonstrate the significance of using representations in knowledge checking. Motivated by the findings, we further develop representation-based classifiers for knowledge filtering. We show substantial improvements in RAG performance, even when dealing with noisy knowledge databases. Our study provides new insights into leveraging LLM representations for enhancing the reliability and effectiveness of RAG systems. 12 authors · Nov 21, 2024
- Enhancing Lexicon-Based Text Embeddings with Large Language Models Recent large language models (LLMs) have demonstrated exceptional performance on general-purpose text embedding tasks. While dense embeddings have dominated related research, we introduce the first Lexicon-based EmbeddiNgS (LENS) leveraging LLMs that achieve competitive performance on these tasks. Regarding the inherent tokenization redundancy issue and unidirectional attention limitations in traditional causal LLMs, LENS consolidates the vocabulary space through token embedding clustering, and investigates bidirectional attention and various pooling strategies. Specifically, LENS simplifies lexicon matching by assigning each dimension to a specific token cluster, where semantically similar tokens are grouped together, and unlocking the full potential of LLMs through bidirectional attention. Extensive experiments demonstrate that LENS outperforms dense embeddings on the Massive Text Embedding Benchmark (MTEB), delivering compact feature representations that match the sizes of dense counterparts. Notably, combining LENSE with dense embeddings achieves state-of-the-art performance on the retrieval subset of MTEB (i.e. BEIR). 4 authors · Jan 16
1 Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence We propose a novel approach for learning interchangeable tokens in language models to obtain an extendable vocabulary that can generalize to new tokens. Our method is designed to address alpha-equivalence, the principle that renaming bound variables in a syntactic expression preserves semantics. This property arises in many formal languages such as temporal logics, in which all proposition symbols represent the same concept but are distinguishable from each other. To handle such tokens, we develop a dual-part embedding approach. The first part is shared across all interchangeable tokens, thereby enforcing that they represent the same core concept. The second part is randomly generated for each token, which enables distinguishability. We evaluate our method in a Transformer encoder-decoder model on two tasks: solving linear temporal logic formulae and copying with extendable vocabulary. Our method demonstrates promising generalization capabilities in addition to introducing a favorable inductive bias for alpha-equivalence. 3 authors · Oct 22, 2024
- Efficient and Interpretable Information Retrieval for Product Question Answering with Heterogeneous Data Expansion-enhanced sparse lexical representation improves information retrieval (IR) by minimizing vocabulary mismatch problems during lexical matching. In this paper, we explore the potential of jointly learning dense semantic representation and combining it with the lexical one for ranking candidate information. We present a hybrid information retrieval mechanism that maximizes lexical and semantic matching while minimizing their shortcomings. Our architecture consists of dual hybrid encoders that independently encode queries and information elements. Each encoder jointly learns a dense semantic representation and a sparse lexical representation augmented by a learnable term expansion of the corresponding text through contrastive learning. We demonstrate the efficacy of our model in single-stage ranking of a benchmark product question-answering dataset containing the typical heterogeneous information available on online product pages. Our evaluation demonstrates that our hybrid approach outperforms independently trained retrievers by 10.95% (sparse) and 2.7% (dense) in MRR@5 score. Moreover, our model offers better interpretability and performs comparably to state-of-the-art cross encoders while reducing response time by 30% (latency) and cutting computational load by approximately 38% (FLOPs). 2 authors · May 21, 2024
- Compositional Semantic Parsing on Semi-Structured Tables Two important aspects of semantic parsing for question answering are the breadth of the knowledge source and the depth of logical compositionality. While existing work trades off one aspect for another, this paper simultaneously makes progress on both fronts through a new task: answering complex questions on semi-structured tables using question-answer pairs as supervision. The central challenge arises from two compounding factors: the broader domain results in an open-ended set of relations, and the deeper compositionality results in a combinatorial explosion in the space of logical forms. We propose a logical-form driven parsing algorithm guided by strong typing constraints and show that it obtains significant improvements over natural baselines. For evaluation, we created a new dataset of 22,033 complex questions on Wikipedia tables, which is made publicly available. 2 authors · Aug 2, 2015
- Vector representations of text data in deep learning In this dissertation we report results of our research on dense distributed representations of text data. We propose two novel neural models for learning such representations. The first model learns representations at the document level, while the second model learns word-level representations. For document-level representations we propose Binary Paragraph Vector: a neural network models for learning binary representations of text documents, which can be used for fast document retrieval. We provide a thorough evaluation of these models and demonstrate that they outperform the seminal method in the field in the information retrieval task. We also report strong results in transfer learning settings, where our models are trained on a generic text corpus and then used to infer codes for documents from a domain-specific dataset. In contrast to previously proposed approaches, Binary Paragraph Vector models learn embeddings directly from raw text data. For word-level representations we propose Disambiguated Skip-gram: a neural network model for learning multi-sense word embeddings. Representations learned by this model can be used in downstream tasks, like part-of-speech tagging or identification of semantic relations. In the word sense induction task Disambiguated Skip-gram outperforms state-of-the-art models on three out of four benchmarks datasets. Our model has an elegant probabilistic interpretation. Furthermore, unlike previous models of this kind, it is differentiable with respect to all its parameters and can be trained with backpropagation. In addition to quantitative results, we present qualitative evaluation of Disambiguated Skip-gram, including two-dimensional visualisations of selected word-sense embeddings. 1 authors · Jan 7, 2019
- Evaluating Inter-Bilingual Semantic Parsing for Indian Languages Despite significant progress in Natural Language Generation for Indian languages (IndicNLP), there is a lack of datasets around complex structured tasks such as semantic parsing. One reason for this imminent gap is the complexity of the logical form, which makes English to multilingual translation difficult. The process involves alignment of logical forms, intents and slots with translated unstructured utterance. To address this, we propose an Inter-bilingual Seq2seq Semantic parsing dataset IE-SEMPARSE for 11 distinct Indian languages. We highlight the proposed task's practicality, and evaluate existing multilingual seq2seq models across several train-test strategies. Our experiment reveals a high correlation across performance of original multilingual semantic parsing datasets (such as mTOP, multilingual TOP and multiATIS++) and our proposed IE-SEMPARSE suite. 3 authors · Apr 25, 2023
9 Word Sense Linking: Disambiguating Outside the Sandbox Word Sense Disambiguation (WSD) is the task of associating a word in a given context with its most suitable meaning among a set of possible candidates. While the task has recently witnessed renewed interest, with systems achieving performances above the estimated inter-annotator agreement, at the time of writing it still struggles to find downstream applications. We argue that one of the reasons behind this is the difficulty of applying WSD to plain text. Indeed, in the standard formulation, models work under the assumptions that a) all the spans to disambiguate have already been identified, and b) all the possible candidate senses of each span are provided, both of which are requirements that are far from trivial. In this work, we present a new task called Word Sense Linking (WSL) where, given an input text and a reference sense inventory, systems have to both identify which spans to disambiguate and then link them to their most suitable meaning.We put forward a transformer-based architecture for the task and thoroughly evaluate both its performance and those of state-of-the-art WSD systems scaled to WSL, iteratively relaxing the assumptions of WSD. We hope that our work will foster easier integration of lexical semantics into downstream applications. 5 authors · Dec 12, 2024 2
2 ConMeC: A Dataset for Metonymy Resolution with Common Nouns Metonymy plays an important role in our daily communication. People naturally think about things using their most salient properties or commonly related concepts. For example, by saying "The bus decided to skip our stop today," we actually mean that the bus driver made the decision, not the bus. Prior work on metonymy resolution has mainly focused on named entities. However, metonymy involving common nouns (such as desk, baby, and school) is also a frequent and challenging phenomenon. We argue that NLP systems should be capable of identifying the metonymic use of common nouns in context. We create a new metonymy dataset ConMeC, which consists of 6,000 sentences, where each sentence is paired with a target common noun and annotated by humans to indicate whether that common noun is used metonymically or not in that context. We also introduce a chain-of-thought based prompting method for detecting metonymy using large language models (LLMs). We evaluate our LLM-based pipeline, as well as a supervised BERT model on our dataset and three other metonymy datasets. Our experimental results demonstrate that LLMs could achieve performance comparable to the supervised BERT model on well-defined metonymy categories, while still struggling with instances requiring nuanced semantic understanding. Our dataset is publicly available at: https://github.com/SaptGhosh/ConMeC. 2 authors · Feb 9
- Learning to Retrieve Iteratively for In-Context Learning We introduce iterative retrieval, a novel framework that empowers retrievers to make iterative decisions through policy optimization. Finding an optimal portfolio of retrieved items is a combinatorial optimization problem, generally considered NP-hard. This approach provides a learned approximation to such a solution, meeting specific task requirements under a given family of large language models (LLMs). We propose a training procedure based on reinforcement learning, incorporating feedback from LLMs. We instantiate an iterative retriever for composing in-context learning (ICL) exemplars and apply it to various semantic parsing tasks that demand synthesized programs as outputs. By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever, outperforming previous methods in selecting ICL exemplars on semantic parsing datasets such as CalFlow, TreeDST, and MTOP. Additionally, the trained iterative retriever generalizes across different inference LLMs beyond the one used during training. 7 authors · Jun 20, 2024
23 Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks? As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data. 3 authors · Nov 7, 2024 3
- A Pilot Study for Chinese SQL Semantic Parsing The task of semantic parsing is highly useful for dialogue and question answering systems. Many datasets have been proposed to map natural language text into SQL, among which the recent Spider dataset provides cross-domain samples with multiple tables and complex queries. We build a Spider dataset for Chinese, which is currently a low-resource language in this task area. Interesting research questions arise from the uniqueness of the language, which requires word segmentation, and also from the fact that SQL keywords and columns of DB tables are typically written in English. We compare character- and word-based encoders for a semantic parser, and different embedding schemes. Results show that word-based semantic parser is subject to segmentation errors and cross-lingual word embeddings are useful for text-to-SQL. 3 authors · Sep 29, 2019
1 Massively Multilingual Lexical Specialization of Multilingual Transformers While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet's multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate. 3 authors · Aug 1, 2022
- ConceptNet 5.5: An Open Multilingual Graph of General Knowledge Machine learning about language can be improved by supplying it with specific knowledge and sources of external information. We present here a new version of the linked open data resource ConceptNet that is particularly well suited to be used with modern NLP techniques such as word embeddings. ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expert-created resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use. When ConceptNet is combined with word embeddings acquired from distributional semantics (such as word2vec), it provides applications with understanding that they would not acquire from distributional semantics alone, nor from narrower resources such as WordNet or DBPedia. We demonstrate this with state-of-the-art results on intrinsic evaluations of word relatedness that translate into improvements on applications of word vectors, including solving SAT-style analogies. 3 authors · Dec 12, 2016
5 Zero-Shot Tokenizer Transfer Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer. 3 authors · May 13, 2024 3
- Dewey Long Context Embedding Model: A Technical Report This technical report presents the training methodology and evaluation results of the open-source dewey_en_beta embedding model. The increasing demand for retrieval-augmented generation (RAG) systems and the expanding context window capabilities of large language models (LLMs) have created critical challenges for conventional embedding models. Current approaches often struggle to maintain semantic coherence when processing documents exceeding typical sequence length limitations, significantly impacting retrieval performance in knowledge-intensive applications. This paper presents dewey_en_beta, a novel text embedding model that achieves excellent performance on MTEB (Eng, v2) and LongEmbed benchmark while supporting 128K token sequences. Our technical contribution centers on chunk alignment training, an innovative methodology that enables the simultaneous generation of localized chunk embeddings and global document-level representations through distillation. Information regarding the model release can be found at https://huggingface.co/infgrad/dewey_en_beta. 3 authors · Mar 26
- Yseop at FinSim-3 Shared Task 2021: Specializing Financial Domain Learning with Phrase Representations In this paper, we present our approaches for the FinSim-3 Shared Task 2021: Learning Semantic Similarities for the Financial Domain. The aim of this shared task is to correctly classify a list of given terms from the financial domain into the most relevant hypernym (or top-level) concept in an external ontology. For our system submission, we evaluate two methods: a Sentence-RoBERTa (SRoBERTa) embeddings model pre-trained on a custom corpus, and a dual word-sentence embeddings model that builds on the first method by improving the proposed baseline word embeddings construction using the FastText model to boost the classification performance. Our system ranks 2nd overall on both metrics, scoring 0.917 on Average Accuracy and 1.141 on Mean Rank. 3 authors · Aug 21, 2021
- Improving BERT Pretraining with Syntactic Supervision Bidirectional masked Transformers have become the core theme in the current NLP landscape. Despite their impressive benchmarks, a recurring theme in recent research has been to question such models' capacity for syntactic generalization. In this work, we seek to address this question by adding a supervised, token-level supertagging objective to standard unsupervised pretraining, enabling the explicit incorporation of syntactic biases into the network's training dynamics. Our approach is straightforward to implement, induces a marginal computational overhead and is general enough to adapt to a variety of settings. We apply our methodology on Lassy Large, an automatically annotated corpus of written Dutch. Our experiments suggest that our syntax-aware model performs on par with established baselines, despite Lassy Large being one order of magnitude smaller than commonly used corpora. 4 authors · Apr 21, 2021
- Probing Natural Language Inference Models through Semantic Fragments Do state-of-the-art models for language understanding already have, or can they easily learn, abilities such as boolean coordination, quantification, conditionals, comparatives, and monotonicity reasoning (i.e., reasoning about word substitutions in sentential contexts)? While such phenomena are involved in natural language inference (NLI) and go beyond basic linguistic understanding, it is unclear the extent to which they are captured in existing NLI benchmarks and effectively learned by models. To investigate this, we propose the use of semantic fragments---systematically generated datasets that each target a different semantic phenomenon---for probing, and efficiently improving, such capabilities of linguistic models. This approach to creating challenge datasets allows direct control over the semantic diversity and complexity of the targeted linguistic phenomena, and results in a more precise characterization of a model's linguistic behavior. Our experiments, using a library of 8 such semantic fragments, reveal two remarkable findings: (a) State-of-the-art models, including BERT, that are pre-trained on existing NLI benchmark datasets perform poorly on these new fragments, even though the phenomena probed here are central to the NLI task. (b) On the other hand, with only a few minutes of additional fine-tuning---with a carefully selected learning rate and a novel variation of "inoculation"---a BERT-based model can master all of these logic and monotonicity fragments while retaining its performance on established NLI benchmarks. 4 authors · Sep 16, 2019
- Token Alignment via Character Matching for Subword Completion Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text autocompletion. 10 authors · Mar 13, 2024
12 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
- Adverb Is the Key: Simple Text Data Augmentation with Adverb Deletion In the field of text data augmentation, rule-based methods are widely adopted for real-world applications owing to their cost-efficiency. However, conventional rule-based approaches suffer from the possibility of losing the original semantics of the given text. We propose a novel text data augmentation strategy that avoids such phenomena through a straightforward deletion of adverbs, which play a subsidiary role in the sentence. Our comprehensive experiments demonstrate the efficiency and effectiveness of our proposed approach for not just single text classification, but also natural language inference that requires semantic preservation. We publicly released our source code for reproducibility. 2 authors · Mar 29, 2024
- Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk's information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk's semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach. 8 authors · Jun 16, 2024 2
- Deep Learning for Answer Sentence Selection Answer sentence selection is the task of identifying sentences that contain the answer to a given question. This is an important problem in its own right as well as in the larger context of open domain question answering. We propose a novel approach to solving this task via means of distributed representations, and learn to match questions with answers by considering their semantic encoding. This contrasts prior work on this task, which typically relies on classifiers with large numbers of hand-crafted syntactic and semantic features and various external resources. Our approach does not require any feature engineering nor does it involve specialist linguistic data, making this model easily applicable to a wide range of domains and languages. Experimental results on a standard benchmark dataset from TREC demonstrate that---despite its simplicity---our model matches state of the art performance on the answer sentence selection task. 4 authors · Dec 4, 2014
- ChuXin: 1.6B Technical Report In this report, we present ChuXin, an entirely open-source language model with a size of 1.6 billion parameters. Unlike the majority of works that only open-sourced the model weights and architecture, we have made everything needed to train a model available, including the training data, the training process, and the evaluation code. Our goal is to empower and strengthen the open research community, fostering transparency and enabling a new wave of innovation in the field of language modeling. Furthermore, we extend the context length to 1M tokens through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. The weights for both models are available at Hugging Face to download and use. 4 authors · May 8, 2024
- Template Guided Text Generation for Task-Oriented Dialogue Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency. 2 authors · Apr 30, 2020
1 Retrieval-Augmented Generation with Hierarchical Knowledge Graph-based Retrieval-Augmented Generation (RAG) methods have significantly enhanced the performance of large language models (LLMs) in domain-specific tasks. However, existing RAG methods do not adequately utilize the naturally inherent hierarchical knowledge in human cognition, which limits the capabilities of RAG systems. In this paper, we introduce a new RAG approach, called HiRAG, which utilizes hierarchical knowledge to enhance the semantic understanding and structure capturing capabilities of RAG systems in the indexing and retrieval processes. Our extensive experiments demonstrate that HiRAG achieves significant performance improvements over the state-of-the-art baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/HiRAG{https://github.com/hhy-huang/HiRAG}. 8 authors · Mar 13
- Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers Historical languages present unique challenges to the NLP community, with one prominent hurdle being the limited resources available in their closed corpora. This work describes our submission to the constrained subtask of the SIGTYP 2024 shared task, focusing on PoS tagging, morphological tagging, and lemmatization for 13 historical languages. For PoS and morphological tagging we adapt a hierarchical tokenization method from Sun et al. (2023) and combine it with the advantages of the DeBERTa-V3 architecture, enabling our models to efficiently learn from every character in the training data. We also demonstrate the effectiveness of character-level T5 models on the lemmatization task. Pre-trained from scratch with limited data, our models achieved first place in the constrained subtask, nearly reaching the performance levels of the unconstrained task's winner. Our code is available at https://github.com/bowphs/SIGTYP-2024-hierarchical-transformers 2 authors · May 30, 2024
- A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods. 7 authors · Jan 4, 2023
1 Every child should have parents: a taxonomy refinement algorithm based on hyperbolic term embeddings We introduce the use of Poincar\'e embeddings to improve existing state-of-the-art approaches to domain-specific taxonomy induction from text as a signal for both relocating wrong hyponym terms within a (pre-induced) taxonomy as well as for attaching disconnected terms in a taxonomy. This method substantially improves previous state-of-the-art results on the SemEval-2016 Task 13 on taxonomy extraction. We demonstrate the superiority of Poincar\'e embeddings over distributional semantic representations, supporting the hypothesis that they can better capture hierarchical lexical-semantic relationships than embeddings in the Euclidean space. 6 authors · Jun 5, 2019
1 SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing This paper describes SentencePiece, a language-independent subword tokenizer and detokenizer designed for Neural-based text processing, including Neural Machine Translation. It provides open-source C++ and Python implementations for subword units. While existing subword segmentation tools assume that the input is pre-tokenized into word sequences, SentencePiece can train subword models directly from raw sentences, which allows us to make a purely end-to-end and language independent system. We perform a validation experiment of NMT on English-Japanese machine translation, and find that it is possible to achieve comparable accuracy to direct subword training from raw sentences. We also compare the performance of subword training and segmentation with various configurations. SentencePiece is available under the Apache 2 license at https://github.com/google/sentencepiece. 2 authors · Aug 19, 2018
1 Comparing Performance of Different Linguistically-Backed Word Embeddings for Cyberbullying Detection In most cases, word embeddings are learned only from raw tokens or in some cases, lemmas. This includes pre-trained language models like BERT. To investigate on the potential of capturing deeper relations between lexical items and structures and to filter out redundant information, we propose to preserve the morphological, syntactic and other types of linguistic information by combining them with the raw tokens or lemmas. This means, for example, including parts-of-speech or dependency information within the used lexical features. The word embeddings can then be trained on the combinations instead of just raw tokens. It is also possible to later apply this method to the pre-training of huge language models and possibly enhance their performance. This would aid in tackling problems which are more sophisticated from the point of view of linguistic representation, such as detection of cyberbullying. 3 authors · Jun 4, 2022
- Scaffold-BPE: Enhancing Byte Pair Encoding with Simple and Effective Scaffold Token Removal Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus while keeping all tokens that have been merged in the vocabulary, it unavoidably holds tokens that primarily represent subwords of complete words and appear infrequently on their own in the text corpus. We term such tokens as Scaffold Tokens. Due to their infrequent appearance in the text corpus, Scaffold Tokens pose a learning imbalance issue for language models. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for the given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling tasks and machine translation tasks, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness and superiority. 9 authors · Apr 27, 2024
1 RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing Large Language Models (LLMs) have catalyzed significant advancements in Natural Language Processing (NLP), yet they encounter challenges such as hallucination and the need for domain-specific knowledge. To mitigate these, recent methodologies have integrated information retrieved from external resources with LLMs, substantially enhancing their performance across NLP tasks. This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs), both Retrieval-Augmented Generation (RAG) and Retrieval-Augmented Understanding (RAU), providing an in-depth examination of their paradigm, evolution, taxonomy, and applications. The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations, and how their interactions lead to diverse model structures and applications. RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications. The survey includes several evaluation methods of RALMs, emphasizing the importance of robustness, accuracy, and relevance in their assessment. It also acknowledges the limitations of RALMs, particularly in retrieval quality and computational efficiency, offering directions for future research. In conclusion, this survey aims to offer a structured insight into RALMs, their potential, and the avenues for their future development in NLP. The paper is supplemented with a Github Repository containing the surveyed works and resources for further study: https://github.com/2471023025/RALM_Survey. 2 authors · Apr 30, 2024
- GenericsKB: A Knowledge Base of Generic Statements We present a new resource for the NLP community, namely a large (3.5M+ sentence) knowledge base of *generic statements*, e.g., "Trees remove carbon dioxide from the atmosphere", collected from multiple corpora. This is the first large resource to contain *naturally occurring* generic sentences, as opposed to extracted or crowdsourced triples, and thus is rich in high-quality, general, semantically complete statements. All GenericsKB sentences are annotated with their topical term, surrounding context (sentences), and a (learned) confidence. We also release GenericsKB-Best (1M+ sentences), containing the best-quality generics in GenericsKB augmented with selected, synthesized generics from WordNet and ConceptNet. In tests on two existing datasets requiring multihop reasoning (OBQA and QASC), we find using GenericsKB can result in higher scores and better explanations than using a much larger corpus. This demonstrates that GenericsKB can be a useful resource for NLP applications, as well as providing data for linguistic studies of generics and their semantics. GenericsKB is available at https://allenai.org/data/genericskb. 3 authors · May 1, 2020
1 Lexinvariant Language Models Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications. 6 authors · May 24, 2023
- Vietnamese Semantic Role Labelling In this paper, we study semantic role labelling (SRL), a subtask of semantic parsing of natural language sentences and its application for the Vietnamese language. We present our effort in building Vietnamese PropBank, the first Vietnamese SRL corpus and a software system for labelling semantic roles of Vietnamese texts. In particular, we present a novel constituent extraction algorithm in the argument candidate identification step which is more suitable and more accurate than the common node-mapping method. In the machine learning part, our system integrates distributed word features produced by two recent unsupervised learning models in two learned statistical classifiers and makes use of integer linear programming inference procedure to improve the accuracy. The system is evaluated in a series of experiments and achieves a good result, an F_1 score of 74.77%. Our system, including corpus and software, is available as an open source project for free research and we believe that it is a good baseline for the development of future Vietnamese SRL systems. 6 authors · Nov 27, 2017
- Acquiring Bidirectionality via Large and Small Language Models Using token representation from bidirectional language models (LMs) such as BERT is still a widely used approach for token-classification tasks. Even though there exist much larger unidirectional LMs such as Llama-2, they are rarely used to replace the token representation of bidirectional LMs. In this work, we hypothesize that their lack of bidirectionality is keeping them behind. To that end, we propose to newly train a small backward LM and concatenate its representations to those of existing LM for downstream tasks. Through experiments in named entity recognition, we demonstrate that introducing backward model improves the benchmark performance more than 10 points. Furthermore, we show that the proposed method is especially effective for rare domains and in few-shot learning settings. 3 authors · Aug 18, 2024
- SemEval 2019 Shared Task: Cross-lingual Semantic Parsing with UCCA - Call for Participation We announce a shared task on UCCA parsing in English, German and French, and call for participants to submit their systems. UCCA is a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. Given the success of recent semantic parsing shared tasks (on SDP and AMR), we expect the task to have a significant contribution to the advancement of UCCA parsing in particular, and semantic parsing in general. Furthermore, existing applications for semantic evaluation that are based on UCCA will greatly benefit from better automatic methods for UCCA parsing. The competition website is https://competitions.codalab.org/competitions/19160 6 authors · May 31, 2018
2 Semantic Role Labeling Meets Definition Modeling: Using Natural Language to Describe Predicate-Argument Structures One of the common traits of past and present approaches for Semantic Role Labeling (SRL) is that they rely upon discrete labels drawn from a predefined linguistic inventory to classify predicate senses and their arguments. However, we argue this need not be the case. In this paper, we present an approach that leverages Definition Modeling to introduce a generalized formulation of SRL as the task of describing predicate-argument structures using natural language definitions instead of discrete labels. Our novel formulation takes a first step towards placing interpretability and flexibility foremost, and yet our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance. We release our software for research purposes at https://github.com/SapienzaNLP/dsrl. 4 authors · Dec 2, 2022
1 Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area. 7 authors · Feb 18, 2024
- Local Byte Fusion for Neural Machine Translation Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus do not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes over-segment low-resource languages leading to a drop in translation performance. A simple alternative to subword tokenizers is byte-based methods i.e. tokenization into byte sequences using encoding schemes such as UTF-8. Byte tokens often represent inputs at a sub-character granularity i.e. one character can be represented by a sequence of multiple byte tokens. This results in byte sequences that are significantly longer than character sequences. Enforcing aggregation of local information in the lower layers can guide the model to build higher-level semantic information. We propose a Local Byte Fusion (LOBEF) method for byte-based machine translation -- utilizing byte n-gram and word boundaries -- to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional byte-based models and even over subword techniques. Further analysis also indicates that our byte-based models are parameter-efficient and can be trained faster than subword models. 4 authors · May 23, 2022
- Improving Text-to-SQL Semantic Parsing with Fine-grained Query Understanding Most recent research on Text-to-SQL semantic parsing relies on either parser itself or simple heuristic based approach to understand natural language query (NLQ). When synthesizing a SQL query, there is no explicit semantic information of NLQ available to the parser which leads to undesirable generalization performance. In addition, without lexical-level fine-grained query understanding, linking between query and database can only rely on fuzzy string match which leads to suboptimal performance in real applications. In view of this, in this paper we present a general-purpose, modular neural semantic parsing framework that is based on token-level fine-grained query understanding. Our framework consists of three modules: named entity recognizer (NER), neural entity linker (NEL) and neural semantic parser (NSP). By jointly modeling query and database, NER model analyzes user intents and identifies entities in the query. NEL model links typed entities to schema and cell values in database. Parser model leverages available semantic information and linking results and synthesizes tree-structured SQL queries based on dynamically generated grammar. Experiments on SQUALL, a newly released semantic parsing dataset, show that we can achieve 56.8% execution accuracy on WikiTableQuestions (WTQ) test set, which outperforms the state-of-the-art model by 2.7%. 8 authors · Sep 28, 2022
- Crowdsourced Phrase-Based Tokenization for Low-Resourced Neural Machine Translation: The Case of Fon Language Building effective neural machine translation (NMT) models for very low-resourced and morphologically rich African indigenous languages is an open challenge. Besides the issue of finding available resources for them, a lot of work is put into preprocessing and tokenization. Recent studies have shown that standard tokenization methods do not always adequately deal with the grammatical, diacritical, and tonal properties of some African languages. That, coupled with the extremely low availability of training samples, hinders the production of reliable NMT models. In this paper, using Fon language as a case study, we revisit standard tokenization methods and introduce Word-Expressions-Based (WEB) tokenization, a human-involved super-words tokenization strategy to create a better representative vocabulary for training. Furthermore, we compare our tokenization strategy to others on the Fon-French and French-Fon translation tasks. 2 authors · Mar 14, 2021
- Graph Pre-training for AMR Parsing and Generation Abstract meaning representation (AMR) highlights the core semantic information of text in a graph structure. Recently, pre-trained language models (PLMs) have advanced tasks of AMR parsing and AMR-to-text generation, respectively. However, PLMs are typically pre-trained on textual data, thus are sub-optimal for modeling structural knowledge. To this end, we investigate graph self-supervised training to improve the structure awareness of PLMs over AMR graphs. In particular, we introduce two graph auto-encoding strategies for graph-to-graph pre-training and four tasks to integrate text and graph information during pre-training. We further design a unified framework to bridge the gap between pre-training and fine-tuning tasks. Experiments on both AMR parsing and AMR-to-text generation show the superiority of our model. To our knowledge, we are the first to consider pre-training on semantic graphs. 3 authors · Mar 15, 2022
1 Describing a Knowledge Base We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) slot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new table position self-attention to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score. 7 authors · Sep 5, 2018
- PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation Despite notable advancements in Retrieval-Augmented Generation (RAG) systems that expand large language model (LLM) capabilities through external retrieval, these systems often struggle to meet the complex and diverse needs of real-world industrial applications. The reliance on retrieval alone proves insufficient for extracting deep, domain-specific knowledge performing in logical reasoning from specialized corpora. To address this, we introduce sPecIalized KnowledgE and Rationale Augmentation Generation (PIKE-RAG), focusing on extracting, understanding, and applying specialized knowledge, while constructing coherent rationale to incrementally steer LLMs toward accurate responses. Recognizing the diverse challenges of industrial tasks, we introduce a new paradigm that classifies tasks based on their complexity in knowledge extraction and application, allowing for a systematic evaluation of RAG systems' problem-solving capabilities. This strategic approach offers a roadmap for the phased development and enhancement of RAG systems, tailored to meet the evolving demands of industrial applications. Furthermore, we propose knowledge atomizing and knowledge-aware task decomposition to effectively extract multifaceted knowledge from the data chunks and iteratively construct the rationale based on original query and the accumulated knowledge, respectively, showcasing exceptional performance across various benchmarks. 5 authors · Jan 20
- Love Me, Love Me, Say (and Write!) that You Love Me: Enriching the WASABI Song Corpus with Lyrics Annotations We present the WASABI Song Corpus, a large corpus of songs enriched with metadata extracted from music databases on the Web, and resulting from the processing of song lyrics and from audio analysis. More specifically, given that lyrics encode an important part of the semantics of a song, we focus here on the description of the methods we proposed to extract relevant information from the lyrics, such as their structure segmentation, their topics, the explicitness of the lyrics content, the salient passages of a song and the emotions conveyed. The creation of the resource is still ongoing: so far, the corpus contains 1.73M songs with lyrics (1.41M unique lyrics) annotated at different levels with the output of the above mentioned methods. Such corpus labels and the provided methods can be exploited by music search engines and music professionals (e.g. journalists, radio presenters) to better handle large collections of lyrics, allowing an intelligent browsing, categorization and segmentation recommendation of songs. 5 authors · Dec 5, 2019
- TACAM: Topic And Context Aware Argument Mining In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search engine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task. 3 authors · May 26, 2019
1 Using Zero-shot Prompting in the Automatic Creation and Expansion of Topic Taxonomies for Tagging Retail Banking Transactions This work presents an unsupervised method for automatically constructing and expanding topic taxonomies by using instruction-based fine-tuned LLMs (Large Language Models). We apply topic modeling and keyword extraction techniques to create initial topic taxonomies and LLMs to post-process the resulting terms and create a hierarchy. To expand an existing taxonomy with new terms, we use zero-shot prompting to find out where to add new nodes, which, to our knowledge, is the first work to present such an approach to taxonomy tasks. We use the resulting taxonomies to assign tags that characterize merchants from a retail bank dataset. To evaluate our work, we asked 12 volunteers to answer a two-part form in which we first assessed the quality of the taxonomies created and then the tags assigned to merchants based on that taxonomy. The evaluation revealed a coherence rate exceeding 90% for the chosen taxonomies, while the average coherence for merchant tagging surpassed 80%. 16 authors · Jan 7, 2024
1 WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method -- called WECHSEL -- to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available. 3 authors · Dec 13, 2021
- BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings Sentence embeddings are crucial in measuring semantic similarity. Most recent studies employed large language models (LLMs) to learn sentence embeddings. Existing LLMs mainly adopted autoregressive architecture without explicit backward dependency modeling. Therefore, we examined the effects of backward dependencies in LLMs for semantic similarity measurements. Concretely, we propose a novel model: backward dependency enhanced large language model (BeLLM). It learns sentence embeddings via transforming specific attention layers from uni- to bi-directional. We extensively experiment across various semantic textual similarity (STS) tasks and downstream applications. BeLLM achieves state-of-the-art performance in varying scenarios. It shows that auto-regressive LLMs benefit from backward dependencies for sentence embeddings. 2 authors · Nov 9, 2023
- Query-Response Interactions by Multi-tasks in Semantic Search for Chatbot Candidate Retrieval Semantic search for candidate retrieval is an important yet neglected problem in retrieval-based Chatbots, which aims to select a bunch of candidate responses efficiently from a large pool. The existing bottleneck is to ensure the model architecture having two points: 1) rich interactions between a query and a response to produce query-relevant responses; 2) ability of separately projecting the query and the response into latent spaces to apply efficiently in semantic search during online inference. To tackle this problem, we propose a novel approach, called Multitask-based Semantic Search Neural Network (MSSNN) for candidate retrieval, which accomplishes query-response interactions through multi-tasks. The method employs a Seq2Seq modeling task to learn a good query encoder, and then performs a word prediction task to build response embeddings, finally conducts a simple matching model to form the dot-product scorer. Experimental studies have demonstrated the potential of the proposed approach. 3 authors · Aug 23, 2022
- COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List Classical information retrieval systems such as BM25 rely on exact lexical match and carry out search efficiently with inverted list index. Recent neural IR models shifts towards soft semantic matching all query document terms, but they lose the computation efficiency of exact match systems. This paper presents COIL, a contextualized exact match retrieval architecture that brings semantic lexical matching. COIL scoring is based on overlapping query document tokens' contextualized representations. The new architecture stores contextualized token representations in inverted lists, bringing together the efficiency of exact match and the representation power of deep language models. Our experimental results show COIL outperforms classical lexical retrievers and state-of-the-art deep LM retrievers with similar or smaller latency. 3 authors · Apr 14, 2021
- Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model's hypotheses. To address this issue, this paper presents a simple and effective method, named Div-Ref, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to diversify the expression of a single reference into multiple high-quality ones to cover the semantic space of the reference sentence as much as possible. We conduct comprehensive experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation. This idea is compatible with recent LLM-based evaluation which can similarly derive advantages from incorporating multiple references. We strongly encourage future generation benchmarks to include more references, even if they are generated by LLMs, which is once for all. We release all the code and data at https://github.com/RUCAIBox/Div-Ref to facilitate research. 8 authors · May 24, 2023
9 The Geometry of Tokens in Internal Representations of Large Language Models We investigate the relationship between the geometry of token embeddings and their role in the next token prediction within transformer models. An important aspect of this connection uses the notion of empirical measure, which encodes the distribution of token point clouds across transformer layers and drives the evolution of token representations in the mean-field interacting picture. We use metrics such as intrinsic dimension, neighborhood overlap, and cosine similarity to observationally probe these empirical measures across layers. To validate our approach, we compare these metrics to a dataset where the tokens are shuffled, which disrupts the syntactic and semantic structure. Our findings reveal a correlation between the geometric properties of token embeddings and the cross-entropy loss of next token predictions, implying that prompts with higher loss values have tokens represented in higher-dimensional spaces. 5 authors · Jan 17 2
- NS3: Neuro-Symbolic Semantic Code Search Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries. 6 authors · May 21, 2022
1 HuBERTopic: Enhancing Semantic Representation of HuBERT through Self-supervision Utilizing Topic Model Recently, the usefulness of self-supervised representation learning (SSRL) methods has been confirmed in various downstream tasks. Many of these models, as exemplified by HuBERT and WavLM, use pseudo-labels generated from spectral features or the model's own representation features. From previous studies, it is known that the pseudo-labels contain semantic information. However, the masked prediction task, the learning criterion of HuBERT, focuses on local contextual information and may not make effective use of global semantic information such as speaker, theme of speech, and so on. In this paper, we propose a new approach to enrich the semantic representation of HuBERT. We apply topic model to pseudo-labels to generate a topic label for each utterance. An auxiliary topic classification task is added to HuBERT by using topic labels as teachers. This allows additional global semantic information to be incorporated in an unsupervised manner. Experimental results demonstrate that our method achieves comparable or better performance than the baseline in most tasks, including automatic speech recognition and five out of the eight SUPERB tasks. Moreover, we find that topic labels include various information about utterance, such as gender, speaker, and its theme. This highlights the effectiveness of our approach in capturing multifaceted semantic nuances. 5 authors · Oct 5, 2023
1 Evaluating Pixel Language Models on Non-Standardized Languages We explore the potential of pixel-based models for transfer learning from standard languages to dialects. These models convert text into images that are divided into patches, enabling a continuous vocabulary representation that proves especially useful for out-of-vocabulary words common in dialectal data. Using German as a case study, we compare the performance of pixel-based models to token-based models across various syntactic and semantic tasks. Our results show that pixel-based models outperform token-based models in part-of-speech tagging, dependency parsing and intent detection for zero-shot dialect evaluation by up to 26 percentage points in some scenarios, though not in Standard German. However, pixel-based models fall short in topic classification. These findings emphasize the potential of pixel-based models for handling dialectal data, though further research should be conducted to assess their effectiveness in various linguistic contexts. 3 authors · Dec 12, 2024
1 FOCUS: Effective Embedding Initialization for Specializing Pretrained Multilingual Models on a Single Language Using model weights pretrained on a high-resource language as a warm start can reduce the need for data and compute to obtain high-quality language models in low-resource languages. To accommodate the new language, the pretrained vocabulary and embeddings need to be adapted. Previous work on embedding initialization for such adapted vocabularies has mostly focused on monolingual source models. In this paper, we investigate the multilingual source model setting and propose FOCUS - Fast Overlapping Token Combinations Using Sparsemax, a novel embedding initialization method that outperforms previous work when adapting XLM-R. FOCUS represents newly added tokens as combinations of tokens in the overlap of the pretrained and new vocabularies. The overlapping tokens are selected based on semantic similarity in an auxiliary token embedding space. Our implementation of FOCUS is publicly available on GitHub. 2 authors · May 23, 2023
- Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases. 7 authors · Jun 3, 2014
1 LACoS-BLOOM: Low-rank Adaptation with Contrastive objective on 8 bits Siamese-BLOOM Text embeddings are useful features for several NLP applications, such as sentence similarity, text clustering, and semantic search. In this paper, we present a Low-rank Adaptation with a Contrastive objective on top of 8-bit Siamese-BLOOM, a multilingual large language model optimized to produce semantically meaningful word embeddings. The innovation is threefold. First, we cast BLOOM weights to 8-bit values. Second, we fine-tune BLOOM with a scalable adapter (LoRA) and 8-bit Adam optimizer for sentence similarity classification. Third, we apply a Siamese architecture on BLOOM model with a contrastive objective to ease the multi-lingual labeled data scarcity. The experiment results show the quality of learned embeddings from LACoS-BLOOM is proportional to the number of model parameters and the amount of unlabeled training data. With the parameter efficient fine-tuning design, we are able to run BLOOM 7.1 billion parameters end-to-end on a single GPU machine with 32GB memory. Compared to previous solution Sentence-BERT, we achieve significant improvement on both English and multi-lingual STS tasks. 3 authors · May 10, 2023
20 Follow the Flow: On Information Flow Across Textual Tokens in Text-to-Image Models Text-to-Image (T2I) models often suffer from issues such as semantic leakage, incorrect feature binding, and omissions of key concepts in the generated image. This work studies these phenomena by looking into the role of information flow between textual token representations. To this end, we generate images by applying the diffusion component on a subset of contextual token representations in a given prompt and observe several interesting phenomena. First, in many cases, a word or multiword expression is fully represented by one or two tokens, while other tokens are redundant. For example, in "San Francisco's Golden Gate Bridge", the token "gate" alone captures the full expression. We demonstrate the redundancy of these tokens by removing them after textual encoding and generating an image from the resulting representation. Surprisingly, we find that this process not only maintains image generation performance but also reduces errors by 21\% compared to standard generation. We then show that information can also flow between different expressions in a sentence, which often leads to semantic leakage. Based on this observation, we propose a simple, training-free method to mitigate semantic leakage: replacing the leaked item's representation after the textual encoding with its uncontextualized representation. Remarkably, this simple approach reduces semantic leakage by 85\%. Overall, our work provides a comprehensive analysis of information flow across textual tokens in T2I models, offering both novel insights and practical benefits. 5 authors · Apr 1
- A Common Semantic Space for Monolingual and Cross-Lingual Meta-Embeddings This paper presents a new technique for creating monolingual and cross-lingual meta-embeddings. Our method integrates multiple word embeddings created from complementary techniques, textual sources, knowledge bases and languages. Existing word vectors are projected to a common semantic space using linear transformations and averaging. With our method the resulting meta-embeddings maintain the dimensionality of the original embeddings without losing information while dealing with the out-of-vocabulary problem. An extensive empirical evaluation demonstrates the effectiveness of our technique with respect to previous work on various intrinsic and extrinsic multilingual evaluations, obtaining competitive results for Semantic Textual Similarity and state-of-the-art performance for word similarity and POS tagging (English and Spanish). The resulting cross-lingual meta-embeddings also exhibit excellent cross-lingual transfer learning capabilities. In other words, we can leverage pre-trained source embeddings from a resource-rich language in order to improve the word representations for under-resourced languages. 3 authors · Jan 17, 2020
- Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity This paper presents the first Swedish evaluation benchmark for textual semantic similarity. The benchmark is compiled by simply running the English STS-B dataset through the Google machine translation API. This paper discusses potential problems with using such a simple approach to compile a Swedish evaluation benchmark, including translation errors, vocabulary variation, and productive compounding. Despite some obvious problems with the resulting dataset, we use the benchmark to compare the majority of the currently existing Swedish text representations, demonstrating that native models outperform multilingual ones, and that simple bag of words performs remarkably well. 2 authors · Sep 7, 2020
1 PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases. Typical RAG approaches split the text database into chunks, organizing them in a flat structure for efficient searches. To better capture the inherent dependencies and structured relationships across the text database, researchers propose to organize textual information into an indexing graph, known asgraph-based RAG. However, we argue that the limitation of current graph-based RAG methods lies in the redundancy of the retrieved information, rather than its insufficiency. Moreover, previous methods use a flat structure to organize retrieved information within the prompts, leading to suboptimal performance. To overcome these limitations, we propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs. Specifically, PathRAG effectively reduces redundant information with flow-based pruning, while guiding LLMs to generate more logical and coherent responses with path-based prompting. Experimental results show that PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions. The code is available at the following link: https://github.com/BUPT-GAMMA/PathRAG 8 authors · Feb 18
- Comparison and Combination of Sentence Embeddings Derived from Different Supervision Signals There have been many successful applications of sentence embedding methods. However, it has not been well understood what properties are captured in the resulting sentence embeddings depending on the supervision signals. In this paper, we focus on two types of sentence embedding methods with similar architectures and tasks: one fine-tunes pre-trained language models on the natural language inference task, and the other fine-tunes pre-trained language models on word prediction task from its definition sentence, and investigate their properties. Specifically, we compare their performances on semantic textual similarity (STS) tasks using STS datasets partitioned from two perspectives: 1) sentence source and 2) superficial similarity of the sentence pairs, and compare their performances on the downstream and probing tasks. Furthermore, we attempt to combine the two methods and demonstrate that combining the two methods yields substantially better performance than the respective methods on unsupervised STS tasks and downstream tasks. 3 authors · Feb 7, 2022
1 KR-BERT: A Small-Scale Korean-Specific Language Model Since the appearance of BERT, recent works including XLNet and RoBERTa utilize sentence embedding models pre-trained by large corpora and a large number of parameters. Because such models have large hardware and a huge amount of data, they take a long time to pre-train. Therefore it is important to attempt to make smaller models that perform comparatively. In this paper, we trained a Korean-specific model KR-BERT, utilizing a smaller vocabulary and dataset. Since Korean is one of the morphologically rich languages with poor resources using non-Latin alphabets, it is also important to capture language-specific linguistic phenomena that the Multilingual BERT model missed. We tested several tokenizers including our BidirectionalWordPiece Tokenizer and adjusted the minimal span of tokens for tokenization ranging from sub-character level to character-level to construct a better vocabulary for our model. With those adjustments, our KR-BERT model performed comparably and even better than other existing pre-trained models using a corpus about 1/10 of the size. 5 authors · Aug 10, 2020
- LearningWord Embeddings for Low-resource Languages by PU Learning Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages. 4 authors · May 9, 2018
3 Scalable and Domain-General Abstractive Proposition Segmentation Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use. 5 authors · Jun 28, 2024
1 Engineering Design Knowledge Graphs from Patented Artefact Descriptions for Retrieval-Augmented Generation in the Design Process Despite significant popularity, Large-language Models (LLMs) require explicit, contextual facts to support domain-specific knowledge-intensive tasks in the design process. The applications built using LLMs should hence adopt Retrieval-Augmented Generation (RAG) to better suit the design process. In this article, we present a data-driven method to identify explicit facts from patent documents that provide standard descriptions of over 8 million artefacts. In our method, we train roBERTa Transformer-based sequence classification models using our dataset of 44,227 sentences and facts. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities so that explicit facts of the form head entity :: relationship :: tail entity are identified. In the benchmark approaches for constructing facts, we use linear classifiers and Graph Neural Networks (GNNs) both incorporating BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base of around 3 million facts. Upon retrieving the facts representing generalisable domain knowledge and the knowledge of specific subsystems and issues, we demonstrate how these facts contextualise LLMs for generating text that is more relevant to the design process. 2 authors · Jul 13, 2023
- Table2answer: Read the database and answer without SQL Semantic parsing is the task of mapping natural language to logic form. In question answering, semantic parsing can be used to map the question to logic form and execute the logic form to get the answer. One key problem for semantic parsing is the hard label work. We study this problem in another way: we do not use the logic form any more. Instead we only use the schema and answer info. We think that the logic form step can be injected into the deep model. The reason why we think removing the logic form step is possible is that human can do the task without explicit logic form. We use BERT-based model and do the experiment in the WikiSQL dataset, which is a large natural language to SQL dataset. Our experimental evaluations that show that our model can achieves the baseline results in WikiSQL dataset. 2 authors · Feb 12, 2019
- S^2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting Recently, there has been a growing interest in leveraging pre-trained large language models (LLMs) for various time series applications. However, the semantic space of LLMs, established through the pre-training, is still underexplored and may help yield more distinctive and informative representations to facilitate time series forecasting. To this end, we propose Semantic Space Informed Prompt learning with LLM (S^2IP-LLM) to align the pre-trained semantic space with time series embeddings space and perform time series forecasting based on learned prompts from the joint space. We first design a tokenization module tailored for cross-modality alignment, which explicitly concatenates patches of decomposed time series components to create embeddings that effectively encode the temporal dynamics. Next, we leverage the pre-trained word token embeddings to derive semantic anchors and align selected anchors with time series embeddings by maximizing the cosine similarity in the joint space. This way, S^2IP-LLM can retrieve relevant semantic anchors as prompts to provide strong indicators (context) for time series that exhibit different temporal dynamics. With thorough empirical studies on multiple benchmark datasets, we demonstrate that the proposed S^2IP-LLM can achieve superior forecasting performance over state-of-the-art baselines. Furthermore, our ablation studies and visualizations verify the necessity of prompt learning informed by semantic space. 6 authors · Mar 9, 2024
- Holistic Exploration on Universal Decompositional Semantic Parsing: Architecture, Data Augmentation, and LLM Paradigm In this paper, we conduct a holistic exploration of the Universal Decompositional Semantic (UDS) Parsing. We first introduce a cascade model for UDS parsing that decomposes the complex parsing task into semantically appropriate subtasks. Our approach outperforms the prior models, while significantly reducing inference time. We also incorporate syntactic information and further optimized the architecture. Besides, different ways for data augmentation are explored, which further improve the UDS Parsing. Lastly, we conduct experiments to investigate the efficacy of ChatGPT in handling the UDS task, revealing that it excels in attribute parsing but struggles in relation parsing, and using ChatGPT for data augmentation yields suboptimal results. Our code is available at https://github.com/hexuandeng/HExp4UDS. 5 authors · Jul 25, 2023
- LatinCy: Synthetic Trained Pipelines for Latin NLP This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work. 1 authors · May 7, 2023
1 Extracting Mathematical Concepts with Large Language Models We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it. 4 authors · Aug 29, 2023
- TAGPRIME: A Unified Framework for Relational Structure Extraction Many tasks in natural language processing require the extraction of relationship information for a given condition, such as event argument extraction, relation extraction, and task-oriented semantic parsing. Recent works usually propose sophisticated models for each task independently and pay less attention to the commonality of these tasks and to have a unified framework for all the tasks. In this work, we propose to take a unified view of all these tasks and introduce TAGPRIME to address relational structure extraction problems. TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition (such as an event trigger) to the input text. With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition, and hence become more suitable for extracting specific relationships for the condition. Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME. 7 authors · May 25, 2022
- What Makes Sentences Semantically Related: A Textual Relatedness Dataset and Empirical Study The degree of semantic relatedness of two units of language has long been considered fundamental to understanding meaning. Additionally, automatically determining relatedness has many applications such as question answering and summarization. However, prior NLP work has largely focused on semantic similarity, a subset of relatedness, because of a lack of relatedness datasets. In this paper, we introduce a dataset for Semantic Textual Relatedness, STR-2022, that has 5,500 English sentence pairs manually annotated using a comparative annotation framework, resulting in fine-grained scores. We show that human intuition regarding relatedness of sentence pairs is highly reliable, with a repeat annotation correlation of 0.84. We use the dataset to explore questions on what makes sentences semantically related. We also show the utility of STR-2022 for evaluating automatic methods of sentence representation and for various downstream NLP tasks. Our dataset, data statement, and annotation questionnaire can be found at: https://doi.org/10.5281/zenodo.7599667 3 authors · Oct 10, 2021
- MonaLog: a Lightweight System for Natural Language Inference Based on Monotonicity We present a new logic-based inference engine for natural language inference (NLI) called MonaLog, which is based on natural logic and the monotonicity calculus. In contrast to existing logic-based approaches, our system is intentionally designed to be as lightweight as possible, and operates using a small set of well-known (surface-level) monotonicity facts about quantifiers, lexical items and tokenlevel polarity information. Despite its simplicity, we find our approach to be competitive with other logic-based NLI models on the SICK benchmark. We also use MonaLog in combination with the current state-of-the-art model BERT in a variety of settings, including for compositional data augmentation. We show that MonaLog is capable of generating large amounts of high-quality training data for BERT, improving its accuracy on SICK. 6 authors · Oct 19, 2019
- ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE. 7 authors · Oct 22, 2020
- TokenButler: Token Importance is Predictable Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler 6 authors · Mar 10
- SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios. 7 authors · Sep 9, 2023