new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks

Recent work has proposed stateful defense models (SDMs) as a compelling strategy to defend against a black-box attacker who only has query access to the model, as is common for online machine learning platforms. Such stateful defenses aim to defend against black-box attacks by tracking the query history and detecting and rejecting queries that are "similar" and thus preventing black-box attacks from finding useful gradients and making progress towards finding adversarial attacks within a reasonable query budget. Recent SDMs (e.g., Blacklight and PIHA) have shown remarkable success in defending against state-of-the-art black-box attacks. In this paper, we show that SDMs are highly vulnerable to a new class of adaptive black-box attacks. We propose a novel adaptive black-box attack strategy called Oracle-guided Adaptive Rejection Sampling (OARS) that involves two stages: (1) use initial query patterns to infer key properties about an SDM's defense; and, (2) leverage those extracted properties to design subsequent query patterns to evade the SDM's defense while making progress towards finding adversarial inputs. OARS is broadly applicable as an enhancement to existing black-box attacks - we show how to apply the strategy to enhance six common black-box attacks to be more effective against current class of SDMs. For example, OARS-enhanced versions of black-box attacks improved attack success rate against recent stateful defenses from almost 0% to to almost 100% for multiple datasets within reasonable query budgets.

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

Improving Tool Retrieval by Leveraging Large Language Models for Query Generation

Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/

A$^2$ATS: Retrieval-Based KV Cache Reduction via Windowed Rotary Position Embedding and Query-Aware Vector Quantization

Long context large language models (LLMs) pose significant challenges for efficient serving due to the large memory footprint and high access overhead of KV cache. Retrieval-based KV cache reduction methods can mitigate these challenges, typically by offloading the complete KV cache to CPU and retrieving necessary tokens on demand during inference. However, these methods still suffer from unsatisfactory accuracy degradation and extra retrieval overhead. To address these limitations, this paper proposes A^2ATS, a novel retrieval-based KV cache reduction method. A^2ATS aims to obtain an accurate approximation of attention scores by applying the vector quantization technique to key states, thereby enabling efficient and precise retrieval of the top-K tokens. First, we propose Windowed Rotary Position Embedding, which decouples the positional dependency from query and key states after position embedding. Then, we propose query-aware vector quantization that optimizes the objective of attention score approximation directly. Finally, we design the heterogeneous inference architecture for KV cache offloading, enabling long context serving with larger batch sizes. Experimental results demonstrate that A^2ATS can achieve a lower performance degradation with similar or lower overhead compared to existing methods, thereby increasing long context serving throughput by up to 2.7 times.

MapQaTor: A System for Efficient Annotation of Map Query Datasets

Mapping and navigation services like Google Maps, Apple Maps, Openstreet Maps, are essential for accessing various location-based data, yet they often struggle to handle natural language geospatial queries. Recent advancements in Large Language Models (LLMs) show promise in question answering (QA), but creating reliable geospatial QA datasets from map services remains challenging. We introduce MapQaTor, a web application that streamlines the creation of reproducible, traceable map-based QA datasets. With its plug-and-play architecture, MapQaTor enables seamless integration with any maps API, allowing users to gather and visualize data from diverse sources with minimal setup. By caching API responses, the platform ensures consistent ground truth, enhancing the reliability of the data even as real-world information evolves. MapQaTor centralizes data retrieval, annotation, and visualization within a single platform, offering a unique opportunity to evaluate the current state of LLM-based geospatial reasoning while advancing their capabilities for improved geospatial understanding. Evaluation metrics show that, MapQaTor speeds up the annotation process by at least 30 times compared to manual methods, underscoring its potential for developing geospatial resources, such as complex map reasoning datasets. The website is live at: https://mapqator.github.io/ and a demo video is available at: https://youtu.be/7_aV9Wmhs6Q.

Duplex: A Device for Large Language Models with Mixture of Experts, Grouped Query Attention, and Continuous Batching

Large language models (LLMs) have emerged due to their capability to generate high-quality content across diverse contexts. To reduce their explosively increasing demands for computing resources, a mixture of experts (MoE) has emerged. The MoE layer enables exploiting a huge number of parameters with less computation. Applying state-of-the-art continuous batching increases throughput; however, it leads to frequent DRAM access in the MoE and attention layers. We observe that conventional computing devices have limitations when processing the MoE and attention layers, which dominate the total execution time and exhibit low arithmetic intensity (Op/B). Processing MoE layers only with devices targeting low-Op/B such as processing-in-memory (PIM) architectures is challenging due to the fluctuating Op/B in the MoE layer caused by continuous batching. To address these challenges, we propose Duplex, which comprises xPU tailored for high-Op/B and Logic-PIM to effectively perform low-Op/B operation within a single device. Duplex selects the most suitable processor based on the Op/B of each layer within LLMs. As the Op/B of the MoE layer is at least 1 and that of the attention layer has a value of 4-8 for grouped query attention, prior PIM architectures are not efficient, which place processing units inside DRAM dies and only target extremely low-Op/B (under one) operations. Based on recent trends, Logic-PIM adds more through-silicon vias (TSVs) to enable high-bandwidth communication between the DRAM die and the logic die and place powerful processing units on the logic die, which is best suited for handling low-Op/B operations ranging from few to a few dozens. To maximally utilize the xPU and Logic-PIM, we propose expert and attention co-processing.

LLM-R2: A Large Language Model Enhanced Rule-based Rewrite System for Boosting Query Efficiency

Query rewrite, which aims to generate more efficient queries by altering a SQL query's structure without changing the query result, has been an important research problem. In order to maintain equivalence between the rewritten query and the original one during rewriting, traditional query rewrite methods always rewrite the queries following certain rewrite rules. However, some problems still remain. Firstly, existing methods of finding the optimal choice or sequence of rewrite rules are still limited and the process always costs a lot of resources. Methods involving discovering new rewrite rules typically require complicated proofs of structural logic or extensive user interactions. Secondly, current query rewrite methods usually rely highly on DBMS cost estimators which are often not accurate. In this paper, we address these problems by proposing a novel method of query rewrite named LLM-R2, adopting a large language model (LLM) to propose possible rewrite rules for a database rewrite system. To further improve the inference ability of LLM in recommending rewrite rules, we train a contrastive model by curriculum to learn query representations and select effective query demonstrations for the LLM. Experimental results have shown that our method can significantly improve the query execution efficiency and outperform the baseline methods. In addition, our method enjoys high robustness across different datasets.

JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments

This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.

Query Understanding via Intent Description Generation

Query understanding is a fundamental problem in information retrieval (IR), which has attracted continuous attention through the past decades. Many different tasks have been proposed for understanding users' search queries, e.g., query classification or query clustering. However, it is not that precise to understand a search query at the intent class/cluster level due to the loss of many detailed information. As we may find in many benchmark datasets, e.g., TREC and SemEval, queries are often associated with a detailed description provided by human annotators which clearly describes its intent to help evaluate the relevance of the documents. If a system could automatically generate a detailed and precise intent description for a search query, like human annotators, that would indicate much better query understanding has been achieved. In this paper, therefore, we propose a novel Query-to-Intent-Description (Q2ID) task for query understanding. Unlike those existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description based on both relevant and irrelevant documents of a given query. To address this new task, we propose a novel Contrastive Generation model, namely CtrsGen for short, to generate the intent description by contrasting the relevant documents with the irrelevant documents given a query. We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task. We discuss the potential usage of such Q2ID technique through an example application.

Context Aware Query Rewriting for Text Rankers using LLM

Query rewriting refers to an established family of approaches that are applied to underspecified and ambiguous queries to overcome the vocabulary mismatch problem in document ranking. Queries are typically rewritten during query processing time for better query modelling for the downstream ranker. With the advent of large-language models (LLMs), there have been initial investigations into using generative approaches to generate pseudo documents to tackle this inherent vocabulary gap. In this work, we analyze the utility of LLMs for improved query rewriting for text ranking tasks. We find that there are two inherent limitations of using LLMs as query re-writers -- concept drift when using only queries as prompts and large inference costs during query processing. We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR) to leverage the benefits of LLMs for query understanding. Firstly, we rewrite ambiguous training queries by context-aware prompting of LLMs, where we use only relevant documents as context.Unlike existing approaches, we use LLM-based query rewriting only during the training phase. Eventually, a ranker is fine-tuned on the rewritten queries instead of the original queries during training. In our extensive experiments, we find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task when compared to the baseline performance of using original queries.

Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track

Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.

Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems

Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.

Generative Query Reformulation Using Ensemble Prompting, Document Fusion, and Relevance Feedback

Query Reformulation (QR) is a set of techniques used to transform a user's original search query to a text that better aligns with the user's intent and improves their search experience. Recently, zero-shot QR has been a promising approach due to its ability to exploit knowledge inherent in large language models. Inspired by the success of ensemble prompting strategies which have benefited other tasks, we investigate if they can improve query reformulation. In this context, we propose two ensemble-based prompting techniques, GenQREnsemble and GenQRFusion which leverage paraphrases of a zero-shot instruction to generate multiple sets of keywords to improve retrieval performance ultimately. We further introduce their post-retrieval variants to incorporate relevance feedback from a variety of sources, including an oracle simulating a human user and a "critic" LLM. We demonstrate that an ensemble of query reformulations can improve retrieval effectiveness by up to 18% on nDCG@10 in pre-retrieval settings and 9% on post-retrieval settings on multiple benchmarks, outperforming all previously reported SOTA results. We perform subsequent analyses to investigate the effects of feedback documents, incorporate domain-specific instructions, filter reformulations, and generate fluent reformulations that might be more beneficial to human searchers. Together, the techniques and the results presented in this paper establish a new state of the art in automated query reformulation for retrieval and suggest promising directions for future research.

Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion

Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful.

BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval

Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.

Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers

Query rewriting is a crucial technique for passage retrieval in open-domain conversational question answering (CQA). It decontexualizes conversational queries into self-contained questions suitable for off-the-shelf retrievers. Existing methods attempt to incorporate retriever's preference during the training of rewriting models. However, these approaches typically rely on extensive annotations such as in-domain rewrites and/or relevant passage labels, limiting the models' generalization and adaptation capabilities. In this paper, we introduce AdaQR (Adaptive Query Rewriting), a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label. Our approach begins by fine-tuning compact large language models using only ~10% of rewrite annotations from the seed dataset training split. The models are then utilized to generate rewrite candidates for each query instance. A novel approach is then proposed to assess retriever's preference for these candidates by the probability of answers conditioned on the conversational query by marginalizing the Top-K passages. This serves as the reward for optimizing the rewriter further using Direct Preference Optimization (DPO), a process free of rewrite and retrieval annotations. Experimental results on four open-domain CQA datasets demonstrate that AdaQR not only enhances the in-domain capabilities of the rewriter with limited annotation requirement, but also adapts effectively to out-of-domain datasets.

Are Large Language Models Good at Utility Judgments?

Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.

Promptagator: Few-shot Dense Retrieval From 8 Examples

Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given.

Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph

The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs.

Dense Text Retrieval based on Pretrained Language Models: A Survey

Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.

CREMA: Multimodal Compositional Video Reasoning via Efficient Modular Adaptation and Fusion

Despite impressive advancements in multimodal compositional reasoning approaches, they are still limited in their flexibility and efficiency by processing fixed modality inputs while updating a lot of model parameters. This paper tackles these critical challenges and proposes CREMA, an efficient and modular modality-fusion framework for injecting any new modality into video reasoning. We first augment multiple informative modalities (such as optical flow, 3D point cloud, audio) from given videos without extra human annotation by leveraging existing pre-trained models. Next, we introduce a query transformer with multiple parameter-efficient modules associated with each accessible modality. It projects diverse modality features to the LLM token embedding space, allowing the model to integrate different data types for response generation. Furthermore, we propose a fusion module designed to compress multimodal queries, maintaining computational efficiency in the LLM while combining additional modalities. We validate our method on video-3D, video-audio, and video-language reasoning tasks and achieve better/equivalent performance against strong multimodal LLMs, including BLIP-2, 3D-LLM, and SeViLA while using 96% fewer trainable parameters. We provide extensive analyses of CREMA, including the impact of each modality on reasoning domains, the design of the fusion module, and example visualizations.

Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations

There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.

Quantum Lower Bounds for Finding Stationary Points of Nonconvex Functions

Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding epsilon-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to p-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is Omegabig(epsilon^{-1+p{p}}big) regarding the first setting, and Omega(epsilon^{-4}) regarding the second setting (or Omega(epsilon^{-3}) if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding epsilon-stationary points of nonconvex functions with p-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.

SPANN: Highly-efficient Billion-scale Approximate Nearest Neighbor Search

The in-memory algorithms for approximate nearest neighbor search (ANNS) have achieved great success for fast high-recall search, but are extremely expensive when handling very large scale database. Thus, there is an increasing request for the hybrid ANNS solutions with small memory and inexpensive solid-state drive (SSD). In this paper, we present a simple but efficient memory-disk hybrid indexing and search system, named SPANN, that follows the inverted index methodology. It stores the centroid points of the posting lists in the memory and the large posting lists in the disk. We guarantee both disk-access efficiency (low latency) and high recall by effectively reducing the disk-access number and retrieving high-quality posting lists. In the index-building stage, we adopt a hierarchical balanced clustering algorithm to balance the length of posting lists and augment the posting list by adding the points in the closure of the corresponding clusters. In the search stage, we use a query-aware scheme to dynamically prune the access of unnecessary posting lists. Experiment results demonstrate that SPANN is 2times faster than the state-of-the-art ANNS solution DiskANN to reach the same recall quality 90% with same memory cost in three billion-scale datasets. It can reach 90% recall@1 and recall@10 in just around one millisecond with only 32GB memory cost. Code is available at: {\footnotesizeblue{https://github.com/microsoft/SPTAG}}.

KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval

We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., 'a list of ice cream shops in San Diego'). In the past, such queries were considered to be tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.

Understanding the Effects of Noise in Text-to-SQL: An Examination of the BIRD-Bench Benchmark

Text-to-SQL, which involves translating natural language into Structured Query Language (SQL), is crucial for enabling broad access to structured databases without expert knowledge. However, designing models for such tasks is challenging due to numerous factors, including the presence of 'noise,' such as ambiguous questions and syntactical errors. This study provides an in-depth analysis of the distribution and types of noise in the widely used BIRD-Bench benchmark and the impact of noise on models. While BIRD-Bench was created to model dirty and noisy database values, it was not created to contain noise and errors in the questions and gold queries. We found that noise in questions and gold queries are prevalent in the dataset, with varying amounts across domains, and with an uneven distribution between noise types. The presence of incorrect gold SQL queries, which then generate incorrect gold answers, has a significant impact on the benchmark's reliability. Surprisingly, when evaluating models on corrected SQL queries, zero-shot baselines surpassed the performance of state-of-the-art prompting methods. We conclude that informative noise labels and reliable benchmarks are crucial to developing new Text-to-SQL methods that can handle varying types of noise. All datasets, annotations, and code are available at https://github.com/niklaswretblad/the-effects-of-noise-in-text-to-SQL.

Distilling from Vision-Language Models for Improved OOD Generalization in Vision Tasks

Vision-Language Models (VLMs) such as CLIP are trained on large amounts of image-text pairs, resulting in remarkable generalization across several data distributions. The prohibitively expensive training and data collection/curation costs of these models make them valuable Intellectual Property (IP) for organizations. This motivates a vendor-client paradigm, where a vendor trains a large-scale VLM and grants only input-output access to clients on a pay-per-query basis in a black-box setting. The client aims to minimize inference cost by distilling the VLM to a student model using the limited available task-specific data, and further deploying this student model in the downstream application. While naive distillation largely improves the In-Domain (ID) accuracy of the student, it fails to transfer the superior out-of-distribution (OOD) generalization of the VLM teacher using the limited available labeled images. To mitigate this, we propose Vision-Language to Vision-Align, Distill, Predict (VL2V-ADiP), which first aligns the vision and language modalities of the teacher model with the vision modality of a pre-trained student model, and further distills the aligned VLM embeddings to the student. This maximally retains the pre-trained features of the student, while also incorporating the rich representations of the VLM image encoder and the superior generalization of the text embeddings. The proposed approach achieves state-of-the-art results on the standard Domain Generalization benchmarks in a black-box teacher setting, and also when weights of the VLM are accessible.

Query Rewriting via Large Language Models

Query rewriting is one of the most effective techniques for coping with poorly written queries before passing them down to the query optimizer. Manual rewriting is not scalable, as it is error-prone and requires deep expertise. Similarly, traditional query rewriting algorithms can only handle a small subset of queries: rule-based techniques do not generalize to new query patterns and synthesis-based techniques cannot handle complex queries. Fortunately, the rise of Large Language Models (LLMs), equipped with broad general knowledge and advanced reasoning capabilities, has created hopes for solving some of these previously open problems. In this paper, we present GenRewrite, the first holistic system that leverages LLMs for query rewriting. We introduce the notion of Natural Language Rewrite Rules (NLR2s), and use them as hints to the LLM but also a means for transferring knowledge from rewriting one query to another, and thus becoming smarter and more effective over time. We present a novel counterexample-guided technique that iteratively corrects the syntactic and semantic errors in the rewritten query, significantly reducing the LLM costs and the manual effort required for verification. GenRewrite speeds up 22 out of 99 TPC queries (the most complex public benchmark) by more than 2x, which is 2.5x--3.2x higher coverage than state-of-the-art traditional query rewriting and 2.1x higher than the out-of-the-box LLM baseline.

Large Language Models for Information Retrieval: A Survey

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

Evaluating Interpolation and Extrapolation Performance of Neural Retrieval Models

A retrieval model should not only interpolate the training data but also extrapolate well to the queries that are different from the training data. While neural retrieval models have demonstrated impressive performance on ad-hoc search benchmarks, we still know little about how they perform in terms of interpolation and extrapolation. In this paper, we demonstrate the importance of separately evaluating the two capabilities of neural retrieval models. Firstly, we examine existing ad-hoc search benchmarks from the two perspectives. We investigate the distribution of training and test data and find a considerable overlap in query entities, query intent, and relevance labels. This finding implies that the evaluation on these test sets is biased toward interpolation and cannot accurately reflect the extrapolation capacity. Secondly, we propose a novel evaluation protocol to separately evaluate the interpolation and extrapolation performance on existing benchmark datasets. It resamples the training and test data based on query similarity and utilizes the resampled dataset for training and evaluation. Finally, we leverage the proposed evaluation protocol to comprehensively revisit a number of widely-adopted neural retrieval models. Results show models perform differently when moving from interpolation to extrapolation. For example, representation-based retrieval models perform almost as well as interaction-based retrieval models in terms of interpolation but not extrapolation. Therefore, it is necessary to separately evaluate both interpolation and extrapolation performance and the proposed resampling method serves as a simple yet effective evaluation tool for future IR studies.

Event-driven Real-time Retrieval in Web Search

Information retrieval in real-time search presents unique challenges distinct from those encountered in classical web search. These challenges are particularly pronounced due to the rapid change of user search intent, which is influenced by the occurrence and evolution of breaking news events, such as earthquakes, elections, and wars. Previous dense retrieval methods, which primarily focused on static semantic representation, lack the capacity to capture immediate search intent, leading to inferior performance in retrieving the most recent event-related documents in time-sensitive scenarios. To address this issue, this paper expands the query with event information that represents real-time search intent. The Event information is then integrated with the query through a cross-attention mechanism, resulting in a time-context query representation. We further enhance the model's capacity for event representation through multi-task training. Since publicly available datasets such as MS-MARCO do not contain any event information on the query side and have few time-sensitive queries, we design an automatic data collection and annotation pipeline to address this issue, which includes ModelZoo-based Coarse Annotation and LLM-driven Fine Annotation processes. In addition, we share the training tricks such as two-stage training and hard negative sampling. Finally, we conduct a set of offline experiments on a million-scale production dataset to evaluate our approach and deploy an A/B testing in a real online system to verify the performance. Extensive experimental results demonstrate that our proposed approach significantly outperforms existing state-of-the-art baseline methods.

Structured access: an emerging paradigm for safe AI deployment

Structured access is an emerging paradigm for the safe deployment of artificial intelligence (AI). Instead of openly disseminating AI systems, developers facilitate controlled, arm's length interactions with their AI systems. The aim is to prevent dangerous AI capabilities from being widely accessible, whilst preserving access to AI capabilities that can be used safely. The developer must both restrict how the AI system can be used, and prevent the user from circumventing these restrictions through modification or reverse engineering of the AI system. Structured access is most effective when implemented through cloud-based AI services, rather than disseminating AI software that runs locally on users' hardware. Cloud-based interfaces provide the AI developer greater scope for controlling how the AI system is used, and for protecting against unauthorized modifications to the system's design. This chapter expands the discussion of "publication norms" in the AI community, which to date has focused on the question of how the informational content of AI research projects should be disseminated (e.g., code and models). Although this is an important question, there are limits to what can be achieved through the control of information flows. Structured access views AI software not only as information that can be shared but also as a tool with which users can have arm's length interactions. There are early examples of structured access being practiced by AI developers, but there is much room for further development, both in the functionality of cloud-based interfaces and in the wider institutional framework.

Enhancing Health Information Retrieval with RAG by Prioritizing Topical Relevance and Factual Accuracy

The exponential surge in online health information, coupled with its increasing use by non-experts, highlights the pressing need for advanced Health Information Retrieval models that consider not only topical relevance but also the factual accuracy of the retrieved information, given the potential risks associated with health misinformation. To this aim, this paper introduces a solution driven by Retrieval-Augmented Generation (RAG), which leverages the capabilities of generative Large Language Models (LLMs) to enhance the retrieval of health-related documents grounded in scientific evidence. In particular, we propose a three-stage model: in the first stage, the user's query is employed to retrieve topically relevant passages with associated references from a knowledge base constituted by scientific literature. In the second stage, these passages, alongside the initial query, are processed by LLMs to generate a contextually relevant rich text (GenText). In the last stage, the documents to be retrieved are evaluated and ranked both from the point of view of topical relevance and factual accuracy by means of their comparison with GenText, either through stance detection or semantic similarity. In addition to calculating factual accuracy, GenText can offer a layer of explainability for it, aiding users in understanding the reasoning behind the retrieval. Experimental evaluation of our model on benchmark datasets and against baseline models demonstrates its effectiveness in enhancing the retrieval of both topically relevant and factually accurate health information, thus presenting a significant step forward in the health misinformation mitigation problem.

Unified Multi-Modal Interleaved Document Representation for Information Retrieval

Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.

Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard

BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.

Search-in-the-Chain: Towards Accurate, Credible and Traceable Large Language Models for Knowledge-intensive Tasks

Making the contents generated by Large Language Model (LLM) such as ChatGPT, accurate, credible and traceable is crucial, especially in complex knowledge-intensive tasks that require multi-step reasoning and each of which needs knowledge to solve. Introducing Information Retrieval (IR) to provide LLM with external knowledge is good potential to solve this problem. However, where and how to introduce IR into LLM is a big challenge. Previous work has the disadvantage that the wrong knowledge retrieved by IR misleads the LLM or breaks the reasoning chain of LLM. In this paper, we propose a novel framework called Search-in-the-Chain (SearChain) for the interaction between LLM and IR to solve the challenges. First, LLM generates the global reasoning chain called Chain-of-Query (CoQ) where each node consists of an IR-oriented query and the answer to the query. Second, IR verifies the answer of each node of CoQ, it corrects the answer that is not consistent with the retrieved information when IR gives high confidence, which improves the credibility. Third, LLM can mark its missing knowledge in CoQ and IR can provide this knowledge to LLM. These three operations improve the accuracy of LLM for complex knowledge-intensive tasks in terms of reasoning ability and knowledge. Finally, SearChain generates the reasoning process and marks references to supporting documents for each reasoning step, which improves traceability. SearChain transforms the topology of reasoning from chain to tree, which can modify the reasoning direction. Experiment shows that SearChain outperforms baselines on complex knowledge-intensive tasks including multi-hop question-answering, slot filling, fact checking, and long-form question-answering.

LitSearch: A Retrieval Benchmark for Scientific Literature Search

Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.

Revolutionizing Database Q&A with Large Language Models: Comprehensive Benchmark and Evaluation

The development of Large Language Models (LLMs) has revolutionized Q&A across various industries, including the database domain. However, there is still a lack of a comprehensive benchmark to evaluate the capabilities of different LLMs and their modular components in database Q&A. To this end, we introduce DQA, the first comprehensive database Q&A benchmark. DQA features an innovative LLM-based method for automating the generation, cleaning, and rewriting of database Q&A, resulting in over 240,000 Q&A pairs in English and Chinese. These Q&A pairs cover nearly all aspects of database knowledge, including database manuals, database blogs, and database tools. This inclusion allows for additional assessment of LLMs' Retrieval-Augmented Generation (RAG) and Tool Invocation Generation (TIG) capabilities in the database Q&A task. Furthermore, we propose a comprehensive LLM-based database Q&A testbed on DQA. This testbed is highly modular and scalable, with both basic and advanced components like Question Classification Routing (QCR), RAG, TIG, and Prompt Template Engineering (PTE). Besides, DQA provides a complete evaluation pipeline, featuring diverse metrics and a standardized evaluation process to ensure comprehensiveness, accuracy, and fairness. We use DQA to evaluate the database Q&A capabilities under the proposed testbed comprehensively. The evaluation reveals findings like (i) the strengths and limitations of nine different LLM-based Q&A bots and (ii) the performance impact and potential improvements of various service components (e.g., QCR, RAG, TIG). We hope our benchmark and findings will better guide the future development of LLM-based database Q&A research.

Text2SQL is Not Enough: Unifying AI and Databases with TAG

AI systems that serve natural language questions over databases promise to unlock tremendous value. Such systems would allow users to leverage the powerful reasoning and knowledge capabilities of language models (LMs) alongside the scalable computational power of data management systems. These combined capabilities would empower users to ask arbitrary natural language questions over custom data sources. However, existing methods and benchmarks insufficiently explore this setting. Text2SQL methods focus solely on natural language questions that can be expressed in relational algebra, representing a small subset of the questions real users wish to ask. Likewise, Retrieval-Augmented Generation (RAG) considers the limited subset of queries that can be answered with point lookups to one or a few data records within the database. We propose Table-Augmented Generation (TAG), a unified and general-purpose paradigm for answering natural language questions over databases. The TAG model represents a wide range of interactions between the LM and database that have been previously unexplored and creates exciting research opportunities for leveraging the world knowledge and reasoning capabilities of LMs over data. We systematically develop benchmarks to study the TAG problem and find that standard methods answer no more than 20% of queries correctly, confirming the need for further research in this area. We release code for the benchmark at https://github.com/TAG-Research/TAG-Bench.

Database Systems Course: Service Learning Project

This paper describes a service learning project used in an upper-level and graduate-level database systems course. Students complete a small database project for a real client. The final product must match the client specification and needs, and include the database design and the final working database system with embedded user documentation. The solution must be implemented in a way to make it as easy to use as possible for the client. Students are expected to conduct professional meetings with their clients to understand the project, analyze the project's requirements, as well as design and implement the solution to the project. Students must have each milestone approved before starting the next phase of the project. The student learning objectives of a database system semester project are to: analyze a client's information system problem and determine the requirements for the solution; design a suitable database solution to the problem; use software design and development tools to design and develop a solution to the problem; communicate and interact with a client on a professional level; prepare effective documentation for both non-technical and technical software users; and interact ethically with all persons involved with a project. The broader impact objectives of a database system semester project are to: provide needed database solutions for organizations and businesses in the local area; provide a resume and portfolio-building opportunity for the students; provide a measure for assessing how well the program meets it mission; provide a mechanism for implementing service-based learning; provide a mechanism for outreach to local-area organizations and businesses; and provide a starting-point for undergraduate research projects.

Matching Table Metadata with Business Glossaries Using Large Language Models

Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.

Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI

Retrieving and extracting knowledge from extensive research documents and large databases presents significant challenges for researchers, students, and professionals in today's information-rich era. Existing retrieval systems, which rely on general-purpose Large Language Models (LLMs), often fail to provide accurate responses to domain-specific inquiries. Additionally, the high cost of pretraining or fine-tuning LLMs for specific domains limits their widespread adoption. To address these limitations, we propose a novel methodology that combines the generative capabilities of LLMs with the fast and accurate retrieval capabilities of vector databases. This advanced retrieval system can efficiently handle both tabular and non-tabular data, understand natural language user queries, and retrieve relevant information without fine-tuning. The developed model, Generative Text Retrieval (GTR), is adaptable to both unstructured and structured data with minor refinement. GTR was evaluated on both manually annotated and public datasets, achieving over 90% accuracy and delivering truthful outputs in 87% of cases. Our model achieved state-of-the-art performance with a Rouge-L F1 score of 0.98 on the MSMARCO dataset. The refined model, Generative Tabular Text Retrieval (GTR-T), demonstrated its efficiency in large database querying, achieving an Execution Accuracy (EX) of 0.82 and an Exact-Set-Match (EM) accuracy of 0.60 on the Spider dataset, using an open-source LLM. These efforts leverage Generative AI and In-Context Learning to enhance human-text interaction and make advanced AI capabilities more accessible. By integrating robust retrieval systems with powerful LLMs, our approach aims to democratize access to sophisticated AI tools, improving the efficiency, accuracy, and scalability of AI-driven information retrieval and database querying.

Backtracing: Retrieving the Cause of the Query

Many online content portals allow users to ask questions to supplement their understanding (e.g., of lectures). While information retrieval (IR) systems may provide answers for such user queries, they do not directly assist content creators -- such as lecturers who want to improve their content -- identify segments that _caused_ a user to ask those questions. We introduce the task of backtracing, in which systems retrieve the text segment that most likely caused a user query. We formalize three real-world domains for which backtracing is important in improving content delivery and communication: understanding the cause of (a) student confusion in the Lecture domain, (b) reader curiosity in the News Article domain, and (c) user emotion in the Conversation domain. We evaluate the zero-shot performance of popular information retrieval methods and language modeling methods, including bi-encoder, re-ranking and likelihood-based methods and ChatGPT. While traditional IR systems retrieve semantically relevant information (e.g., details on "projection matrices" for a query "does projecting multiple times still lead to the same point?"), they often miss the causally relevant context (e.g., the lecturer states "projecting twice gets me the same answer as one projection"). Our results show that there is room for improvement on backtracing and it requires new retrieval approaches. We hope our benchmark serves to improve future retrieval systems for backtracing, spawning systems that refine content generation and identify linguistic triggers influencing user queries. Our code and data are open-sourced: https://github.com/rosewang2008/backtracing.

RuleRAG: Rule-guided retrieval-augmented generation with language models for question answering

Retrieval-augmented generation (RAG) framework has shown promising potential in knowledge-intensive question answering (QA) by retrieving external corpus and generating based on augmented context. However, existing approaches only consider the query itself, neither specifying the retrieval preferences for the retrievers nor informing the generators of how to refer to the retrieved documents for the answers, which poses a significant challenge to the QA performance. To address these issues, we propose Rule-Guided Retrieval-Augmented Generation with LMs, which explicitly introduces symbolic rules as demonstrations for in-context learning (RuleRAG-ICL) to guide retrievers to retrieve logically related documents in the directions of rules and uniformly guide generators to generate answers attributed by the guidance of the same set of rules. Moreover, the combination of queries and rules can be further used as supervised fine-tuning data to update retrievers and generators (RuleRAG-FT) to achieve better rule-based instruction following capability, leading to retrieve more supportive results and generate more acceptable answers. To emphasize the attribution of rules, we construct five rule-aware QA benchmarks, including three temporal and two static scenarios, and equip RuleRAG with several kinds of retrievers and generators. Experiments demonstrate that training-free RuleRAG-ICL effectively improves the retrieval quality of +89.2% in Recall@10 scores and generation accuracy of +103.1% in exact match scores over standard RAG on average across the five benchmarks, and further fine-tuned RuleRAG-FT consistently yields more significant performance enhancement. Extensive analyses indicate that RuleRAG scales well with increasing numbers of retrieved documents and exhibits generalization ability for untrained rules.

Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models

Large-scale language models (LLMs) have achieved remarkable success across various language tasks but suffer from hallucinations and temporal misalignment. To mitigate these shortcomings, Retrieval-augmented generation (RAG) has been utilized to provide external knowledge to facilitate the answer generation. However, applying such models to the medical domain faces several challenges due to the lack of domain-specific knowledge and the intricacy of real-world scenarios. In this study, we explore LLMs with RAG framework for knowledge-intensive tasks in the medical field. To evaluate the capabilities of LLMs, we introduce MedicineQA, a multi-round dialogue benchmark that simulates the real-world medication consultation scenario and requires LLMs to answer with retrieved evidence from the medicine database. MedicineQA contains 300 multi-round question-answering pairs, each embedded within a detailed dialogue history, highlighting the challenge posed by this knowledge-intensive task to current LLMs. We further propose a new Distill-Retrieve-Read framework instead of the previous Retrieve-then-Read. Specifically, the distillation and retrieval process utilizes a tool calling mechanism to formulate search queries that emulate the keyword-based inquiries used by search engines. With experimental results, we show that our framework brings notable performance improvements and surpasses the previous counterparts in the evidence retrieval process in terms of evidence retrieval accuracy. This advancement sheds light on applying RAG to the medical domain.

Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering

In customer service technical support, swiftly and accurately retrieving relevant past issues is critical for efficiently resolving customer inquiries. The conventional retrieval methods in retrieval-augmented generation (RAG) for large language models (LLMs) treat a large corpus of past issue tracking tickets as plain text, ignoring the crucial intra-issue structure and inter-issue relations, which limits performance. We introduce a novel customer service question-answering method that amalgamates RAG with a knowledge graph (KG). Our method constructs a KG from historical issues for use in retrieval, retaining the intra-issue structure and inter-issue relations. During the question-answering phase, our method parses consumer queries and retrieves related sub-graphs from the KG to generate answers. This integration of a KG not only improves retrieval accuracy by preserving customer service structure information but also enhances answering quality by mitigating the effects of text segmentation. Empirical assessments on our benchmark datasets, utilizing key retrieval (MRR, Recall@K, NDCG@K) and text generation (BLEU, ROUGE, METEOR) metrics, reveal that our method outperforms the baseline by 77.6% in MRR and by 0.32 in BLEU. Our method has been deployed within LinkedIn's customer service team for approximately six months and has reduced the median per-issue resolution time by 28.6%.

Enhancing Retrieval-Augmented Generation: A Study of Best Practices

Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.

Right to be Forgotten in the Era of Large Language Models: Implications, Challenges, and Solutions

The Right to be Forgotten (RTBF) was first established as the result of the ruling of Google Spain SL, Google Inc. v AEPD, Mario Costeja Gonz\'alez, and was later included as the Right to Erasure under the General Data Protection Regulation (GDPR) of European Union to allow individuals the right to request personal data be deleted by organizations. Specifically for search engines, individuals can send requests to organizations to exclude their information from the query results. It was a significant emergent right as the result of the evolution of technology. With the recent development of Large Language Models (LLMs) and their use in chatbots, LLM-enabled software systems have become popular. But they are not excluded from the RTBF. Compared with the indexing approach used by search engines, LLMs store, and process information in a completely different way. This poses new challenges for compliance with the RTBF. In this paper, we explore these challenges and provide our insights on how to implement technical solutions for the RTBF, including the use of differential privacy, machine unlearning, model editing, and guardrails. With the rapid advancement of AI and the increasing need of regulating this powerful technology, learning from the case of RTBF can provide valuable lessons for technical practitioners, legal experts, organizations, and authorities.

Exploring the Viability of Synthetic Query Generation for Relevance Prediction

Query-document relevance prediction is a critical problem in Information Retrieval systems. This problem has increasingly been tackled using (pretrained) transformer-based models which are finetuned using large collections of labeled data. However, in specialized domains such as e-commerce and healthcare, the viability of this approach is limited by the dearth of large in-domain data. To address this paucity, recent methods leverage these powerful models to generate high-quality task and domain-specific synthetic data. Prior work has largely explored synthetic data generation or query generation (QGen) for Question-Answering (QA) and binary (yes/no) relevance prediction, where for instance, the QGen models are given a document, and trained to generate a query relevant to that document. However in many problems, we have a more fine-grained notion of relevance than a simple yes/no label. Thus, in this work, we conduct a detailed study into how QGen approaches can be leveraged for nuanced relevance prediction. We demonstrate that -- contrary to claims from prior works -- current QGen approaches fall short of the more conventional cross-domain transfer-learning approaches. Via empirical studies spanning 3 public e-commerce benchmarks, we identify new shortcomings of existing QGen approaches -- including their inability to distinguish between different grades of relevance. To address this, we introduce label-conditioned QGen models which incorporates knowledge about the different relevance. While our experiments demonstrate that these modifications help improve performance of QGen techniques, we also find that QGen approaches struggle to capture the full nuance of the relevance label space and as a result the generated queries are not faithful to the desired relevance label.

Étude cognitive des processus de construction d'une requête dans un système de gestion de connaissances médicales

This article presents the Cogni-CISMeF project, which aims at improving medical information search in the CISMeF system (Catalog and Index of French-language health resources) by including a conversational agent to interact with the user in natural language. To study the cognitive processes involved during the information search, a bottom-up methodology was adopted. Experimentation has been set up to obtain human dialogs between a user (playing the role of patient) dealing with medical information search and a CISMeF expert refining the request. The analysis of these dialogs underlined the use of discursive evidence: vocabulary, reformulation, implicit or explicit expression of user intentions, conversational sequences, etc. A model of artificial agent is proposed. It leads the user in its information search by proposing to him examples, assistance and choices. This model was implemented and integrated in the CISMeF system. ---- Cet article d\'ecrit le projet Cogni-CISMeF qui propose un module de dialogue Homme-Machine \`a int\'egrer dans le syst\`eme d'indexation de connaissances m\'edicales CISMeF (Catalogue et Index des Sites M\'edicaux Francophones). Nous avons adopt\'e une d\'emarche de mod\'elisation cognitive en proc\'edant \`a un recueil de corpus de dialogues entre un utilisateur (jouant le r\^ole d'un patient) d\'esirant une information m\'edicale et un expert CISMeF af inant cette demande pour construire la requ\^ete. Nous avons analys\'e la structure des dialogues ainsi obtenus et avons \'etudi\'e un certain nombre d'indices discursifs : vocabulaire employ\'e, marques de reformulation, commentaires m\'eta et \'epilinguistiques, expression implicite ou explicite des intentions de l'utilisateur, encha\^inement conversationnel, etc. De cette analyse, nous avons construit un mod\`ele d'agent artificiel dot\'e de capacit\'es cognitives capables d'aider l'utilisateur dans sa t\^ache de recherche d'information. Ce mod\`ele a \'et\'e impl\'ement\'e et int\'egr\'e dans le syst\`eme CISMeF.

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering

Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems.