Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope
Measurements of the dark energy equation-of-state parameter, w, have been limited by uncertainty in the selection effects and photometric calibration of z<0.1 Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is designed to lower these uncertainties by creating a new sample of z<0.1 SNe Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological parameters with 1,338 SNe from a single telescope and a single, well-calibrated photometric system. For the first time, both the low-z and high-z data are predominantly discovered by surveys that do not target pre-selected galaxies, reducing selection bias uncertainties. The z>0.1 data include 875 SNe without spectroscopic classifications and we show that we can robustly marginalize over CC SN contamination. We measure Foundation Hubble residuals to be fainter than the pre-existing low-z Hubble residuals by 0.046 pm 0.027 mag (stat+sys). By combining the SN Ia data with cosmic microwave background constraints, we find w=-0.938 pm 0.053, consistent with LambdaCDM. With 463 spectroscopically classified SNe Ia alone, we measure w=-0.933pm0.061. Using the more homogeneous and better-characterized Foundation sample gives a 55% reduction in the systematic uncertainty attributed to SN Ia sample selection biases. Although use of just a single photometric system at low and high redshift increases the impact of photometric calibration uncertainties in this analysis, previous low-z samples may have correlated calibration uncertainties that were neglected in past studies. The full Foundation sample will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.
The Pantheon+ Analysis: The Full Dataset and Light-Curve Release
Here we present 1701 light curves of 1550 spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the SH0ES (Supernovae and H0 for the Equation of State of dark energy) distance-ladder analysis. This effort is one part of a series of works that perform an extensive review of redshifts, peculiar velocities, photometric calibration, and intrinsic-scatter models of SNe Ia. The total number of light curves, which are compiled across 18 different surveys, is a significant increase from the first Pantheon analysis (1048 SNe), particularly at low redshift (z). Furthermore, unlike in the Pantheon analysis, we include light curves for SNe with z<0.01 such that SN systematic covariance can be included in a joint measurement of the Hubble constant (H_0) and the dark energy equation-of-state parameter (w). We use the large sample to compare properties of 151 SNe Ia observed by multiple surveys and 12 pairs/triplets of "SN siblings" - SNe found in the same host galaxy. Distance measurements, application of bias corrections, and inference of cosmological parameters are discussed in the companion paper by Brout et al. (2022b), and the determination of H_0 is discussed by Riess et al. (2022). These analyses will measure w with sim3% precision and H_0 with 1 km/s/Mpc precision.
Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction
Light plays an important role in human well-being. However, most computer vision tasks treat pixels without considering their relationship to physical luminance. To address this shortcoming, we introduce the Laval Photometric Indoor HDR Dataset, the first large-scale photometrically calibrated dataset of high dynamic range 360{\deg} panoramas. Our key contribution is the calibration of an existing, uncalibrated HDR Dataset. We do so by accurately capturing RAW bracketed exposures simultaneously with a professional photometric measurement device (chroma meter) for multiple scenes across a variety of lighting conditions. Using the resulting measurements, we establish the calibration coefficients to be applied to the HDR images. The resulting dataset is a rich representation of indoor scenes which displays a wide range of illuminance and color, and varied types of light sources. We exploit the dataset to introduce three novel tasks, where: per-pixel luminance, per-pixel color and planar illuminance can be predicted from a single input image. Finally, we also capture another smaller photometric dataset with a commercial 360{\deg} camera, to experiment on generalization across cameras. We are optimistic that the release of our datasets and associated code will spark interest in physically accurate light estimation within the community. Dataset and code are available at https://lvsn.github.io/beyondthepixel/.
First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Photometric Pipeline and Light Curve Data Release
We present griz light curves of 251 Type Ia Supernovae (SNe Ia) from the first 3 years of the Dark Energy Survey Supernova Program's (DES-SN) spectroscopically classified sample. The photometric pipeline described in this paper produces the calibrated fluxes and associated uncertainties used in the cosmological parameter analysis (Brout et al. 2018-SYS, DES Collaboration et al. 2018) by employing a scene modeling approach that simultaneously forward models a variable transient flux and temporally constant host galaxy. We inject artificial point sources onto DECam images to test the accuracy of our photometric method. Upon comparison of input and measured artificial supernova fluxes, we find flux biases peak at 3 mmag. We require corrections to our photometric uncertainties as a function of host galaxy surface brightness at the transient location, similar to that seen by the DES Difference Imaging Pipeline used to discover transients. The public release of the light curves can be found at https://des.ncsa.illinois.edu/releases/sn.
ThermalNeRF: Thermal Radiance Fields
Thermal imaging has a variety of applications, from agricultural monitoring to building inspection to imaging under poor visibility, such as in low light, fog, and rain. However, reconstructing thermal scenes in 3D presents several challenges due to the comparatively lower resolution and limited features present in long-wave infrared (LWIR) images. To overcome these challenges, we propose a unified framework for scene reconstruction from a set of LWIR and RGB images, using a multispectral radiance field to represent a scene viewed by both visible and infrared cameras, thus leveraging information across both spectra. We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step using a simple calibration target. We demonstrate our method on real-world sets of RGB and LWIR photographs captured from a handheld thermal camera, showing the effectiveness of our method at scene representation across the visible and infrared spectra. We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects that are occluded in either the RGB or thermal channels. Please see https://yvette256.github.io/thermalnerf for video results as well as our code and dataset release.
CalibFormer: A Transformer-based Automatic LiDAR-Camera Calibration Network
The fusion of LiDARs and cameras has been increasingly adopted in autonomous driving for perception tasks. The performance of such fusion-based algorithms largely depends on the accuracy of sensor calibration, which is challenging due to the difficulty of identifying common features across different data modalities. Previously, many calibration methods involved specific targets and/or manual intervention, which has proven to be cumbersome and costly. Learning-based online calibration methods have been proposed, but their performance is barely satisfactory in most cases. These methods usually suffer from issues such as sparse feature maps, unreliable cross-modality association, inaccurate calibration parameter regression, etc. In this paper, to address these issues, we propose CalibFormer, an end-to-end network for automatic LiDAR-camera calibration. We aggregate multiple layers of camera and LiDAR image features to achieve high-resolution representations. A multi-head correlation module is utilized to identify correlations between features more accurately. Lastly, we employ transformer architectures to estimate accurate calibration parameters from the correlation information. Our method achieved a mean translation error of 0.8751 cm and a mean rotation error of 0.0562 ^{circ} on the KITTI dataset, surpassing existing state-of-the-art methods and demonstrating strong robustness, accuracy, and generalization capabilities.
GeoCalib: Learning Single-image Calibration with Geometric Optimization
From a single image, visual cues can help deduce intrinsic and extrinsic camera parameters like the focal length and the gravity direction. This single-image calibration can benefit various downstream applications like image editing and 3D mapping. Current approaches to this problem are based on either classical geometry with lines and vanishing points or on deep neural networks trained end-to-end. The learned approaches are more robust but struggle to generalize to new environments and are less accurate than their classical counterparts. We hypothesize that they lack the constraints that 3D geometry provides. In this work, we introduce GeoCalib, a deep neural network that leverages universal rules of 3D geometry through an optimization process. GeoCalib is trained end-to-end to estimate camera parameters and learns to find useful visual cues from the data. Experiments on various benchmarks show that GeoCalib is more robust and more accurate than existing classical and learned approaches. Its internal optimization estimates uncertainties, which help flag failure cases and benefit downstream applications like visual localization. The code and trained models are publicly available at https://github.com/cvg/GeoCalib.
YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems
In a multi-sensor fusion system composed of cameras and LiDAR, precise extrinsic calibration contributes to the system's long-term stability and accurate perception of the environment. However, methods based on extracting and registering corresponding points still face challenges in terms of automation and precision. This paper proposes a novel fully automatic extrinsic calibration method for LiDAR-camera systems that circumvents the need for corresponding point registration. In our approach, a novel algorithm to extract required LiDAR correspondence point is proposed. This method can effectively filter out irrelevant points by computing the orientation of plane point clouds and extracting points by applying distance- and density-based thresholds. We avoid the need for corresponding point registration by introducing extrinsic parameters between the LiDAR and camera into the projection of extracted points and constructing co-planar constraints. These parameters are then optimized to solve for the extrinsic. We validated our method across multiple sets of LiDAR-camera systems. In synthetic experiments, our method demonstrates superior performance compared to current calibration techniques. Real-world data experiments further confirm the precision and robustness of the proposed algorithm, with average rotation and translation calibration errors between LiDAR and camera of less than 0.05 degree and 0.015m, respectively. This method enables automatic and accurate extrinsic calibration in a single one step, emphasizing the potential of calibration algorithms beyond using corresponding point registration to enhance the automation and precision of LiDAR-camera system calibration.
Deep Learning for Camera Calibration and Beyond: A Survey
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences, which is crucial for computer vision and robotics. However, conventional calibration is laborious and requires dedicated collection. Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations. Among these solutions, various learning strategies, networks, geometric priors, and datasets have been investigated. In this paper, we provide a comprehensive survey of learning-based camera calibration techniques, by analyzing their strengths and limitations. Our main calibration categories include the standard pinhole camera model, distortion camera model, cross-view model, and cross-sensor model, following the research trend and extended applications. As there is no unified benchmark in this community, we collect a holistic calibration dataset that can serve as a public platform to evaluate the generalization of existing methods. It comprises both synthetic and real-world data, with images and videos captured by different cameras in diverse scenes. Toward the end of this paper, we discuss the challenges and provide further research directions. To our knowledge, this is the first survey for the learning-based camera calibration (spanned 10 years). The summarized methods, datasets, and benchmarks are available and will be regularly updated at https://github.com/KangLiao929/Awesome-Deep-Camera-Calibration.
MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo
Photometric stereo typically demands intricate data acquisition setups involving multiple light sources to recover surface normals accurately. In this paper, we propose MERLiN, an attention-based hourglass network that integrates single image-based inverse rendering and relighting within a single unified framework. We evaluate the performance of photometric stereo methods using these relit images and demonstrate how they can circumvent the underlying challenge of complex data acquisition. Our physically-based model is trained on a large synthetic dataset containing complex shapes with spatially varying BRDF and is designed to handle indirect illumination effects to improve material reconstruction and relighting. Through extensive qualitative and quantitative evaluation, we demonstrate that the proposed framework generalizes well to real-world images, achieving high-quality shape, material estimation, and relighting. We assess these synthetically relit images over photometric stereo benchmark methods for their physical correctness and resulting normal estimation accuracy, paving the way towards single-shot photometric stereo through physically-based relighting. This work allows us to address the single image-based inverse rendering problem holistically, applying well to both synthetic and real data and taking a step towards mitigating the challenge of data acquisition in photometric stereo.
Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves
Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.
Multi-View Azimuth Stereo via Tangent Space Consistency
We present a method for 3D reconstruction only using calibrated multi-view surface azimuth maps. Our method, multi-view azimuth stereo, is effective for textureless or specular surfaces, which are difficult for conventional multi-view stereo methods. We introduce the concept of tangent space consistency: Multi-view azimuth observations of a surface point should be lifted to the same tangent space. Leveraging this consistency, we recover the shape by optimizing a neural implicit surface representation. Our method harnesses the robust azimuth estimation capabilities of photometric stereo methods or polarization imaging while bypassing potentially complex zenith angle estimation. Experiments using azimuth maps from various sources validate the accurate shape recovery with our method, even without zenith angles.
Photometric Inverse Rendering: Shading Cues Modeling and Surface Reflectance Regularization
This paper addresses the problem of inverse rendering from photometric images. Existing approaches for this problem suffer from the effects of self-shadows, inter-reflections, and lack of constraints on the surface reflectance, leading to inaccurate decomposition of reflectance and illumination due to the ill-posed nature of inverse rendering. In this work, we propose a new method for neural inverse rendering. Our method jointly optimizes the light source position to account for the self-shadows in images, and computes indirect illumination using a differentiable rendering layer and an importance sampling strategy. To enhance surface reflectance decomposition, we introduce a new regularization by distilling DINO features to foster accurate and consistent material decomposition. Extensive experiments on synthetic and real datasets demonstrate that our method outperforms the state-of-the-art methods in reflectance decomposition.
Correspondences of the Third Kind: Camera Pose Estimation from Object Reflection
Computer vision has long relied on two kinds of correspondences: pixel correspondences in images and 3D correspondences on object surfaces. Is there another kind, and if there is, what can they do for us? In this paper, we introduce correspondences of the third kind we call reflection correspondences and show that they can help estimate camera pose by just looking at objects without relying on the background. Reflection correspondences are point correspondences in the reflected world, i.e., the scene reflected by the object surface. The object geometry and reflectance alters the scene geometrically and radiometrically, respectively, causing incorrect pixel correspondences. Geometry recovered from each image is also hampered by distortions, namely generalized bas-relief ambiguity, leading to erroneous 3D correspondences. We show that reflection correspondences can resolve the ambiguities arising from these distortions. We introduce a neural correspondence estimator and a RANSAC algorithm that fully leverages all three kinds of correspondences for robust and accurate joint camera pose and object shape estimation just from the object appearance. The method expands the horizon of numerous downstream tasks, including camera pose estimation for appearance modeling (e.g., NeRF) and motion estimation of reflective objects (e.g., cars on the road), to name a few, as it relieves the requirement of overlapping background.
Cosmological Distance Measurement of 12 Nearby Supernovae IIP with ROTSE-IIIB
We present cosmological analysis of 12 nearby (z<0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20\% increase in the detection efficiency and significant reduction in residual RMS scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive to other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances from which we measure the Hubble constant to be 72.9^{+5.7}_{-4.3}~{rm kms^{-1}~Mpc^{-1}}, which is consistent with the standard Lambda CDM model values derived using other independent techniques.
Interferometer response characterization algorithm for multi-aperture Fabry-Perot imaging spectrometers
In recent years, the demand for hyperspectral imaging devices has grown significantly, driven by their ability of capturing high-resolution spectral information. Among the several possible optical designs for acquiring hyperspectral images, there is a growing interest in interferometric spectral imaging systems based on division of aperture. These systems have the advantage of capturing snapshot acquisitions while maintaining a compact design. However, they require a careful calibration to operate properly. In this work, we present the interferometer response characterization algorithm (IRCA), a robust three-step procedure designed to characterize the transmittance response of multi-aperture imaging spectrometers based on the interferometry of Fabry-Perot. Additionally, we propose a formulation of the image formation model for such devices suitable to estimate the parameters of interest by considering the model under various regimes of finesse. The proposed algorithm processes the image output obtained from a set of monochromatic light sources and refines the results using nonlinear regression after an ad-hoc initialization. Through experimental analysis conducted on four different prototypes from the Image SPectrometer On Chip (ImSPOC) family, we validate the performance of our approach for characterization. The associated source code for this paper is available at https://github.com/danaroth83/irca.
Lighting Every Darkness in Two Pairs: A Calibration-Free Pipeline for RAW Denoising
Calibration-based methods have dominated RAW image denoising under extremely low-light environments. However, these methods suffer from several main deficiencies: 1) the calibration procedure is laborious and time-consuming, 2) denoisers for different cameras are difficult to transfer, and 3) the discrepancy between synthetic noise and real noise is enlarged by high digital gain. To overcome the above shortcomings, we propose a calibration-free pipeline for Lighting Every Drakness (LED), regardless of the digital gain or camera sensor. Instead of calibrating the noise parameters and training repeatedly, our method could adapt to a target camera only with few-shot paired data and fine-tuning. In addition, well-designed structural modification during both stages alleviates the domain gap between synthetic and real noise without any extra computational cost. With 2 pairs for each additional digital gain (in total 6 pairs) and 0.5% iterations, our method achieves superior performance over other calibration-based methods. Our code is available at https://github.com/Srameo/LED .
Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots
The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency's upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing -deep neural networks and ensemble methods- or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.
CoMo: A novel co-moving 3D camera system
Motivated by the theoretical interest in reconstructing long 3D trajectories of individual birds in large flocks, we developed CoMo, a co-moving camera system of two synchronized high speed cameras coupled with rotational stages, which allow us to dynamically follow the motion of a target flock. With the rotation of the cameras we overcome the limitations of standard static systems that restrict the duration of the collected data to the short interval of time in which targets are in the cameras common field of view, but at the same time we change in time the external parameters of the system, which have then to be calibrated frame-by-frame. We address the calibration of the external parameters measuring the position of the cameras and their three angles of yaw, pitch and roll in the system "home" configuration (rotational stage at an angle equal to 0deg and combining this static information with the time dependent rotation due to the stages. We evaluate the robustness and accuracy of the system by comparing reconstructed and measured 3D distances in what we call 3D tests, which show a relative error of the order of 1%. The novelty of the work presented in this paper is not only on the system itself, but also on the approach we use in the tests, which we show to be a very powerful tool in detecting and fixing calibration inaccuracies and that, for this reason, may be relevant for a broad audience.
Latent Intrinsics Emerge from Training to Relight
Image relighting is the task of showing what a scene from a source image would look like if illuminated differently. Inverse graphics schemes recover an explicit representation of geometry and a set of chosen intrinsics, then relight with some form of renderer. However error control for inverse graphics is difficult, and inverse graphics methods can represent only the effects of the chosen intrinsics. This paper describes a relighting method that is entirely data-driven, where intrinsics and lighting are each represented as latent variables. Our approach produces SOTA relightings of real scenes, as measured by standard metrics. We show that albedo can be recovered from our latent intrinsics without using any example albedos, and that the albedos recovered are competitive with SOTA methods.
Paying Attention to Astronomical Transients: Introducing the Time-series Transformer for Photometric Classification
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
Instant Uncertainty Calibration of NeRFs Using a Meta-Calibrator
Although Neural Radiance Fields (NeRFs) have markedly improved novel view synthesis, accurate uncertainty quantification in their image predictions remains an open problem. The prevailing methods for estimating uncertainty, including the state-of-the-art Density-aware NeRF Ensembles (DANE) [29], quantify uncertainty without calibration. This frequently leads to over- or under-confidence in image predictions, which can undermine their real-world applications. In this paper, we propose a method which, for the first time, achieves calibrated uncertainties for NeRFs. To accomplish this, we overcome a significant challenge in adapting existing calibration techniques to NeRFs: a need to hold out ground truth images from the target scene, reducing the number of images left to train the NeRF. This issue is particularly problematic in sparse-view settings, where we can operate with as few as three images. To address this, we introduce the concept of a meta-calibrator that performs uncertainty calibration for NeRFs with a single forward pass without the need for holding out any images from the target scene. Our meta-calibrator is a neural network that takes as input the NeRF images and uncalibrated uncertainty maps and outputs a scene-specific calibration curve that corrects the NeRF's uncalibrated uncertainties. We show that the meta-calibrator can generalize on unseen scenes and achieves well-calibrated and state-of-the-art uncertainty for NeRFs, significantly beating DANE and other approaches. This opens opportunities to improve applications that rely on accurate NeRF uncertainty estimates such as next-best view planning and potentially more trustworthy image reconstruction for medical diagnosis. The code is available at https://niki-amini-naieni.github.io/instantcalibration.github.io/.
Camera Calibration through Geometric Constraints from Rotation and Projection Matrices
The process of camera calibration involves estimating the intrinsic and extrinsic parameters, which are essential for accurately performing tasks such as 3D reconstruction, object tracking and augmented reality. In this work, we propose a novel constraints-based loss for measuring the intrinsic (focal length: (f_x, f_y) and principal point: (p_x, p_y)) and extrinsic (baseline: (b), disparity: (d), translation: (t_x, t_y, t_z), and rotation specifically pitch: (theta_p)) camera parameters. Our novel constraints are based on geometric properties inherent in the camera model, including the anatomy of the projection matrix (vanishing points, image of world origin, axis planes) and the orthonormality of the rotation matrix. Thus we proposed a novel Unsupervised Geometric Constraint Loss (UGCL) via a multitask learning framework. Our methodology is a hybrid approach that employs the learning power of a neural network to estimate the desired parameters along with the underlying mathematical properties inherent in the camera projection matrix. This distinctive approach not only enhances the interpretability of the model but also facilitates a more informed learning process. Additionally, we introduce a new CVGL Camera Calibration dataset, featuring over 900 configurations of camera parameters, incorporating 63,600 image pairs that closely mirror real-world conditions. By training and testing on both synthetic and real-world datasets, our proposed approach demonstrates improvements across all parameters when compared to the state-of-the-art (SOTA) benchmarks. The code and the updated dataset can be found here: https://github.com/CVLABLUMS/CVGL-Camera-Calibration
DiPE: Deeper into Photometric Errors for Unsupervised Learning of Depth and Ego-motion from Monocular Videos
Unsupervised learning of depth and ego-motion from unlabelled monocular videos has recently drawn great attention, which avoids the use of expensive ground truth in the supervised one. It achieves this by using the photometric errors between the target view and the synthesized views from its adjacent source views as the loss. Despite significant progress, the learning still suffers from occlusion and scene dynamics. This paper shows that carefully manipulating photometric errors can tackle these difficulties better. The primary improvement is achieved by a statistical technique that can mask out the invisible or nonstationary pixels in the photometric error map and thus prevents misleading the networks. With this outlier masking approach, the depth of objects moving in the opposite direction to the camera can be estimated more accurately. To the best of our knowledge, such scenarios have not been seriously considered in the previous works, even though they pose a higher risk in applications like autonomous driving. We also propose an efficient weighted multi-scale scheme to reduce the artifacts in the predicted depth maps. Extensive experiments on the KITTI dataset show the effectiveness of the proposed approaches. The overall system achieves state-of-theart performance on both depth and ego-motion estimation.
CfA3: 185 Type Ia Supernova Light Curves from the CfA
We present multi-band photometry of 185 type-Ia supernovae (SN Ia), with over 11500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously-observed and reduced nearby SN Ia (z < 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of 0.02 mag or better in BVRIr'i' and roughly 0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SN Ia are sufficiently distinct from other SN Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.
On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines
Reliable usage of object detectors require them to be calibrated -- a crucial problem that requires careful attention. Recent approaches towards this involve (1) designing new loss functions to obtain calibrated detectors by training them from scratch, and (2) post-hoc Temperature Scaling (TS) that learns to scale the likelihood of a trained detector to output calibrated predictions. These approaches are then evaluated based on a combination of Detection Expected Calibration Error (D-ECE) and Average Precision. In this work, via extensive analysis and insights, we highlight that these recent evaluation frameworks, evaluation metrics, and the use of TS have notable drawbacks leading to incorrect conclusions. As a step towards fixing these issues, we propose a principled evaluation framework to jointly measure calibration and accuracy of object detectors. We also tailor efficient and easy-to-use post-hoc calibration approaches such as Platt Scaling and Isotonic Regression specifically for object detection task. Contrary to the common notion, our experiments show that once designed and evaluated properly, post-hoc calibrators, which are extremely cheap to build and use, are much more powerful and effective than the recent train-time calibration methods. To illustrate, D-DETR with our post-hoc Isotonic Regression calibrator outperforms the recent train-time state-of-the-art calibration method Cal-DETR by more than 7 D-ECE on the COCO dataset. Additionally, we propose improved versions of the recently proposed Localization-aware ECE and show the efficacy of our method on these metrics as well. Code is available at: https://github.com/fiveai/detection_calibration.
Object Dimension Extraction for Environment Mapping with Low Cost Cameras Fused with Laser Ranging
It is essential to have a method to map an unknown terrain for various applications. For places where human access is not possible, a method should be proposed to identify the environment. Exploration, disaster relief, transportation and many other purposes would be convenient if a map of the environment is available. Replicating the human vision system using stereo cameras would be an optimum solution. In this work, we have used laser ranging based technique fused with stereo cameras to extract dimension of objects for mapping. The distortions were calibrated using mathematical model of the camera. By means of Semi Global Block Matching [1] disparity map was generated and reduces the noise using novel noise reduction method of disparity map by dilation. The Data from the Laser Range Finder (LRF) and noise reduced vision data has been used to identify the object parameters.
Ref-NeuS: Ambiguity-Reduced Neural Implicit Surface Learning for Multi-View Reconstruction with Reflection
Neural implicit surface learning has shown significant progress in multi-view 3D reconstruction, where an object is represented by multilayer perceptrons that provide continuous implicit surface representation and view-dependent radiance. However, current methods often fail to accurately reconstruct reflective surfaces, leading to severe ambiguity. To overcome this issue, we propose Ref-NeuS, which aims to reduce ambiguity by attenuating the effect of reflective surfaces. Specifically, we utilize an anomaly detector to estimate an explicit reflection score with the guidance of multi-view context to localize reflective surfaces. Afterward, we design a reflection-aware photometric loss that adaptively reduces ambiguity by modeling rendered color as a Gaussian distribution, with the reflection score representing the variance. We show that together with a reflection direction-dependent radiance, our model achieves high-quality surface reconstruction on reflective surfaces and outperforms the state-of-the-arts by a large margin. Besides, our model is also comparable on general surfaces.
Volumetric Capture of Humans with a Single RGBD Camera via Semi-Parametric Learning
Volumetric (4D) performance capture is fundamental for AR/VR content generation. Whereas previous work in 4D performance capture has shown impressive results in studio settings, the technology is still far from being accessible to a typical consumer who, at best, might own a single RGBD sensor. Thus, in this work, we propose a method to synthesize free viewpoint renderings using a single RGBD camera. The key insight is to leverage previously seen "calibration" images of a given user to extrapolate what should be rendered in a novel viewpoint from the data available in the sensor. Given these past observations from multiple viewpoints, and the current RGBD image from a fixed view, we propose an end-to-end framework that fuses both these data sources to generate novel renderings of the performer. We demonstrate that the method can produce high fidelity images, and handle extreme changes in subject pose and camera viewpoints. We also show that the system generalizes to performers not seen in the training data. We run exhaustive experiments demonstrating the effectiveness of the proposed semi-parametric model (i.e. calibration images available to the neural network) compared to other state of the art machine learned solutions. Further, we compare the method with more traditional pipelines that employ multi-view capture. We show that our framework is able to achieve compelling results, with substantially less infrastructure than previously required.
Euclid. II. The VIS Instrument
This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.
Physics-based Indirect Illumination for Inverse Rendering
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images. To model the illumination of a scene, existing inverse rendering works either completely ignore the indirect illumination or model it by coarse approximations, leading to sub-optimal illumination, geometry, and material prediction of the scene. In this work, we propose a physics-based illumination model that first locates surface points through an efficient refined sphere tracing algorithm, then explicitly traces the incoming indirect lights at each surface point based on reflection. Then, we estimate each identified indirect light through an efficient neural network. Moreover, we utilize the Leibniz's integral rule to resolve non-differentiability in the proposed illumination model caused by boundary lights inspired by differentiable irradiance in computer graphics. As a result, the proposed differentiable illumination model can be learned end-to-end together with geometry and materials estimation. As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method performs favorably against existing inverse rendering methods on novel view synthesis and inverse rendering.
Seeing the World in a Bag of Chips
We address the dual problems of novel view synthesis and environment reconstruction from hand-held RGBD sensors. Our contributions include 1) modeling highly specular objects, 2) modeling inter-reflections and Fresnel effects, and 3) enabling surface light field reconstruction with the same input needed to reconstruct shape alone. In cases where scene surface has a strong mirror-like material component, we generate highly detailed environment images, revealing room composition, objects, people, buildings, and trees visible through windows. Our approach yields state of the art view synthesis techniques, operates on low dynamic range imagery, and is robust to geometric and calibration errors.
LoRA3D: Low-Rank Self-Calibration of 3D Geometric Foundation Models
Emerging 3D geometric foundation models, such as DUSt3R, offer a promising approach for in-the-wild 3D vision tasks. However, due to the high-dimensional nature of the problem space and scarcity of high-quality 3D data, these pre-trained models still struggle to generalize to many challenging circumstances, such as limited view overlap or low lighting. To address this, we propose LoRA3D, an efficient self-calibration pipeline to specialize the pre-trained models to target scenes using their own multi-view predictions. Taking sparse RGB images as input, we leverage robust optimization techniques to refine multi-view predictions and align them into a global coordinate frame. In particular, we incorporate prediction confidence into the geometric optimization process, automatically re-weighting the confidence to better reflect point estimation accuracy. We use the calibrated confidence to generate high-quality pseudo labels for the calibrating views and use low-rank adaptation (LoRA) to fine-tune the models on the pseudo-labeled data. Our method does not require any external priors or manual labels. It completes the self-calibration process on a single standard GPU within just 5 minutes. Each low-rank adapter requires only 18MB of storage. We evaluated our method on more than 160 scenes from the Replica, TUM and Waymo Open datasets, achieving up to 88% performance improvement on 3D reconstruction, multi-view pose estimation and novel-view rendering.
EverLight: Indoor-Outdoor Editable HDR Lighting Estimation
Because of the diversity in lighting environments, existing illumination estimation techniques have been designed explicitly on indoor or outdoor environments. Methods have focused specifically on capturing accurate energy (e.g., through parametric lighting models), which emphasizes shading and strong cast shadows; or producing plausible texture (e.g., with GANs), which prioritizes plausible reflections. Approaches which provide editable lighting capabilities have been proposed, but these tend to be with simplified lighting models, offering limited realism. In this work, we propose to bridge the gap between these recent trends in the literature, and propose a method which combines a parametric light model with 360{\deg} panoramas, ready to use as HDRI in rendering engines. We leverage recent advances in GAN-based LDR panorama extrapolation from a regular image, which we extend to HDR using parametric spherical gaussians. To achieve this, we introduce a novel lighting co-modulation method that injects lighting-related features throughout the generator, tightly coupling the original or edited scene illumination within the panorama generation process. In our representation, users can easily edit light direction, intensity, number, etc. to impact shading while providing rich, complex reflections while seamlessly blending with the edits. Furthermore, our method encompasses indoor and outdoor environments, demonstrating state-of-the-art results even when compared to domain-specific methods.
Perspective Fields for Single Image Camera Calibration
Geometric camera calibration is often required for applications that understand the perspective of the image. We propose perspective fields as a representation that models the local perspective properties of an image. Perspective Fields contain per-pixel information about the camera view, parameterized as an up vector and a latitude value. This representation has a number of advantages as it makes minimal assumptions about the camera model and is invariant or equivariant to common image editing operations like cropping, warping, and rotation. It is also more interpretable and aligned with human perception. We train a neural network to predict Perspective Fields and the predicted Perspective Fields can be converted to calibration parameters easily. We demonstrate the robustness of our approach under various scenarios compared with camera calibration-based methods and show example applications in image compositing.
LightDepth: Single-View Depth Self-Supervision from Illumination Decline
Single-view depth estimation can be remarkably effective if there is enough ground-truth depth data for supervised training. However, there are scenarios, especially in medicine in the case of endoscopies, where such data cannot be obtained. In such cases, multi-view self-supervision and synthetic-to-real transfer serve as alternative approaches, however, with a considerable performance reduction in comparison to supervised case. Instead, we propose a single-view self-supervised method that achieves a performance similar to the supervised case. In some medical devices, such as endoscopes, the camera and light sources are co-located at a small distance from the target surfaces. Thus, we can exploit that, for any given albedo and surface orientation, pixel brightness is inversely proportional to the square of the distance to the surface, providing a strong single-view self-supervisory signal. In our experiments, our self-supervised models deliver accuracies comparable to those of fully supervised ones, while being applicable without depth ground-truth data.
Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk
The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.
Self-Calibrating Gaussian Splatting for Large Field of View Reconstruction
In this paper, we present a self-calibrating framework that jointly optimizes camera parameters, lens distortion and 3D Gaussian representations, enabling accurate and efficient scene reconstruction. In particular, our technique enables high-quality scene reconstruction from Large field-of-view (FOV) imagery taken with wide-angle lenses, allowing the scene to be modeled from a smaller number of images. Our approach introduces a novel method for modeling complex lens distortions using a hybrid network that combines invertible residual networks with explicit grids. This design effectively regularizes the optimization process, achieving greater accuracy than conventional camera models. Additionally, we propose a cubemap-based resampling strategy to support large FOV images without sacrificing resolution or introducing distortion artifacts. Our method is compatible with the fast rasterization of Gaussian Splatting, adaptable to a wide variety of camera lens distortion, and demonstrates state-of-the-art performance on both synthetic and real-world datasets.
Toward Planet-Wide Traffic Camera Calibration
Despite the widespread deployment of outdoor cameras, their potential for automated analysis remains largely untapped due, in part, to calibration challenges. The absence of precise camera calibration data, including intrinsic and extrinsic parameters, hinders accurate real-world distance measurements from captured videos. To address this, we present a scalable framework that utilizes street-level imagery to reconstruct a metric 3D model, facilitating precise calibration of in-the-wild traffic cameras. Notably, our framework achieves 3D scene reconstruction and accurate localization of over 100 global traffic cameras and is scalable to any camera with sufficient street-level imagery. For evaluation, we introduce a dataset of 20 fully calibrated traffic cameras, demonstrating our method's significant enhancements over existing automatic calibration techniques. Furthermore, we highlight our approach's utility in traffic analysis by extracting insights via 3D vehicle reconstruction and speed measurement, thereby opening up the potential of using outdoor cameras for automated analysis.
Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate (eta=17.53%). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.
The Carnegie Supernova Project I: Third Photometry Data Release of Low-Redshift Type Ia Supernovae and Other White Dwarf Explosions
We present final natural system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z = 0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. (1998) standards in the CSP-I natural system is presented.
The DESI PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) Mock Challenge
The PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of galaxy properties, such as stellar mass (M_*), star formation rate ({rm SFR}), stellar metallicity (Z_{rm MW}), and stellar age (t_{rm age, MW}), for >10 million galaxies of the DESI Bright Galaxy Survey. Full posterior distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution (SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model, Bayesian inference framework, and methodology of PROVABGS. Furthermore, we apply the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-GALAXIES semi-analytic model. We compare the inferred galaxy properties to the true galaxy properties of the simulation using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true M_*, {rm SFR}, Z_{rm MW}, and t_{rm age, MW} of the simulated galaxies. However, the priors on galaxy properties induced by the SED model have a significant impact on the posteriors. They impose a {rm SFR}{>}10^{-1} M_odot/{rm yr} lower bound on {rm SFR}, a {sim}0.3 dex bias on log Z_{rm MW} for galaxies with low spectral signal-to-noise, and t_{rm age, MW} < 8,{rm Gyr} upper bound on stellar age. This work also demonstrates that a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and validated in this work, PROVABGS will maximize information extracted from DESI observations and provide a probabilistic value-added galaxy catalog that will extend current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses.
Robust 360-8PA: Redesigning The Normalized 8-point Algorithm for 360-FoV Images
This paper presents a novel preconditioning strategy for the classic 8-point algorithm (8-PA) for estimating an essential matrix from 360-FoV images (i.e., equirectangular images) in spherical projection. To alleviate the effect of uneven key-feature distributions and outlier correspondences, which can potentially decrease the accuracy of an essential matrix, our method optimizes a non-rigid transformation to deform a spherical camera into a new spatial domain, defining a new constraint and a more robust and accurate solution for an essential matrix. Through several experiments using random synthetic points, 360-FoV, and fish-eye images, we demonstrate that our normalization can increase the camera pose accuracy by about 20% without significantly overhead the computation time. In addition, we present further benefits of our method through both a constant weighted least-square optimization that improves further the well known Gold Standard Method (GSM) (i.e., the non-linear optimization by using epipolar errors); and a relaxation of the number of RANSAC iterations, both showing that our normalization outcomes a more reliable, robust, and accurate solution.
CaesarNeRF: Calibrated Semantic Representation for Few-shot Generalizable Neural Rendering
Generalizability and few-shot learning are key challenges in Neural Radiance Fields (NeRF), often due to the lack of a holistic understanding in pixel-level rendering. We introduce CaesarNeRF, an end-to-end approach that leverages scene-level CAlibratEd SemAntic Representation along with pixel-level representations to advance few-shot, generalizable neural rendering, facilitating a holistic understanding without compromising high-quality details. CaesarNeRF explicitly models pose differences of reference views to combine scene-level semantic representations, providing a calibrated holistic understanding. This calibration process aligns various viewpoints with precise location and is further enhanced by sequential refinement to capture varying details. Extensive experiments on public datasets, including LLFF, Shiny, mip-NeRF 360, and MVImgNet, show that CaesarNeRF delivers state-of-the-art performance across varying numbers of reference views, proving effective even with a single reference image. The project page of this work can be found at https://haidongz-usc.github.io/project/caesarnerf.
Multi-Cali Anything: Dense Feature Multi-Frame Structure-from-Motion for Large-Scale Camera Array Calibration
Calibrating large-scale camera arrays, such as those in dome-based setups, is time-intensive and typically requires dedicated captures of known patterns. While extrinsics in such arrays are fixed due to the physical setup, intrinsics often vary across sessions due to factors like lens adjustments or temperature changes. In this paper, we propose a dense-feature-driven multi-frame calibration method that refines intrinsics directly from scene data, eliminating the necessity for additional calibration captures. Our approach enhances traditional Structure-from-Motion (SfM) pipelines by introducing an extrinsics regularization term to progressively align estimated extrinsics with ground-truth values, a dense feature reprojection term to reduce keypoint errors by minimizing reprojection loss in the feature space, and an intrinsics variance term for joint optimization across multiple frames. Experiments on the Multiface dataset show that our method achieves nearly the same precision as dedicated calibration processes, and significantly enhances intrinsics and 3D reconstruction accuracy. Fully compatible with existing SfM pipelines, our method provides an efficient and practical plug-and-play solution for large-scale camera setups. Our code is publicly available at: https://github.com/YJJfish/Multi-Cali-Anything
Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition and Ray Tracing
We present a novel differentiable point-based rendering framework for material and lighting decomposition from multi-view images, enabling editing, ray-tracing, and real-time relighting of the 3D point cloud. Specifically, a 3D scene is represented as a set of relightable 3D Gaussian points, where each point is additionally associated with a normal direction, BRDF parameters, and incident lights from different directions. To achieve robust lighting estimation, we further divide incident lights of each point into global and local components, as well as view-dependent visibilities. The 3D scene is optimized through the 3D Gaussian Splatting technique while BRDF and lighting are decomposed by physically-based differentiable rendering. Moreover, we introduce an innovative point-based ray-tracing approach based on the bounding volume hierarchy for efficient visibility baking, enabling real-time rendering and relighting of 3D Gaussian points with accurate shadow effects. Extensive experiments demonstrate improved BRDF estimation and novel view rendering results compared to state-of-the-art material estimation approaches. Our framework showcases the potential to revolutionize the mesh-based graphics pipeline with a relightable, traceable, and editable rendering pipeline solely based on point cloud. Project page:https://nju-3dv.github.io/projects/Relightable3DGaussian/.
Calibrating Panoramic Depth Estimation for Practical Localization and Mapping
The absolute depth values of surrounding environments provide crucial cues for various assistive technologies, such as localization, navigation, and 3D structure estimation. We propose that accurate depth estimated from panoramic images can serve as a powerful and light-weight input for a wide range of downstream tasks requiring 3D information. While panoramic images can easily capture the surrounding context from commodity devices, the estimated depth shares the limitations of conventional image-based depth estimation; the performance deteriorates under large domain shifts and the absolute values are still ambiguous to infer from 2D observations. By taking advantage of the holistic view, we mitigate such effects in a self-supervised way and fine-tune the network with geometric consistency during the test phase. Specifically, we construct a 3D point cloud from the current depth prediction and project the point cloud at various viewpoints or apply stretches on the current input image to generate synthetic panoramas. Then we minimize the discrepancy of the 3D structure estimated from synthetic images without collecting additional data. We empirically evaluate our method in robot navigation and map-free localization where our method shows large performance enhancements. Our calibration method can therefore widen the applicability under various external conditions, serving as a key component for practical panorama-based machine vision systems.
3D Gaussian Splatting for Real-Time Radiance Field Rendering
Radiance Field methods have recently revolutionized novel-view synthesis of scenes captured with multiple photos or videos. However, achieving high visual quality still requires neural networks that are costly to train and render, while recent faster methods inevitably trade off speed for quality. For unbounded and complete scenes (rather than isolated objects) and 1080p resolution rendering, no current method can achieve real-time display rates. We introduce three key elements that allow us to achieve state-of-the-art visual quality while maintaining competitive training times and importantly allow high-quality real-time (>= 30 fps) novel-view synthesis at 1080p resolution. First, starting from sparse points produced during camera calibration, we represent the scene with 3D Gaussians that preserve desirable properties of continuous volumetric radiance fields for scene optimization while avoiding unnecessary computation in empty space; Second, we perform interleaved optimization/density control of the 3D Gaussians, notably optimizing anisotropic covariance to achieve an accurate representation of the scene; Third, we develop a fast visibility-aware rendering algorithm that supports anisotropic splatting and both accelerates training and allows realtime rendering. We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets.
A low-cost ultraviolet-to-infrared absolute quantum efficiency characterization system of detectors
We present a low-cost ultraviolet to infrared absolute quantum efficiency detector characterization system developed using commercial off-the-shelf components. The key components of the experiment include a light source,a regulated power supply, a monochromator, an integrating sphere, and a calibrated photodiode. We provide a step-by-step procedure to construct the photon and quantum efficiency transfer curves of imaging sensors. We present results for the GSENSE 2020 BSI CMOS sensor and the Sony IMX 455 BSI CMOS sensor. As a reference for similar characterizations, we provide a list of parts and associated costs along with images of our setup.
SAMURAI: Shape And Material from Unconstrained Real-world Arbitrary Image collections
Inverse rendering of an object under entirely unknown capture conditions is a fundamental challenge in computer vision and graphics. Neural approaches such as NeRF have achieved photorealistic results on novel view synthesis, but they require known camera poses. Solving this problem with unknown camera poses is highly challenging as it requires joint optimization over shape, radiance, and pose. This problem is exacerbated when the input images are captured in the wild with varying backgrounds and illuminations. Standard pose estimation techniques fail in such image collections in the wild due to very few estimated correspondences across images. Furthermore, NeRF cannot relight a scene under any illumination, as it operates on radiance (the product of reflectance and illumination). We propose a joint optimization framework to estimate the shape, BRDF, and per-image camera pose and illumination. Our method works on in-the-wild online image collections of an object and produces relightable 3D assets for several use-cases such as AR/VR. To our knowledge, our method is the first to tackle this severely unconstrained task with minimal user interaction. Project page: https://markboss.me/publication/2022-samurai/ Video: https://youtu.be/LlYuGDjXp-8
Unsupervised Monocular Depth Perception: Focusing on Moving Objects
As a flexible passive 3D sensing means, unsupervised learning of depth from monocular videos is becoming an important research topic. It utilizes the photometric errors between the target view and the synthesized views from its adjacent source views as the loss instead of the difference from the ground truth. Occlusion and scene dynamics in real-world scenes still adversely affect the learning, despite significant progress made recently. In this paper, we show that deliberately manipulating photometric errors can efficiently deal with these difficulties better. We first propose an outlier masking technique that considers the occluded or dynamic pixels as statistical outliers in the photometric error map. With the outlier masking, the network learns the depth of objects that move in the opposite direction to the camera more accurately. To the best of our knowledge, such cases have not been seriously considered in the previous works, even though they pose a high risk in applications like autonomous driving. We also propose an efficient weighted multi-scale scheme to reduce the artifacts in the predicted depth maps. Extensive experiments on the KITTI dataset and additional experiments on the Cityscapes dataset have verified the proposed approach's effectiveness on depth or ego-motion estimation. Furthermore, for the first time, we evaluate the predicted depth on the regions of dynamic objects and static background separately for both supervised and unsupervised methods. The evaluation further verifies the effectiveness of our proposed technical approach and provides some interesting observations that might inspire future research in this direction.
Generative Multiplane Neural Radiance for 3D-Aware Image Generation
We present a method to efficiently generate 3D-aware high-resolution images that are view-consistent across multiple target views. The proposed multiplane neural radiance model, named GMNR, consists of a novel {\alpha}-guided view-dependent representation ({\alpha}-VdR) module for learning view-dependent information. The {\alpha}-VdR module, faciliated by an {\alpha}-guided pixel sampling technique, computes the view-dependent representation efficiently by learning viewing direction and position coefficients. Moreover, we propose a view-consistency loss to enforce photometric similarity across multiple views. The GMNR model can generate 3D-aware high-resolution images that are viewconsistent across multiple camera poses, while maintaining the computational efficiency in terms of both training and inference time. Experiments on three datasets demonstrate the effectiveness of the proposed modules, leading to favorable results in terms of both generation quality and inference time, compared to existing approaches. Our GMNR model generates 3D-aware images of 1024 X 1024 pixels with 17.6 FPS on a single V100. Code : https://github.com/VIROBO-15/GMNR
Gaussian in the Wild: 3D Gaussian Splatting for Unconstrained Image Collections
Novel view synthesis from unconstrained in-the-wild images remains a meaningful but challenging task. The photometric variation and transient occluders in those unconstrained images make it difficult to reconstruct the original scene accurately. Previous approaches tackle the problem by introducing a global appearance feature in Neural Radiance Fields (NeRF). However, in the real world, the unique appearance of each tiny point in a scene is determined by its independent intrinsic material attributes and the varying environmental impacts it receives. Inspired by this fact, we propose Gaussian in the wild (GS-W), a method that uses 3D Gaussian points to reconstruct the scene and introduces separated intrinsic and dynamic appearance feature for each point, capturing the unchanged scene appearance along with dynamic variation like illumination and weather. Additionally, an adaptive sampling strategy is presented to allow each Gaussian point to focus on the local and detailed information more effectively. We also reduce the impact of transient occluders using a 2D visibility map. More experiments have demonstrated better reconstruction quality and details of GS-W compared to NeRF-based methods, with a faster rendering speed. Video results and code are available at https://eastbeanzhang.github.io/GS-W/.
UrbanIR: Large-Scale Urban Scene Inverse Rendering from a Single Video
We show how to build a model that allows realistic, free-viewpoint renderings of a scene under novel lighting conditions from video. Our method -- UrbanIR: Urban Scene Inverse Rendering -- computes an inverse graphics representation from the video. UrbanIR jointly infers shape, albedo, visibility, and sun and sky illumination from a single video of unbounded outdoor scenes with unknown lighting. UrbanIR uses videos from cameras mounted on cars (in contrast to many views of the same points in typical NeRF-style estimation). As a result, standard methods produce poor geometry estimates (for example, roofs), and there are numerous ''floaters''. Errors in inverse graphics inference can result in strong rendering artifacts. UrbanIR uses novel losses to control these and other sources of error. UrbanIR uses a novel loss to make very good estimates of shadow volumes in the original scene. The resulting representations facilitate controllable editing, delivering photorealistic free-viewpoint renderings of relit scenes and inserted objects. Qualitative evaluation demonstrates strong improvements over the state-of-the-art.
A Diffusion Approach to Radiance Field Relighting using Multi-Illumination Synthesis
Relighting radiance fields is severely underconstrained for multi-view data, which is most often captured under a single illumination condition; It is especially hard for full scenes containing multiple objects. We introduce a method to create relightable radiance fields using such single-illumination data by exploiting priors extracted from 2D image diffusion models. We first fine-tune a 2D diffusion model on a multi-illumination dataset conditioned by light direction, allowing us to augment a single-illumination capture into a realistic -- but possibly inconsistent -- multi-illumination dataset from directly defined light directions. We use this augmented data to create a relightable radiance field represented by 3D Gaussian splats. To allow direct control of light direction for low-frequency lighting, we represent appearance with a multi-layer perceptron parameterized on light direction. To enforce multi-view consistency and overcome inaccuracies we optimize a per-image auxiliary feature vector. We show results on synthetic and real multi-view data under single illumination, demonstrating that our method successfully exploits 2D diffusion model priors to allow realistic 3D relighting for complete scenes. Project site https://repo-sam.inria.fr/fungraph/generative-radiance-field-relighting/
RegNet: Learning the Optimization of Direct Image-to-Image Pose Registration
Direct image-to-image alignment that relies on the optimization of photometric error metrics suffers from limited convergence range and sensitivity to lighting conditions. Deep learning approaches has been applied to address this problem by learning better feature representations using convolutional neural networks, yet still require a good initialization. In this paper, we demonstrate that the inaccurate numerical Jacobian limits the convergence range which could be improved greatly using learned approaches. Based on this observation, we propose a novel end-to-end network, RegNet, to learn the optimization of image-to-image pose registration. By jointly learning feature representation for each pixel and partial derivatives that replace handcrafted ones (e.g., numerical differentiation) in the optimization step, the neural network facilitates end-to-end optimization. The energy landscape is constrained on both the feature representation and the learned Jacobian, hence providing more flexibility for the optimization as a consequence leads to more robust and faster convergence. In a series of experiments, including a broad ablation study, we demonstrate that RegNet is able to converge for large-baseline image pairs with fewer iterations.
RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering
In this paper, we propose a novel end-to-end relightable neural inverse rendering system that achieves high-quality reconstruction of geometry and material properties, thus enabling high-quality relighting. The cornerstone of our method is a two-stage approach for learning a better factorization of scene parameters. In the first stage, we develop a reflection-aware radiance field using a neural signed distance field (SDF) as the geometry representation and deploy an MLP (multilayer perceptron) to estimate indirect illumination. In the second stage, we introduce a novel information-sharing network structure to jointly learn the radiance field and the physically based factorization of the scene. For the physically based factorization, to reduce the noise caused by Monte Carlo sampling, we apply a split-sum approximation with a simplified Disney BRDF and cube mipmap as the environment light representation. In the relighting phase, to enhance the quality of indirect illumination, we propose a second split-sum algorithm to trace secondary rays under the split-sum rendering framework. Furthermore, there is no dataset or protocol available to quantitatively evaluate the inverse rendering performance for glossy objects. To assess the quality of material reconstruction and relighting, we have created a new dataset with ground truth BRDF parameters and relighting results. Our experiments demonstrate that our algorithm achieves state-of-the-art performance in inverse rendering and relighting, with particularly strong results in the reconstruction of highly reflective objects.
DiFaReli: Diffusion Face Relighting
We present a novel approach to single-view face relighting in the wild. Handling non-diffuse effects, such as global illumination or cast shadows, has long been a challenge in face relighting. Prior work often assumes Lambertian surfaces, simplified lighting models or involves estimating 3D shape, albedo, or a shadow map. This estimation, however, is error-prone and requires many training examples with lighting ground truth to generalize well. Our work bypasses the need for accurate estimation of intrinsic components and can be trained solely on 2D images without any light stage data, multi-view images, or lighting ground truth. Our key idea is to leverage a conditional diffusion implicit model (DDIM) for decoding a disentangled light encoding along with other encodings related to 3D shape and facial identity inferred from off-the-shelf estimators. We also propose a novel conditioning technique that eases the modeling of the complex interaction between light and geometry by using a rendered shading reference to spatially modulate the DDIM. We achieve state-of-the-art performance on standard benchmark Multi-PIE and can photorealistically relight in-the-wild images. Please visit our page: https://diffusion-face-relighting.github.io
Driver Attention Tracking and Analysis
We propose a novel method to estimate a driver's points-of-gaze using a pair of ordinary cameras mounted on the windshield and dashboard of a car. This is a challenging problem due to the dynamics of traffic environments with 3D scenes of unknown depths. This problem is further complicated by the volatile distance between the driver and the camera system. To tackle these challenges, we develop a novel convolutional network that simultaneously analyzes the image of the scene and the image of the driver's face. This network has a camera calibration module that can compute an embedding vector that represents the spatial configuration between the driver and the camera system. This calibration module improves the overall network's performance, which can be jointly trained end to end. We also address the lack of annotated data for training and evaluation by introducing a large-scale driving dataset with point-of-gaze annotations. This is an in situ dataset of real driving sessions in an urban city, containing synchronized images of the driving scene as well as the face and gaze of the driver. Experiments on this dataset show that the proposed method outperforms various baseline methods, having the mean prediction error of 29.69 pixels, which is relatively small compared to the 1280{times}720 resolution of the scene camera.
PRM: Photometric Stereo based Large Reconstruction Model
We propose PRM, a novel photometric stereo based large reconstruction model to reconstruct high-quality meshes with fine-grained local details. Unlike previous large reconstruction models that prepare images under fixed and simple lighting as both input and supervision, PRM renders photometric stereo images by varying materials and lighting for the purposes, which not only improves the precise local details by providing rich photometric cues but also increases the model robustness to variations in the appearance of input images. To offer enhanced flexibility of images rendering, we incorporate a real-time physically-based rendering (PBR) method and mesh rasterization for online images rendering. Moreover, in employing an explicit mesh as our 3D representation, PRM ensures the application of differentiable PBR, which supports the utilization of multiple photometric supervisions and better models the specular color for high-quality geometry optimization. Our PRM leverages photometric stereo images to achieve high-quality reconstructions with fine-grained local details, even amidst sophisticated image appearances. Extensive experiments demonstrate that PRM significantly outperforms other models.
Revisiting the Classics: On the Optical Colours of Novae as Standard Crayons
We present a systematic study of the BVRI colours of novae over the course of their eruptions. Where possible, interstellar reddening was measured using the equivalent widths of Diffuse Interstellar Bands (DIBs). Some novae lack spectra with sufficient resolution and signal-to-noise ratios; therefore, we supplement as necessary with 3D and 2D dust maps. Utilising only novae with DIB- or 3D-map-based E(B-V), we find an average intrinsic (B-V)_0 colour of novae at V-band light curve peak of 0.18 with a standard deviation of 0.31, based on a sample of 23 novae. When the light curve has declined by 2 magnitudes (t_2), we find an average (B-V)_0 = -0.02 with a standard deviation of 0.19. These average colours are consistent with previous findings, although the spreads are larger than previously found due to more accurate reddening estimates. We also examined the intrinsic (R-I)_0 and (V-R)_0 colours across our sample. These colours behave similarly to (B-V)_0, except that the (V-R)_0 colour gets redder after peak, likely due to the contributions of emission line flux. We searched for correlations between nova colours and t_2, peak V-band absolute magnitude, and GeV gamma-ray luminosity, but find no statistically significant correlations. Nova colours can therefore be used as standard "crayons" to estimate interstellar reddening from photometry alone, with 0.2--0.3 mag uncertainty. We present a novel Bayesian strategy for estimating distances to Galactic novae based on these E(B-V) measurements, independent of assumptions about luminosity, built using 3D dust maps and a stellar mass model of the Milky Way.
MVPSNet: Fast Generalizable Multi-view Photometric Stereo
We propose a fast and generalizable solution to Multi-view Photometric Stereo (MVPS), called MVPSNet. The key to our approach is a feature extraction network that effectively combines images from the same view captured under multiple lighting conditions to extract geometric features from shading cues for stereo matching. We demonstrate these features, termed `Light Aggregated Feature Maps' (LAFM), are effective for feature matching even in textureless regions, where traditional multi-view stereo methods fail. Our method produces similar reconstruction results to PS-NeRF, a state-of-the-art MVPS method that optimizes a neural network per-scene, while being 411times faster (105 seconds vs. 12 hours) in inference. Additionally, we introduce a new synthetic dataset for MVPS, sMVPS, which is shown to be effective to train a generalizable MVPS method.
AstroM^3: A self-supervised multimodal model for astronomy
While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM^3, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an n>2 mode model in astronomy. Extensions to n>3 modes is naturally anticipated with this approach.
Beyond Classification: Definition and Density-based Estimation of Calibration in Object Detection
Despite their impressive predictive performance in various computer vision tasks, deep neural networks (DNNs) tend to make overly confident predictions, which hinders their widespread use in safety-critical applications. While there have been recent attempts to calibrate DNNs, most of these efforts have primarily been focused on classification tasks, thus neglecting DNN-based object detectors. Although several recent works addressed calibration for object detection and proposed differentiable penalties, none of them are consistent estimators of established concepts in calibration. In this work, we tackle the challenge of defining and estimating calibration error specifically for this task. In particular, we adapt the definition of classification calibration error to handle the nuances associated with object detection, and predictions in structured output spaces more generally. Furthermore, we propose a consistent and differentiable estimator of the detection calibration error, utilizing kernel density estimation. Our experiments demonstrate the effectiveness of our estimator against competing train-time and post-hoc calibration methods, while maintaining similar detection performance.
Overview of the DESI Legacy Imaging Surveys
The DESI Legacy Imaging Surveys are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image approximately 14,000 deg^2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12 and 22 micorons) observed by the Wide-field Infrared Survey Explorer (WISE) satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project.
Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration
In this paper, we present DM-Calib, a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image. Monocular camera calibration is essential for many 3D vision tasks. However, most existing methods depend on handcrafted assumptions or are constrained by limited training data, resulting in poor generalization across diverse real-world images. Recent advancements in stable diffusion models, trained on massive data, have shown the ability to generate high-quality images with varied characteristics. Emerging evidence indicates that these models implicitly capture the relationship between camera focal length and image content. Building on this insight, we explore how to leverage the powerful priors of diffusion models for monocular pinhole camera calibration. Specifically, we introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics and integrates seamlessly with the diffusion framework. Using this representation, we reformulate the problem of estimating camera intrinsics as the generation of a dense Camera Image conditioned on an input image. By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation. We further demonstrate that our monocular calibration method enhances performance across various 3D tasks, including zero-shot metric depth estimation, 3D metrology, pose estimation and sparse-view reconstruction. Extensive experiments on multiple public datasets show that our approach significantly outperforms baselines and provides broad benefits to 3D vision tasks. Code is available at https://github.com/JunyuanDeng/DM-Calib.
Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting
We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.
URAvatar: Universal Relightable Gaussian Codec Avatars
We present a new approach to creating photorealistic and relightable head avatars from a phone scan with unknown illumination. The reconstructed avatars can be animated and relit in real time with the global illumination of diverse environments. Unlike existing approaches that estimate parametric reflectance parameters via inverse rendering, our approach directly models learnable radiance transfer that incorporates global light transport in an efficient manner for real-time rendering. However, learning such a complex light transport that can generalize across identities is non-trivial. A phone scan in a single environment lacks sufficient information to infer how the head would appear in general environments. To address this, we build a universal relightable avatar model represented by 3D Gaussians. We train on hundreds of high-quality multi-view human scans with controllable point lights. High-resolution geometric guidance further enhances the reconstruction accuracy and generalization. Once trained, we finetune the pretrained model on a phone scan using inverse rendering to obtain a personalized relightable avatar. Our experiments establish the efficacy of our design, outperforming existing approaches while retaining real-time rendering capability.
IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics. Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs, while still struggling with inherent ambiguities between lighting and material. On the other hand, learning-based approaches leverage rich material priors from existing 3D object datasets but face challenges with maintaining multi-view consistency. In this paper, we introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations. Our method achieves accurate and multi-view consistent estimation on surface normals and material properties. This is made possible through a novel cross-view, cross-domain attention module and an illumination-augmented, view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a new dataset that provides large-scale multi-view intrinsic data and renderings under diverse lighting conditions, supporting robust training. Extensive experiments demonstrate that IDArb outperforms state-of-the-art methods both qualitatively and quantitatively. Moreover, our approach facilitates a range of downstream tasks, including single-image relighting, photometric stereo, and 3D reconstruction, highlighting its broad applications in realistic 3D content creation.
Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery
When taking images against strong light sources, the resulting images often contain heterogeneous flare artifacts. These artifacts can importantly affect image visual quality and downstream computer vision tasks. While collecting real data pairs of flare-corrupted/flare-free images for training flare removal models is challenging, current methods utilize the direct-add approach to synthesize data. However, these methods do not consider automatic exposure and tone mapping in image signal processing pipeline (ISP), leading to the limited generalization capability of deep models training using such data. Besides, existing methods struggle to handle multiple light sources due to the different sizes, shapes and illuminance of various light sources. In this paper, we propose a solution to improve the performance of lens flare removal by revisiting the ISP and remodeling the principle of automatic exposure in the synthesis pipeline and design a more reliable light sources recovery strategy. The new pipeline approaches realistic imaging by discriminating the local and global illumination through convex combination, avoiding global illumination shifting and local over-saturation. Our strategy for recovering multiple light sources convexly averages the input and output of the neural network based on illuminance levels, thereby avoiding the need for a hard threshold in identifying light sources. We also contribute a new flare removal testing dataset containing the flare-corrupted images captured by ten types of consumer electronics. The dataset facilitates the verification of the generalization capability of flare removal methods. Extensive experiments show that our solution can effectively improve the performance of lens flare removal and push the frontier toward more general situations.
NeRF as Non-Distant Environment Emitter in Physics-based Inverse Rendering
Physics-based inverse rendering aims to jointly optimize shape, materials, and lighting from captured 2D images. Here lighting is an important part of achieving faithful light transport simulation. While the environment map is commonly used as the lighting model in inverse rendering, we show that its distant lighting assumption leads to spatial invariant lighting, which can be an inaccurate approximation in real-world inverse rendering. We propose to use NeRF as a spatially varying environment lighting model and build an inverse rendering pipeline using NeRF as the non-distant environment emitter. By comparing our method with the environment map on real and synthetic datasets, we show that our NeRF-based emitter models the scene lighting more accurately and leads to more accurate inverse rendering. Project page and video: https://nerfemitterpbir.github.io/.
NeRD: Neural Reflectance Decomposition from Image Collections
Decomposing a scene into its shape, reflectance, and illumination is a challenging but important problem in computer vision and graphics. This problem is inherently more challenging when the illumination is not a single light source under laboratory conditions but is instead an unconstrained environmental illumination. Though recent work has shown that implicit representations can be used to model the radiance field of an object, most of these techniques only enable view synthesis and not relighting. Additionally, evaluating these radiance fields is resource and time-intensive. We propose a neural reflectance decomposition (NeRD) technique that uses physically-based rendering to decompose the scene into spatially varying BRDF material properties. In contrast to existing techniques, our input images can be captured under different illumination conditions. In addition, we also propose techniques to convert the learned reflectance volume into a relightable textured mesh enabling fast real-time rendering with novel illuminations. We demonstrate the potential of the proposed approach with experiments on both synthetic and real datasets, where we are able to obtain high-quality relightable 3D assets from image collections. The datasets and code is available on the project page: https://markboss.me/publication/2021-nerd/
SynthLight: Portrait Relighting with Diffusion Model by Learning to Re-render Synthetic Faces
We introduce SynthLight, a diffusion model for portrait relighting. Our approach frames image relighting as a re-rendering problem, where pixels are transformed in response to changes in environmental lighting conditions. Using a physically-based rendering engine, we synthesize a dataset to simulate this lighting-conditioned transformation with 3D head assets under varying lighting. We propose two training and inference strategies to bridge the gap between the synthetic and real image domains: (1) multi-task training that takes advantage of real human portraits without lighting labels; (2) an inference time diffusion sampling procedure based on classifier-free guidance that leverages the input portrait to better preserve details. Our method generalizes to diverse real photographs and produces realistic illumination effects, including specular highlights and cast shadows, while preserving the subject's identity. Our quantitative experiments on Light Stage data demonstrate results comparable to state-of-the-art relighting methods. Our qualitative results on in-the-wild images showcase rich and unprecedented illumination effects. Project Page: https://vrroom.github.io/synthlight/
OpenIllumination: A Multi-Illumination Dataset for Inverse Rendering Evaluation on Real Objects
We introduce OpenIllumination, a real-world dataset containing over 108K images of 64 objects with diverse materials, captured under 72 camera views and a large number of different illuminations. For each image in the dataset, we provide accurate camera parameters, illumination ground truth, and foreground segmentation masks. Our dataset enables the quantitative evaluation of most inverse rendering and material decomposition methods for real objects. We examine several state-of-the-art inverse rendering methods on our dataset and compare their performances. The dataset and code can be found on the project page: https://oppo-us-research.github.io/OpenIllumination.
SwitchLight: Co-design of Physics-driven Architecture and Pre-training Framework for Human Portrait Relighting
We introduce a co-designed approach for human portrait relighting that combines a physics-guided architecture with a pre-training framework. Drawing on the Cook-Torrance reflectance model, we have meticulously configured the architecture design to precisely simulate light-surface interactions. Furthermore, to overcome the limitation of scarce high-quality lightstage data, we have developed a self-supervised pre-training strategy. This novel combination of accurate physical modeling and expanded training dataset establishes a new benchmark in relighting realism.
UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation
Recent advancements in text-to-3D generation technology have significantly advanced the conversion of textual descriptions into imaginative well-geometrical and finely textured 3D objects. Despite these developments, a prevalent limitation arises from the use of RGB data in diffusion or reconstruction models, which often results in models with inherent lighting and shadows effects that detract from their realism, thereby limiting their usability in applications that demand accurate relighting capabilities. To bridge this gap, we present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors. Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model. Extensive evaluations demonstrate that UniDream surpasses existing methods in generating 3D objects with clearer albedo textures, smoother surfaces, enhanced realism, and superior relighting capabilities.
NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field Indirect Illumination
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images. In order to achieve better decomposition, recent approaches attempt to model indirect illuminations reflected from different materials via Spherical Gaussians (SG), which, however, tends to blur the high-frequency reflection details. In this paper, we propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images, while considering near-field indirect illumination. In a nutshell, we introduce the Monte Carlo sampling based path tracing and cache the indirect illumination as neural radiance, enabling a physics-faithful and easy-to-optimize inverse rendering method. To enhance efficiency and practicality, we leverage SG to represent the smooth environment illuminations and apply importance sampling techniques. To supervise indirect illuminations from unobserved directions, we develop a novel radiance consistency constraint between implicit neural radiance and path tracing results of unobserved rays along with the joint optimization of materials and illuminations, thus significantly improving the decomposition performance. Extensive experiments demonstrate that our method outperforms the state-of-the-art on multiple synthetic and real datasets, especially in terms of inter-reflection decomposition.Our code and data are available at https://woolseyyy.github.io/nefii/.
GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading to achieve photo-realistic novel view synthesis and relighting. In inverse rendering, accurately modeling the shading processes of objects is essential for achieving high-fidelity results. Therefore, it is critical to incorporate global illumination to account for indirect lighting that reaches an object after multiple bounces across the scene. Previous 3DGS-based methods have attempted to model indirect lighting by characterizing indirect illumination as learnable lighting volumes or additional attributes of each Gaussian, while using baked occlusion to represent shadow effects. These methods, however, fail to accurately model the complex physical interactions between light and objects, making it impossible to construct realistic indirect illumination during relighting. To address this limitation, we propose to calculate indirect lighting using efficient path tracing with deferred shading. In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene. Then, we perform physically-based rendering (PBR) only for direct lighting. With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing. Our method effectively models indirect lighting under any given lighting conditions, thereby achieving better novel view synthesis and relighting. Quantitative and qualitative results show that our GI-GS outperforms existing baselines in both rendering quality and efficiency.
A Dataset for Exploring Stellar Activity in Astrometric Measurements from SDO Images of the Sun
We present a dataset for investigating the impact of stellar activity on astrometric measurements using NASA's Solar Dynamics Observatory (SDO) images of the Sun. The sensitivity of astrometry for detecting exoplanets is limited by stellar activity (e.g. starspots), which causes the measured "center of flux" of the star to deviate from the true, geometric, center, producing false positive detections. We analyze Helioseismic and Magnetic Imager continuum image data obtained from SDO between July 2015 and December 2022 to examine this "astrometric jitter" phenomenon for the Sun. We employ data processing procedures to clean the images and compute the time series of the sunspot-induced shift between the center of flux and the geometric center. The resulting time series show quasiperiodic variations up to 0.05% of the Sun's radius at its rotation period.
GS^3: Efficient Relighting with Triple Gaussian Splatting
We present a spatial and angular Gaussian based representation and a triple splatting process, for real-time, high-quality novel lighting-and-view synthesis from multi-view point-lit input images. To describe complex appearance, we employ a Lambertian plus a mixture of angular Gaussians as an effective reflectance function for each spatial Gaussian. To generate self-shadow, we splat all spatial Gaussians towards the light source to obtain shadow values, which are further refined by a small multi-layer perceptron. To compensate for other effects like global illumination, another network is trained to compute and add a per-spatial-Gaussian RGB tuple. The effectiveness of our representation is demonstrated on 30 samples with a wide variation in geometry (from solid to fluffy) and appearance (from translucent to anisotropic), as well as using different forms of input data, including rendered images of synthetic/reconstructed objects, photographs captured with a handheld camera and a flash, or from a professional lightstage. We achieve a training time of 40-70 minutes and a rendering speed of 90 fps on a single commodity GPU. Our results compare favorably with state-of-the-art techniques in terms of quality/performance. Our code and data are publicly available at https://GSrelight.github.io/.
Fast and Uncertainty-Aware SVBRDF Recovery from Multi-View Capture using Frequency Domain Analysis
Relightable object acquisition is a key challenge in simplifying digital asset creation. Complete reconstruction of an object typically requires capturing hundreds to thousands of photographs under controlled illumination, with specialized equipment. The recent progress in differentiable rendering improved the quality and accessibility of inverse rendering optimization. Nevertheless, under uncontrolled illumination and unstructured viewpoints, there is no guarantee that the observations contain enough information to reconstruct the appearance properties of the captured object. We thus propose to consider the acquisition process from a signal-processing perspective. Given an object's geometry and a lighting environment, we estimate the properties of the materials on the object's surface in seconds. We do so by leveraging frequency domain analysis, considering the recovery of material properties as a deconvolution, enabling fast error estimation. We then quantify the uncertainty of the estimation, based on the available data, highlighting the areas for which priors or additional samples would be required for improved acquisition quality. We compare our approach to previous work and quantitatively evaluate our results, showing similar quality as previous work in a fraction of the time, and providing key information about the certainty of the results.
IllumiNeRF: 3D Relighting without Inverse Rendering
Existing methods for relightable view synthesis -- using a set of images of an object under unknown lighting to recover a 3D representation that can be rendered from novel viewpoints under a target illumination -- are based on inverse rendering, and attempt to disentangle the object geometry, materials, and lighting that explain the input images. Furthermore, this typically involves optimization through differentiable Monte Carlo rendering, which is brittle and computationally-expensive. In this work, we propose a simpler approach: we first relight each input image using an image diffusion model conditioned on lighting and then reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting. We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks. Please see our project page at https://illuminerf.github.io/.
CROSSFIRE: Camera Relocalization On Self-Supervised Features from an Implicit Representation
Beyond novel view synthesis, Neural Radiance Fields are useful for applications that interact with the real world. In this paper, we use them as an implicit map of a given scene and propose a camera relocalization algorithm tailored for this representation. The proposed method enables to compute in real-time the precise position of a device using a single RGB camera, during its navigation. In contrast with previous work, we do not rely on pose regression or photometric alignment but rather use dense local features obtained through volumetric rendering which are specialized on the scene with a self-supervised objective. As a result, our algorithm is more accurate than competitors, able to operate in dynamic outdoor environments with changing lightning conditions and can be readily integrated in any volumetric neural renderer.
RRM: Relightable assets using Radiance guided Material extraction
Synthesizing NeRFs under arbitrary lighting has become a seminal problem in the last few years. Recent efforts tackle the problem via the extraction of physically-based parameters that can then be rendered under arbitrary lighting, but they are limited in the range of scenes they can handle, usually mishandling glossy scenes. We propose RRM, a method that can extract the materials, geometry, and environment lighting of a scene even in the presence of highly reflective objects. Our method consists of a physically-aware radiance field representation that informs physically-based parameters, and an expressive environment light structure based on a Laplacian Pyramid. We demonstrate that our contributions outperform the state-of-the-art on parameter retrieval tasks, leading to high-fidelity relighting and novel view synthesis on surfacic scenes.
A9 Intersection Dataset: All You Need for Urban 3D Camera-LiDAR Roadside Perception
Intelligent Transportation Systems (ITS) allow a drastic expansion of the visibility range and decrease occlusions for autonomous driving. To obtain accurate detections, detailed labeled sensor data for training is required. Unfortunately, high-quality 3D labels of LiDAR point clouds from the infrastructure perspective of an intersection are still rare. Therefore, we provide the A9 Intersection Dataset, which consists of labeled LiDAR point clouds and synchronized camera images. Here, we recorded the sensor output from two roadside cameras and LiDARs mounted on intersection gantry bridges. The point clouds were labeled in 3D by experienced annotators. Furthermore, we provide calibration data between all sensors, which allow the projection of the 3D labels into the camera images and an accurate data fusion. Our dataset consists of 4.8k images and point clouds with more than 57.4k manually labeled 3D boxes. With ten object classes, it has a high diversity of road users in complex driving maneuvers, such as left and right turns, overtaking, and U-turns. In experiments, we provided multiple baselines for the perception tasks. Overall, our dataset is a valuable contribution to the scientific community to perform complex 3D camera-LiDAR roadside perception tasks. Find data, code, and more information at https://a9-dataset.com.
Colorful Diffuse Intrinsic Image Decomposition in the Wild
Intrinsic image decomposition aims to separate the surface reflectance and the effects from the illumination given a single photograph. Due to the complexity of the problem, most prior works assume a single-color illumination and a Lambertian world, which limits their use in illumination-aware image editing applications. In this work, we separate an input image into its diffuse albedo, colorful diffuse shading, and specular residual components. We arrive at our result by gradually removing first the single-color illumination and then the Lambertian-world assumptions. We show that by dividing the problem into easier sub-problems, in-the-wild colorful diffuse shading estimation can be achieved despite the limited ground-truth datasets. Our extended intrinsic model enables illumination-aware analysis of photographs and can be used for image editing applications such as specularity removal and per-pixel white balancing.
PanDORA: Casual HDR Radiance Acquisition for Indoor Scenes
Most novel view synthesis methods such as NeRF are unable to capture the true high dynamic range (HDR) radiance of scenes since they are typically trained on photos captured with standard low dynamic range (LDR) cameras. While the traditional exposure bracketing approach which captures several images at different exposures has recently been adapted to the multi-view case, we find such methods to fall short of capturing the full dynamic range of indoor scenes, which includes very bright light sources. In this paper, we present PanDORA: a PANoramic Dual-Observer Radiance Acquisition system for the casual capture of indoor scenes in high dynamic range. Our proposed system comprises two 360{\deg} cameras rigidly attached to a portable tripod. The cameras simultaneously acquire two 360{\deg} videos: one at a regular exposure and the other at a very fast exposure, allowing a user to simply wave the apparatus casually around the scene in a matter of minutes. The resulting images are fed to a NeRF-based algorithm that reconstructs the scene's full high dynamic range. Compared to HDR baselines from previous work, our approach reconstructs the full HDR radiance of indoor scenes without sacrificing the visual quality while retaining the ease of capture from recent NeRF-like approaches.
A Survey on Intrinsic Images: Delving Deep Into Lambert and Beyond
Intrinsic imaging or intrinsic image decomposition has traditionally been described as the problem of decomposing an image into two layers: a reflectance, the albedo invariant color of the material; and a shading, produced by the interaction between light and geometry. Deep learning techniques have been broadly applied in recent years to increase the accuracy of those separations. In this survey, we overview those results in context of well-known intrinsic image data sets and relevant metrics used in the literature, discussing their suitability to predict a desirable intrinsic image decomposition. Although the Lambertian assumption is still a foundational basis for many methods, we show that there is increasing awareness on the potential of more sophisticated physically-principled components of the image formation process, that is, optically accurate material models and geometry, and more complete inverse light transport estimations. We classify these methods in terms of the type of decomposition, considering the priors and models used, as well as the learning architecture and methodology driving the decomposition process. We also provide insights about future directions for research, given the recent advances in neural, inverse and differentiable rendering techniques.
Learning to Synthesize a 4D RGBD Light Field from a Single Image
We present a machine learning algorithm that takes as input a 2D RGB image and synthesizes a 4D RGBD light field (color and depth of the scene in each ray direction). For training, we introduce the largest public light field dataset, consisting of over 3300 plenoptic camera light fields of scenes containing flowers and plants. Our synthesis pipeline consists of a convolutional neural network (CNN) that estimates scene geometry, a stage that renders a Lambertian light field using that geometry, and a second CNN that predicts occluded rays and non-Lambertian effects. Our algorithm builds on recent view synthesis methods, but is unique in predicting RGBD for each light field ray and improving unsupervised single image depth estimation by enforcing consistency of ray depths that should intersect the same scene point. Please see our supplementary video at https://youtu.be/yLCvWoQLnms
NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation
We present a novel differentiable rendering framework for joint geometry, material, and lighting estimation from multi-view images. In contrast to previous methods which assume a simplified environment map or co-located flashlights, in this work, we formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF). The key insight of the proposed method is the union of the incident and outgoing light fields through physically-based rendering and inter-reflections between surfaces, making it possible to disentangle the scene geometry, material, and lighting from image observations in a physically-based manner. The proposed incident light and inter-reflection framework can be easily applied to other NeRF systems. We show that our method can not only decompose the outgoing radiance into incident lights and surface materials, but also serve as a surface refinement module that further improves the reconstruction detail of the neural surface. We demonstrate on several datasets that the proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
Exploring Multi-modal Neural Scene Representations With Applications on Thermal Imaging
Neural Radiance Fields (NeRFs) quickly evolved as the new de-facto standard for the task of novel view synthesis when trained on a set of RGB images. In this paper, we conduct a comprehensive evaluation of neural scene representations, such as NeRFs, in the context of multi-modal learning. Specifically, we present four different strategies of how to incorporate a second modality, other than RGB, into NeRFs: (1) training from scratch independently on both modalities; (2) pre-training on RGB and fine-tuning on the second modality; (3) adding a second branch; and (4) adding a separate component to predict (color) values of the additional modality. We chose thermal imaging as second modality since it strongly differs from RGB in terms of radiosity, making it challenging to integrate into neural scene representations. For the evaluation of the proposed strategies, we captured a new publicly available multi-view dataset, ThermalMix, consisting of six common objects and about 360 RGB and thermal images in total. We employ cross-modality calibration prior to data capturing, leading to high-quality alignments between RGB and thermal images. Our findings reveal that adding a second branch to NeRF performs best for novel view synthesis on thermal images while also yielding compelling results on RGB. Finally, we also show that our analysis generalizes to other modalities, including near-infrared images and depth maps. Project page: https://mert-o.github.io/ThermalNeRF/.
DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Predicting not only the target but also an accurate measure of uncertainty is important for many machine learning applications and in particular safety-critical ones. In this work we study the calibration of uncertainty prediction for regression tasks which often arise in real-world systems. We show that the existing definition for calibration of a regression uncertainty [Kuleshov et al. 2018] has severe limitations in distinguishing informative from non-informative uncertainty predictions. We propose a new definition that escapes this caveat and an evaluation method using a simple histogram-based approach. Our method clusters examples with similar uncertainty prediction and compares the prediction with the empirical uncertainty on these examples. We also propose a simple, scaling-based calibration method that preforms as well as much more complex ones. We show results on both a synthetic, controlled problem and on the object detection bounding-box regression task using the COCO and KITTI datasets.
Selection Function of Clusters in Dark Energy Survey Year 3 Data from Cross-Matching with South Pole Telescope Detections
Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection effects) and the potential detection of unvirialized objects (contamination). We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey data with the \rdmpr, algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d). For matched clusters, we augment the \rdmpr,catalog by the SPT detection significance. For unmatched objects we use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and halo mass. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant contamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured. Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring a combination of simulation and data-driven approaches.
Surface Reconstruction from Gaussian Splatting via Novel Stereo Views
The Gaussian splatting for radiance field rendering method has recently emerged as an efficient approach for accurate scene representation. It optimizes the location, size, color, and shape of a cloud of 3D Gaussian elements to visually match, after projection, or splatting, a set of given images taken from various viewing directions. And yet, despite the proximity of Gaussian elements to the shape boundaries, direct surface reconstruction of objects in the scene is a challenge. We propose a novel approach for surface reconstruction from Gaussian splatting models. Rather than relying on the Gaussian elements' locations as a prior for surface reconstruction, we leverage the superior novel-view synthesis capabilities of 3DGS. To that end, we use the Gaussian splatting model to render pairs of stereo-calibrated novel views from which we extract depth profiles using a stereo matching method. We then combine the extracted RGB-D images into a geometrically consistent surface. The resulting reconstruction is more accurate and shows finer details when compared to other methods for surface reconstruction from Gaussian splatting models, while requiring significantly less compute time compared to other surface reconstruction methods. We performed extensive testing of the proposed method on in-the-wild scenes, taken by a smartphone, showcasing its superior reconstruction abilities. Additionally, we tested the proposed method on the Tanks and Temples benchmark, and it has surpassed the current leading method for surface reconstruction from Gaussian splatting models. Project page: https://gs2mesh.github.io/.
MVLight: Relightable Text-to-3D Generation via Light-conditioned Multi-View Diffusion
Recent advancements in text-to-3D generation, building on the success of high-performance text-to-image generative models, have made it possible to create imaginative and richly textured 3D objects from textual descriptions. However, a key challenge remains in effectively decoupling light-independent and lighting-dependent components to enhance the quality of generated 3D models and their relighting performance. In this paper, we present MVLight, a novel light-conditioned multi-view diffusion model that explicitly integrates lighting conditions directly into the generation process. This enables the model to synthesize high-quality images that faithfully reflect the specified lighting environment across multiple camera views. By leveraging this capability to Score Distillation Sampling (SDS), we can effectively synthesize 3D models with improved geometric precision and relighting capabilities. We validate the effectiveness of MVLight through extensive experiments and a user study.
SOUSA: the Swift Optical/Ultraviolet Supernova Archive
The Ultra-Violet Optical Telescope on the Swift spacecraft has observed hundreds of supernovae, covering all major types and most subtypes. Here we introduce the Swift Optical/Ultraviolet Supernova Archive (SOUSA), which will contain all of the supernova images and photometry. We describe the observation and reduction procedures and how they impact the final data. We show photometry from well-observed examples of most supernova classes, whose absolute magnitudes and colors may be used to infer supernova types in the absence of a spectrum. A full understanding of the variety within classes and a robust photometric separation of the groups requires a larger sample, which will be provided by the final archive. The data from the existing Swift supernovae are also useful for planning future observations with Swift as well as future UV observatories.
Relighting Neural Radiance Fields with Shadow and Highlight Hints
This paper presents a novel neural implicit radiance representation for free viewpoint relighting from a small set of unstructured photographs of an object lit by a moving point light source different from the view position. We express the shape as a signed distance function modeled by a multi layer perceptron. In contrast to prior relightable implicit neural representations, we do not disentangle the different reflectance components, but model both the local and global reflectance at each point by a second multi layer perceptron that, in addition, to density features, the current position, the normal (from the signed distace function), view direction, and light position, also takes shadow and highlight hints to aid the network in modeling the corresponding high frequency light transport effects. These hints are provided as a suggestion, and we leave it up to the network to decide how to incorporate these in the final relit result. We demonstrate and validate our neural implicit representation on synthetic and real scenes exhibiting a wide variety of shapes, material properties, and global illumination light transport.
NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections
Neural Radiance Fields (NeRFs) typically struggle to reconstruct and render highly specular objects, whose appearance varies quickly with changes in viewpoint. Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content. Moreover, these techniques rely on large computationally-expensive neural networks to model outgoing radiance, which severely limits optimization and rendering speed. We address these issues with an approach based on ray tracing: instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts reflection rays from these points and traces them through the NeRF representation to render feature vectors which are decoded into color using a small inexpensive network. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing shiny objects, and that it is the only existing NeRF method that can synthesize photorealistic specular appearance and reflections in real-world scenes, while requiring comparable optimization time to current state-of-the-art view synthesis models.
JAGB 2.0: Improved Constraints on the J-region Asymptotic Giant Branch-based Hubble Constant from an Expanded Sample of JWST Observations
The J-region Asymptotic Giant Branch (JAGB) is an overdensity of stars in the near-infrared, attributed to carbon-rich asymptotic giant branch stars, and recently used as a standard candle for measuring extragalactic distances and the Hubble constant. Using JWST in Cycle 2, we extend JAGB measurements to 6 hosts of 9 Type Ia supernovae (SNe Ia) (NGC 2525, NGC 3147, NGC 3370, NGC 3447, NGC 5468, and NGC 5861), with two at D sim 40 Mpc, all calibrated by the maser host NGC 4258. We investigate the effects of incompleteness and find that we are unable to recover a robust JAGB measurement in one of the two most distant hosts at R sim 40 Mpc, NGC 3147. We compile all JWST JAGB observations in SNe Ia hosts, 15 galaxies hosting 18 SNe Ia, from the SH0ES and CCHP programs and employ all literature measures (mode, mean, median, model). We find no significant mean difference between these distances and those from HST Cepheids, -0.03pm0.02 (stat) pm 0.05 (sys) mag. We find a difference of 0.11 pm 0.02 mag between JAGB mode measurements in the CCHP analyses of two fields in NGC 4258, a feature also seen in two SH0ES fields (see field-to-field variations in Li et al. 2024a), indicating significant field-to-field variation of JAGB measurements in NGC 4258 which produce a large absolute calibration uncertainty. Variations are also seen in the shape of the JAGB LF across galaxies so that different measures produce different values of the Hubble constant. We look for but do not (yet) find a standardizing relation between JAGB LF skew or color dependence and the apparent variation. Using the middle result of all JAGB measures to calibrate SNe Ia yields a Hubble constant of H_0 = 73.3 pm 1.4 (stat) pm 2.0 (sys) km/s/Mpc with the systematic dominated by apparent differences across NGC 4258 calibrating fields or their measures.
MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors
We present a real-time monocular dense SLAM system designed bottom-up from MASt3R, a two-view 3D reconstruction and matching prior. Equipped with this strong prior, our system is robust on in-the-wild video sequences despite making no assumption on a fixed or parametric camera model beyond a unique camera centre. We introduce efficient methods for pointmap matching, camera tracking and local fusion, graph construction and loop closure, and second-order global optimisation. With known calibration, a simple modification to the system achieves state-of-the-art performance across various benchmarks. Altogether, we propose a plug-and-play monocular SLAM system capable of producing globally-consistent poses and dense geometry while operating at 15 FPS.
VDN-NeRF: Resolving Shape-Radiance Ambiguity via View-Dependence Normalization
We propose VDN-NeRF, a method to train neural radiance fields (NeRFs) for better geometry under non-Lambertian surface and dynamic lighting conditions that cause significant variation in the radiance of a point when viewed from different angles. Instead of explicitly modeling the underlying factors that result in the view-dependent phenomenon, which could be complex yet not inclusive, we develop a simple and effective technique that normalizes the view-dependence by distilling invariant information already encoded in the learned NeRFs. We then jointly train NeRFs for view synthesis with view-dependence normalization to attain quality geometry. Our experiments show that even though shape-radiance ambiguity is inevitable, the proposed normalization can minimize its effect on geometry, which essentially aligns the optimal capacity needed for explaining view-dependent variations. Our method applies to various baselines and significantly improves geometry without changing the volume rendering pipeline, even if the data is captured under a moving light source. Code is available at: https://github.com/BoifZ/VDN-NeRF.
A Large-Scale Outdoor Multi-modal Dataset and Benchmark for Novel View Synthesis and Implicit Scene Reconstruction
Neural Radiance Fields (NeRF) has achieved impressive results in single object scene reconstruction and novel view synthesis, which have been demonstrated on many single modality and single object focused indoor scene datasets like DTU, BMVS, and NeRF Synthetic.However, the study of NeRF on large-scale outdoor scene reconstruction is still limited, as there is no unified outdoor scene dataset for large-scale NeRF evaluation due to expensive data acquisition and calibration costs. In this paper, we propose a large-scale outdoor multi-modal dataset, OMMO dataset, containing complex land objects and scenes with calibrated images, point clouds and prompt annotations. Meanwhile, a new benchmark for several outdoor NeRF-based tasks is established, such as novel view synthesis, surface reconstruction, and multi-modal NeRF. To create the dataset, we capture and collect a large number of real fly-view videos and select high-quality and high-resolution clips from them. Then we design a quality review module to refine images, remove low-quality frames and fail-to-calibrate scenes through a learning-based automatic evaluation plus manual review. Finally, a number of volunteers are employed to add the text descriptions for each scene and key-frame to meet the potential multi-modal requirements in the future. Compared with existing NeRF datasets, our dataset contains abundant real-world urban and natural scenes with various scales, camera trajectories, and lighting conditions. Experiments show that our dataset can benchmark most state-of-the-art NeRF methods on different tasks. We will release the dataset and model weights very soon.
LightSim: Neural Lighting Simulation for Urban Scenes
Different outdoor illumination conditions drastically alter the appearance of urban scenes, and they can harm the performance of image-based robot perception systems if not seen during training. Camera simulation provides a cost-effective solution to create a large dataset of images captured under different lighting conditions. Towards this goal, we propose LightSim, a neural lighting camera simulation system that enables diverse, realistic, and controllable data generation. LightSim automatically builds lighting-aware digital twins at scale from collected raw sensor data and decomposes the scene into dynamic actors and static background with accurate geometry, appearance, and estimated scene lighting. These digital twins enable actor insertion, modification, removal, and rendering from a new viewpoint, all in a lighting-aware manner. LightSim then combines physically-based and learnable deferred rendering to perform realistic relighting of modified scenes, such as altering the sun location and modifying the shadows or changing the sun brightness, producing spatially- and temporally-consistent camera videos. Our experiments show that LightSim generates more realistic relighting results than prior work. Importantly, training perception models on data generated by LightSim can significantly improve their performance.
Aperture Diffraction for Compact Snapshot Spectral Imaging
We demonstrate a compact, cost-effective snapshot spectral imaging system named Aperture Diffraction Imaging Spectrometer (ADIS), which consists only of an imaging lens with an ultra-thin orthogonal aperture mask and a mosaic filter sensor, requiring no additional physical footprint compared to common RGB cameras. Then we introduce a new optical design that each point in the object space is multiplexed to discrete encoding locations on the mosaic filter sensor by diffraction-based spatial-spectral projection engineering generated from the orthogonal mask. The orthogonal projection is uniformly accepted to obtain a weakly calibration-dependent data form to enhance modulation robustness. Meanwhile, the Cascade Shift-Shuffle Spectral Transformer (CSST) with strong perception of the diffraction degeneration is designed to solve a sparsity-constrained inverse problem, realizing the volume reconstruction from 2D measurements with Large amount of aliasing. Our system is evaluated by elaborating the imaging optical theory and reconstruction algorithm with demonstrating the experimental imaging under a single exposure. Ultimately, we achieve the sub-super-pixel spatial resolution and high spectral resolution imaging. The code will be available at: https://github.com/Krito-ex/CSST.
GCC: Generative Color Constancy via Diffusing a Color Checker
Color constancy methods often struggle to generalize across different camera sensors due to varying spectral sensitivities. We present GCC, which leverages diffusion models to inpaint color checkers into images for illumination estimation. Our key innovations include (1) a single-step deterministic inference approach that inpaints color checkers reflecting scene illumination, (2) a Laplacian decomposition technique that preserves checker structure while allowing illumination-dependent color adaptation, and (3) a mask-based data augmentation strategy for handling imprecise color checker annotations. GCC demonstrates superior robustness in cross-camera scenarios, achieving state-of-the-art worst-25% error rates of 5.15{\deg} and 4.32{\deg} in bi-directional evaluations. These results highlight our method's stability and generalization capability across different camera characteristics without requiring sensor-specific training, making it a versatile solution for real-world applications.
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
Due to depth ambiguities and occlusions, lifting 2D poses to 3D is a highly ill-posed problem. Well-calibrated distributions of possible poses can make these ambiguities explicit and preserve the resulting uncertainty for downstream tasks. This study shows that previous attempts, which account for these ambiguities via multiple hypotheses generation, produce miscalibrated distributions. We identify that miscalibration can be attributed to the use of sample-based metrics such as minMPJPE. In a series of simulations, we show that minimizing minMPJPE, as commonly done, should converge to the correct mean prediction. However, it fails to correctly capture the uncertainty, thus resulting in a miscalibrated distribution. To mitigate this problem, we propose an accurate and well-calibrated model called Conditional Graph Normalizing Flow (cGNFs). Our model is structured such that a single cGNF can estimate both conditional and marginal densities within the same model - effectively solving a zero-shot density estimation problem. We evaluate cGNF on the Human~3.6M dataset and show that cGNF provides a well-calibrated distribution estimate while being close to state-of-the-art in terms of overall minMPJPE. Furthermore, cGNF outperforms previous methods on occluded joints while it remains well-calibrated.
Solar variability in the Mg II h and k lines
Solar irradiance and its variations in the ultraviolet (UV) control the photochemistry in Earth's atmosphere and influence Earth's climate. The variability of Mg II h and k core-to-wing ratio, also known as the Mg II index, is highly correlated with the solar UV irradiance variability. Because of this, Mg II index is routinely used as a proxy for solar UV irradiance variability, which can help to get insights into the influence of solar UV irradiance variability on Earth's climate. Measurements of the Mg II index, however, have only been carried out since 1978 and do not cover the climate relevant timescales longer than a few decades. Here we present a model to calculate the Mg II index and its variability based on the well-established SATIRE (Spectral And Total Irradiance REconstruction) model. We demonstrate that our model calculations yield an excellent agreement with the observed Mg II index variations, both on the solar activity cycle and on the solar rotation timescales. Using this model, we synthesize Mg II index timeseries on climate relevant timescales of decades and longer. Here we present the timeseries of the Mg II index spanning nearly three centuries.
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition
Decomposing a scene into its shape, reflectance and illumination is a fundamental problem in computer vision and graphics. Neural approaches such as NeRF have achieved remarkable success in view synthesis, but do not explicitly perform decomposition and instead operate exclusively on radiance (the product of reflectance and illumination). Extensions to NeRF, such as NeRD, can perform decomposition but struggle to accurately recover detailed illumination, thereby significantly limiting realism. We propose a novel reflectance decomposition network that can estimate shape, BRDF, and per-image illumination given a set of object images captured under varying illumination. Our key technique is a novel illumination integration network called Neural-PIL that replaces a costly illumination integral operation in the rendering with a simple network query. In addition, we also learn deep low-dimensional priors on BRDF and illumination representations using novel smooth manifold auto-encoders. Our decompositions can result in considerably better BRDF and light estimates enabling more accurate novel view-synthesis and relighting compared to prior art. Project page: https://markboss.me/publication/2021-neural-pil/
CamCtrl3D: Single-Image Scene Exploration with Precise 3D Camera Control
We propose a method for generating fly-through videos of a scene, from a single image and a given camera trajectory. We build upon an image-to-video latent diffusion model. We condition its UNet denoiser on the camera trajectory, using four techniques. (1) We condition the UNet's temporal blocks on raw camera extrinsics, similar to MotionCtrl. (2) We use images containing camera rays and directions, similar to CameraCtrl. (3) We reproject the initial image to subsequent frames and use the resulting video as a condition. (4) We use 2D<=>3D transformers to introduce a global 3D representation, which implicitly conditions on the camera poses. We combine all conditions in a ContolNet-style architecture. We then propose a metric that evaluates overall video quality and the ability to preserve details with view changes, which we use to analyze the trade-offs of individual and combined conditions. Finally, we identify an optimal combination of conditions. We calibrate camera positions in our datasets for scale consistency across scenes, and we train our scene exploration model, CamCtrl3D, demonstrating state-of-theart results.
A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
Accurate probabilistic predictions are essential for optimal decision making. While neural network miscalibration has been studied primarily in classification, we investigate this in the less-explored domain of regression. We conduct the largest empirical study to date to assess the probabilistic calibration of neural networks. We also analyze the performance of recalibration, conformal, and regularization methods to enhance probabilistic calibration. Additionally, we introduce novel differentiable recalibration and regularization methods, uncovering new insights into their effectiveness. Our findings reveal that regularization methods offer a favorable tradeoff between calibration and sharpness. Post-hoc methods exhibit superior probabilistic calibration, which we attribute to the finite-sample coverage guarantee of conformal prediction. Furthermore, we demonstrate that quantile recalibration can be considered as a specific case of conformal prediction. Our study is fully reproducible and implemented in a common code base for fair comparisons.
Factorized Inverse Path Tracing for Efficient and Accurate Material-Lighting Estimation
Inverse path tracing has recently been applied to joint material and lighting estimation, given geometry and multi-view HDR observations of an indoor scene. However, it has two major limitations: path tracing is expensive to compute, and ambiguities exist between reflection and emission. Our Factorized Inverse Path Tracing (FIPT) addresses these challenges by using a factored light transport formulation and finds emitters driven by rendering errors. Our algorithm enables accurate material and lighting optimization faster than previous work, and is more effective at resolving ambiguities. The exhaustive experiments on synthetic scenes show that our method (1) outperforms state-of-the-art indoor inverse rendering and relighting methods particularly in the presence of complex illumination effects; (2) speeds up inverse path tracing optimization to less than an hour. We further demonstrate robustness to noisy inputs through material and lighting estimates that allow plausible relighting in a real scene. The source code is available at: https://github.com/lwwu2/fipt
PreF3R: Pose-Free Feed-Forward 3D Gaussian Splatting from Variable-length Image Sequence
We present PreF3R, Pose-Free Feed-forward 3D Reconstruction from an image sequence of variable length. Unlike previous approaches, PreF3R removes the need for camera calibration and reconstructs the 3D Gaussian field within a canonical coordinate frame directly from a sequence of unposed images, enabling efficient novel-view rendering. We leverage DUSt3R's ability for pair-wise 3D structure reconstruction, and extend it to sequential multi-view input via a spatial memory network, eliminating the need for optimization-based global alignment. Additionally, PreF3R incorporates a dense Gaussian parameter prediction head, which enables subsequent novel-view synthesis with differentiable rasterization. This allows supervising our model with the combination of photometric loss and pointmap regression loss, enhancing both photorealism and structural accuracy. Given a sequence of ordered images, PreF3R incrementally reconstructs the 3D Gaussian field at 20 FPS, therefore enabling real-time novel-view rendering. Empirical experiments demonstrate that PreF3R is an effective solution for the challenging task of pose-free feed-forward novel-view synthesis, while also exhibiting robust generalization to unseen scenes.
Subsurface Scattering for 3D Gaussian Splatting
3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface. 3D Gaussian Splatting introduced high-quality novel view synthesis at real-time speeds. While 3D Gaussians efficiently approximate an object's surface, they fail to capture the volumetric properties of subsurface scattering. We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data. Our method decomposes the scene into an explicit surface represented as 3D Gaussians, with a spatially varying BRDF, and an implicit volumetric representation of the scattering component. A learned incident light field accounts for shadowing. We optimize all parameters jointly via ray-traced differentiable rendering. Our approach enables material editing, relighting and novel view synthesis at interactive rates. We show successful application on synthetic data and introduce a newly acquired multi-view multi-light dataset of objects in a light-stage setup. Compared to previous work we achieve comparable or better results at a fraction of optimization and rendering time while enabling detailed control over material attributes. Project page https://sss.jdihlmann.com/
RelightableHands: Efficient Neural Relighting of Articulated Hand Models
We present the first neural relighting approach for rendering high-fidelity personalized hands that can be animated in real-time under novel illumination. Our approach adopts a teacher-student framework, where the teacher learns appearance under a single point light from images captured in a light-stage, allowing us to synthesize hands in arbitrary illuminations but with heavy compute. Using images rendered by the teacher model as training data, an efficient student model directly predicts appearance under natural illuminations in real-time. To achieve generalization, we condition the student model with physics-inspired illumination features such as visibility, diffuse shading, and specular reflections computed on a coarse proxy geometry, maintaining a small computational overhead. Our key insight is that these features have strong correlation with subsequent global light transport effects, which proves sufficient as conditioning data for the neural relighting network. Moreover, in contrast to bottleneck illumination conditioning, these features are spatially aligned based on underlying geometry, leading to better generalization to unseen illuminations and poses. In our experiments, we demonstrate the efficacy of our illumination feature representations, outperforming baseline approaches. We also show that our approach can photorealistically relight two interacting hands at real-time speeds. https://sh8.io/#/relightable_hands
Neural Gaffer: Relighting Any Object via Diffusion
Single-image relighting is a challenging task that involves reasoning about the complex interplay between geometry, materials, and lighting. Many prior methods either support only specific categories of images, such as portraits, or require special capture conditions, like using a flashlight. Alternatively, some methods explicitly decompose a scene into intrinsic components, such as normals and BRDFs, which can be inaccurate or under-expressive. In this work, we propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer, that takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel environmental lighting condition, simply by conditioning an image generator on a target environment map, without an explicit scene decomposition. Our method builds on a pre-trained diffusion model, and fine-tunes it on a synthetic relighting dataset, revealing and harnessing the inherent understanding of lighting present in the diffusion model. We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy. Moreover, by combining with other generative methods, our model enables many downstream 2D tasks, such as text-based relighting and object insertion. Our model can also operate as a strong relighting prior for 3D tasks, such as relighting a radiance field.
Optical night sky brightness measurements from the stratosphere
This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three commissioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The B, V, R, and I brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The B, V, and R brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec^{-2} darker than the darkest ground-based measurements. The U and I brightness levels in 2019 were 0.1 mag arcsec^{-2} brighter than the darkest ground-based measurements, whereas the B and V brightness levels were 0.8 and 0.6 mag arcsec^{-2} darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.
GS-IR: 3D Gaussian Splatting for Inverse Rendering
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS) that leverages forward mapping volume rendering to achieve photorealistic novel view synthesis and relighting results. Unlike previous works that use implicit neural representations and volume rendering (e.g. NeRF), which suffer from low expressive power and high computational complexity, we extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions. There are two main problems when introducing GS to inverse rendering: 1) GS does not support producing plausible normal natively; 2) forward mapping (e.g. rasterization and splatting) cannot trace the occlusion like backward mapping (e.g. ray tracing). To address these challenges, our GS-IR proposes an efficient optimization scheme that incorporates a depth-derivation-based regularization for normal estimation and a baking-based occlusion to model indirect lighting. The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering. We demonstrate the superiority of our method over baseline methods through qualitative and quantitative evaluations on various challenging scenes.
Spectral Retrieval with JWST Photometric data: a Case Study for HIP 65426 b
Half of the JWST high-contrast imaging objects will only have photometric data {{as of Cycle 2}}. However, to better understand their atmospheric chemistry which informs formation origin, spectroscopic data are preferred. Using HIP 65426 b, we investigate to what extent planet properties and atmospheric chemical abundance can be retrieved with only JWST photometric data points (2.5-15.5 mum) in conjunction with ground-based archival low-resolution spectral data (1.0-2.3 mum). We find that the data is consistent with an atmosphere with solar metallicity and C/O ratios at 0.40 and 0.55. We rule out 10x solar metallicity and an atmosphere with C/O = 1.0. We also find strong evidence of silicate clouds but no sign of an enshrouding featureless {{dust}} extinction. This work offers guidance and cautionary tales on analyzing data in the absence of medium-to-high resolution spectral data.
TESS Science Processing Operations Center FFI Target List Products
We report the delivery to the Mikulski Archive for Space Telescopes of target pixel and light curve files for up to 160,000 targets selected from full-frame images (FFI) for each TESS Northern hemisphere observing sector. The data include calibrated target pixels, simple aperture photometry flux time series, and presearch data conditioning corrected flux time series. These data provide TESS users with high quality, uniform pipeline products for a selection of FFI targets, that would otherwise not be readily available. Additionally, we deliver cotrending basis vectors derived from the FFI targets to allow users to perform their own systematic error corrections. The selected targets include all 2-minute targets and additional targets selected from the TESS Input Catalog with a maximum of 10,000 targets per sector on each of the sixteen TESS CCDs. The data products are in the same format as the project-delivered files for the TESS 2-minute targets. All of the TESS-SPOC data products are available at the MAST as a High Level Science Product via https://doi.org/10.17909/t9-wpz1-8s54.
FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
Fine-Grained Cross-View Geo-Localization Using a Correlation-Aware Homography Estimator
In this paper, we introduce a novel approach to fine-grained cross-view geo-localization. Our method aligns a warped ground image with a corresponding GPS-tagged satellite image covering the same area using homography estimation. We first employ a differentiable spherical transform, adhering to geometric principles, to accurately align the perspective of the ground image with the satellite map. This transformation effectively places ground and aerial images in the same view and on the same plane, reducing the task to an image alignment problem. To address challenges such as occlusion, small overlapping range, and seasonal variations, we propose a robust correlation-aware homography estimator to align similar parts of the transformed ground image with the satellite image. Our method achieves sub-pixel resolution and meter-level GPS accuracy by mapping the center point of the transformed ground image to the satellite image using a homography matrix and determining the orientation of the ground camera using a point above the central axis. Operating at a speed of 30 FPS, our method outperforms state-of-the-art techniques, reducing the mean metric localization error by 21.3% and 32.4% in same-area and cross-area generalization tasks on the VIGOR benchmark, respectively, and by 34.4% on the KITTI benchmark in same-area evaluation.
BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting
We present Bidirectional Gaussian Primitives, an image-based novel view synthesis technique designed to represent and render 3D objects with surface and volumetric materials under dynamic illumination. Our approach integrates light intrinsic decomposition into the Gaussian splatting framework, enabling real-time relighting of 3D objects. To unify surface and volumetric material within a cohesive appearance model, we adopt a light- and view-dependent scattering representation via bidirectional spherical harmonics. Our model does not use a specific surface normal-related reflectance function, making it more compatible with volumetric representations like Gaussian splatting, where the normals are undefined. We demonstrate our method by reconstructing and rendering objects with complex materials. Using One-Light-At-a-Time (OLAT) data as input, we can reproduce photorealistic appearances under novel lighting conditions in real time.
Deformable Neural Radiance Fields using RGB and Event Cameras
Modeling Neural Radiance Fields for fast-moving deformable objects from visual data alone is a challenging problem. A major issue arises due to the high deformation and low acquisition rates. To address this problem, we propose to use event cameras that offer very fast acquisition of visual change in an asynchronous manner. In this work, we develop a novel method to model the deformable neural radiance fields using RGB and event cameras. The proposed method uses the asynchronous stream of events and calibrated sparse RGB frames. In our setup, the camera pose at the individual events required to integrate them into the radiance fields remains unknown. Our method jointly optimizes these poses and the radiance field. This happens efficiently by leveraging the collection of events at once and actively sampling the events during learning. Experiments conducted on both realistically rendered graphics and real-world datasets demonstrate a significant benefit of the proposed method over the state-of-the-art and the compared baseline. This shows a promising direction for modeling deformable neural radiance fields in real-world dynamic scenes.
Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields
Neural Radiance Fields (NeRF) have achieved photorealistic novel views synthesis; however, the requirement of accurate camera poses limits its application. Despite analysis-by-synthesis extensions for jointly learning neural 3D representations and registering camera frames exist, they are susceptible to suboptimal solutions if poorly initialized. We propose L2G-NeRF, a Local-to-Global registration method for bundle-adjusting Neural Radiance Fields: first, a pixel-wise flexible alignment, followed by a frame-wise constrained parametric alignment. Pixel-wise local alignment is learned in an unsupervised way via a deep network which optimizes photometric reconstruction errors. Frame-wise global alignment is performed using differentiable parameter estimation solvers on the pixel-wise correspondences to find a global transformation. Experiments on synthetic and real-world data show that our method outperforms the current state-of-the-art in terms of high-fidelity reconstruction and resolving large camera pose misalignment. Our module is an easy-to-use plugin that can be applied to NeRF variants and other neural field applications. The Code and supplementary materials are available at https://rover-xingyu.github.io/L2G-NeRF/.
SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events
Event cameras, with a high dynamic range exceeding 120dB, significantly outperform traditional embedded cameras, robustly recording detailed changing information under various lighting conditions, including both low- and high-light situations. However, recent research on utilizing event data has primarily focused on low-light image enhancement, neglecting image enhancement and brightness adjustment across a broader range of lighting conditions, such as normal or high illumination. Based on this, we propose a novel research question: how to employ events to enhance and adaptively adjust the brightness of images captured under broad lighting conditions? To investigate this question, we first collected a new dataset, SEE-600K, consisting of 610,126 images and corresponding events across 202 scenarios, each featuring an average of four lighting conditions with over a 1000-fold variation in illumination. Subsequently, we propose a framework that effectively utilizes events to smoothly adjust image brightness through the use of prompts. Our framework captures color through sensor patterns, uses cross-attention to model events as a brightness dictionary, and adjusts the image's dynamic range to form a broad light-range representation (BLR), which is then decoded at the pixel level based on the brightness prompt. Experimental results demonstrate that our method not only performs well on the low-light enhancement dataset but also shows robust performance on broader light-range image enhancement using the SEE-600K dataset. Additionally, our approach enables pixel-level brightness adjustment, providing flexibility for post-processing and inspiring more imaging applications. The dataset and source code are publicly available at:https://github.com/yunfanLu/SEE.
Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in the camera coordinate system based on state space models (SSMs). Specifically, iterative camera-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
SoDaCam: Software-defined Cameras via Single-Photon Imaging
Reinterpretable cameras are defined by their post-processing capabilities that exceed traditional imaging. We present "SoDaCam" that provides reinterpretable cameras at the granularity of photons, from photon-cubes acquired by single-photon devices. Photon-cubes represent the spatio-temporal detections of photons as a sequence of binary frames, at frame-rates as high as 100 kHz. We show that simple transformations of the photon-cube, or photon-cube projections, provide the functionality of numerous imaging systems including: exposure bracketing, flutter shutter cameras, video compressive systems, event cameras, and even cameras that move during exposure. Our photon-cube projections offer the flexibility of being software-defined constructs that are only limited by what is computable, and shot-noise. We exploit this flexibility to provide new capabilities for the emulated cameras. As an added benefit, our projections provide camera-dependent compression of photon-cubes, which we demonstrate using an implementation of our projections on a novel compute architecture that is designed for single-photon imaging.
Flying Triangulation - towards the 3D movie camera
Flying Triangulation sensors enable a free-hand and motion-robust 3D data acquisition of complex shaped objects. The measurement principle is based on a multi-line light-sectioning approach and uses sophisticated algorithms for real-time registration (S. Ettl et al., Appl. Opt. 51 (2012) 281-289). As "single-shot principle", light sectioning enables the option to get surface data from one single camera exposure. But there is a drawback: A pixel-dense measurement is not possible because of fundamental information-theoretical reasons. By "pixel-dense" we understand that each pixel displays individually measured distance information, neither interpolated from its neighbour pixels nor using lateral context information. Hence, for monomodal single-shot principles, the 3D data generated from one 2D raw image display a significantly lower space-bandwidth than the camera permits. This is the price one must pay for motion robustness. Currently, our sensors project about 10 lines (each with 1000 pixels), reaching an considerable lower data efficiency than theoretically possible for a single-shot sensor. Our aim is to push Flying Triangulation to its information-theoretical limits. Therefore, the line density as well as the measurement depth needs to be significantly increased. This causes serious indexing ambiguities. On the road to a single-shot 3D movie camera, we are working on solutions to overcome the problem of false line indexing by utilizing yet unexploited information. We will present several approaches and will discuss profound information-theoretical questions about the information efficiency of 3D sensors.
Open-Canopy: A Country-Scale Benchmark for Canopy Height Estimation at Very High Resolution
Estimating canopy height and canopy height change at meter resolution from satellite imagery has numerous applications, such as monitoring forest health, logging activities, wood resources, and carbon stocks. However, many existing forest datasets are based on commercial or closed data sources, restricting the reproducibility and evaluation of new approaches. To address this gap, we introduce Open-Canopy, the first open-access and country-scale benchmark for very high resolution (1.5 m) canopy height estimation. Covering more than 87,000 km^2 across France, Open-Canopy combines SPOT satellite imagery with high resolution aerial LiDAR data. We also propose Open-Canopy-Delta, the first benchmark for canopy height change detection between two images taken at different years, a particularly challenging task even for recent models. To establish a robust foundation for these benchmarks, we evaluate a comprehensive list of state-of-the-art computer vision models for canopy height estimation. The dataset and associated codes can be accessed at https://github.com/fajwel/Open-Canopy.
Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme
The image relighting task of transferring illumination conditions between two images offers an interesting and difficult challenge with potential applications in photography, cinematography and computer graphics. In this report we present methods that we tried to achieve that goal. Our models are trained on a rendered dataset of artificial locations with varied scene content, light source location and color temperature. With this dataset, we used a network with illumination estimation component aiming to infer and replace light conditions in the latent space representation of the concerned scenes.
NEMTO: Neural Environment Matting for Novel View and Relighting Synthesis of Transparent Objects
We propose NEMTO, the first end-to-end neural rendering pipeline to model 3D transparent objects with complex geometry and unknown indices of refraction. Commonly used appearance modeling such as the Disney BSDF model cannot accurately address this challenging problem due to the complex light paths bending through refractions and the strong dependency of surface appearance on illumination. With 2D images of the transparent object as input, our method is capable of high-quality novel view and relighting synthesis. We leverage implicit Signed Distance Functions (SDF) to model the object geometry and propose a refraction-aware ray bending network to model the effects of light refraction within the object. Our ray bending network is more tolerant to geometric inaccuracies than traditional physically-based methods for rendering transparent objects. We provide extensive evaluations on both synthetic and real-world datasets to demonstrate our high-quality synthesis and the applicability of our method.
Neural Posterior Estimation for Cataloging Astronomical Images with Spatially Varying Backgrounds and Point Spread Functions
Neural posterior estimation (NPE), a type of amortized variational inference, is a computationally efficient means of constructing probabilistic catalogs of light sources from astronomical images. To date, NPE has not been used to perform inference in models with spatially varying covariates. However, ground-based astronomical images have spatially varying sky backgrounds and point spread functions (PSFs), and accounting for this variation is essential for constructing accurate catalogs of imaged light sources. In this work, we introduce a method of performing NPE with spatially varying backgrounds and PSFs. In this method, we generate synthetic catalogs and semi-synthetic images for these catalogs using randomly sampled PSF and background estimates from existing surveys. Using this data, we train a neural network, which takes an astronomical image and representations of its background and PSF as input, to output a probabilistic catalog. Our experiments with Sloan Digital Sky Survey data demonstrate the effectiveness of NPE in the presence of spatially varying backgrounds and PSFs for light source detection, star/galaxy separation, and flux measurement.
SpecNeRF: Gaussian Directional Encoding for Specular Reflections
Neural radiance fields have achieved remarkable performance in modeling the appearance of 3D scenes. However, existing approaches still struggle with the view-dependent appearance of glossy surfaces, especially under complex lighting of indoor environments. Unlike existing methods, which typically assume distant lighting like an environment map, we propose a learnable Gaussian directional encoding to better model the view-dependent effects under near-field lighting conditions. Importantly, our new directional encoding captures the spatially-varying nature of near-field lighting and emulates the behavior of prefiltered environment maps. As a result, it enables the efficient evaluation of preconvolved specular color at any 3D location with varying roughness coefficients. We further introduce a data-driven geometry prior that helps alleviate the shape radiance ambiguity in reflection modeling. We show that our Gaussian directional encoding and geometry prior significantly improve the modeling of challenging specular reflections in neural radiance fields, which helps decompose appearance into more physically meaningful components.
Optimizing Illuminant Estimation in Dual-Exposure HDR Imaging
High dynamic range (HDR) imaging involves capturing a series of frames of the same scene, each with different exposure settings, to broaden the dynamic range of light. This can be achieved through burst capturing or using staggered HDR sensors that capture long and short exposures simultaneously in the camera image signal processor (ISP). Within camera ISP pipeline, illuminant estimation is a crucial step aiming to estimate the color of the global illuminant in the scene. This estimation is used in camera ISP white-balance module to remove undesirable color cast in the final image. Despite the multiple frames captured in the HDR pipeline, conventional illuminant estimation methods often rely only on a single frame of the scene. In this paper, we explore leveraging information from frames captured with different exposure times. Specifically, we introduce a simple feature extracted from dual-exposure images to guide illuminant estimators, referred to as the dual-exposure feature (DEF). To validate the efficiency of DEF, we employed two illuminant estimators using the proposed DEF: 1) a multilayer perceptron network (MLP), referred to as exposure-based MLP (EMLP), and 2) a modified version of the convolutional color constancy (CCC) to integrate our DEF, that we call ECCC. Both EMLP and ECCC achieve promising results, in some cases surpassing prior methods that require hundreds of thousands or millions of parameters, with only a few hundred parameters for EMLP and a few thousand parameters for ECCC.
Controllable Dynamic Appearance for Neural 3D Portraits
Recent advances in Neural Radiance Fields (NeRFs) have made it possible to reconstruct and reanimate dynamic portrait scenes with control over head-pose, facial expressions and viewing direction. However, training such models assumes photometric consistency over the deformed region e.g. the face must be evenly lit as it deforms with changing head-pose and facial expression. Such photometric consistency across frames of a video is hard to maintain, even in studio environments, thus making the created reanimatable neural portraits prone to artifacts during reanimation. In this work, we propose CoDyNeRF, a system that enables the creation of fully controllable 3D portraits in real-world capture conditions. CoDyNeRF learns to approximate illumination dependent effects via a dynamic appearance model in the canonical space that is conditioned on predicted surface normals and the facial expressions and head-pose deformations. The surface normals prediction is guided using 3DMM normals that act as a coarse prior for the normals of the human head, where direct prediction of normals is hard due to rigid and non-rigid deformations induced by head-pose and facial expression changes. Using only a smartphone-captured short video of a subject for training, we demonstrate the effectiveness of our method on free view synthesis of a portrait scene with explicit head pose and expression controls, and realistic lighting effects. The project page can be found here: http://shahrukhathar.github.io/2023/08/22/CoDyNeRF.html
MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements
Simultaneous localization and mapping is essential for position tracking and scene understanding. 3D Gaussian-based map representations enable photorealistic reconstruction and real-time rendering of scenes using multiple posed cameras. We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM. Our method, MM3DGS, addresses the limitations of prior neural radiance field-based representations by enabling faster rendering, scale awareness, and improved trajectory tracking. Our framework enables keyframe-based mapping and tracking utilizing loss functions that incorporate relative pose transformations from pre-integrated inertial measurements, depth estimates, and measures of photometric rendering quality. We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit. Experimental evaluation on several scenes from the dataset shows that MM3DGS achieves 3x improvement in tracking and 5% improvement in photometric rendering quality compared to the current 3DGS SLAM state-of-the-art, while allowing real-time rendering of a high-resolution dense 3D map. Project Webpage: https://vita-group.github.io/MM3DGS-SLAM
Anything in Any Scene: Photorealistic Video Object Insertion
Realistic video simulation has shown significant potential across diverse applications, from virtual reality to film production. This is particularly true for scenarios where capturing videos in real-world settings is either impractical or expensive. Existing approaches in video simulation often fail to accurately model the lighting environment, represent the object geometry, or achieve high levels of photorealism. In this paper, we propose Anything in Any Scene, a novel and generic framework for realistic video simulation that seamlessly inserts any object into an existing dynamic video with a strong emphasis on physical realism. Our proposed general framework encompasses three key processes: 1) integrating a realistic object into a given scene video with proper placement to ensure geometric realism; 2) estimating the sky and environmental lighting distribution and simulating realistic shadows to enhance the light realism; 3) employing a style transfer network that refines the final video output to maximize photorealism. We experimentally demonstrate that Anything in Any Scene framework produces simulated videos of great geometric realism, lighting realism, and photorealism. By significantly mitigating the challenges associated with video data generation, our framework offers an efficient and cost-effective solution for acquiring high-quality videos. Furthermore, its applications extend well beyond video data augmentation, showing promising potential in virtual reality, video editing, and various other video-centric applications. Please check our project website https://anythinginanyscene.github.io for access to our project code and more high-resolution video results.
Spectrophotometry in the integrated light of multiple populations in globular clusters
There is vast evidence from observations of multiple stellar populations (MPs) in globular clusters (GCs). To explore the issue theoretically, this work considers two subsolar metallicities, two ages, and two initial abundance patterns: a first population of standard alpha-enhanced metal mixture stars and a second stellar population displaying C-N and Na-O anticorrelations chemical abundance patterns, along with an enhanced helium fraction. Analysing the predictions for these extreme compositions, we provide insights into the observability of not-resolved MPs into individual stars of GCs. We use colours and spectrophotometric indices measurable with modern facilities (e.g. Euclid, LSST, DES, JWST).
SPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing
Can we capture shape and reflectance in stealth? Such capability would be valuable for many application domains in vision, xR, robotics, and HCI. We introduce Structured Polarization, the first depth and reflectance sensing method using patterns of polarized light (SPIDeRS). The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel. The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance. We implement SPIDeRS with a liquid crystal spatial light modulator (SLM) and a polarimetric camera. We derive a novel method for robustly extracting the projected structured polarization pattern from the polarimetric object appearance. We evaluate the effectiveness of SPIDeRS by applying it to a number of real-world objects. The results show that our method successfully reconstructs object shapes of various materials and is robust to diffuse reflection and ambient light. We also demonstrate relighting using recovered surface normals and reflectance. We believe SPIDeRS opens a new avenue of polarization use in visual sensing.
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence
Affine correspondences have traditionally been used to improve feature matching over wide baselines. While recent work has successfully used affine correspondences to solve various relative camera pose estimation problems, less attention has been given to their use in absolute pose estimation. We introduce the first general solution to the problem of estimating the pose of a calibrated camera given a single observation of an oriented point and an affine correspondence. The advantage of our approach (P1AC) is that it requires only a single correspondence, in comparison to the traditional point-based approach (P3P), significantly reducing the combinatorics in robust estimation. P1AC provides a general solution that removes restrictive assumptions made in prior work and is applicable to large-scale image-based localization. We propose a minimal solution to the P1AC problem and evaluate our novel solver on synthetic data, showing its numerical stability and performance under various types of noise. On standard image-based localization benchmarks we show that P1AC achieves more accurate results than the widely used P3P algorithm. Code for our method is available at https://github.com/jonathanventura/P1AC/ .
Photorealistic Material Editing Through Direct Image Manipulation
Creating photorealistic materials for light transport algorithms requires carefully fine-tuning a set of material properties to achieve a desired artistic effect. This is typically a lengthy process that involves a trained artist with specialized knowledge. In this work, we present a technique that aims to empower novice and intermediate-level users to synthesize high-quality photorealistic materials by only requiring basic image processing knowledge. In the proposed workflow, the user starts with an input image and applies a few intuitive transforms (e.g., colorization, image inpainting) within a 2D image editor of their choice, and in the next step, our technique produces a photorealistic result that approximates this target image. Our method combines the advantages of a neural network-augmented optimizer and an encoder neural network to produce high-quality output results within 30 seconds. We also demonstrate that it is resilient against poorly-edited target images and propose a simple extension to predict image sequences with a strict time budget of 1-2 seconds per image.
Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details
By design, average precision (AP) for object detection aims to treat all classes independently: AP is computed independently per category and averaged. On one hand, this is desirable as it treats all classes equally. On the other hand, it ignores cross-category confidence calibration, a key property in real-world use cases. Unfortunately, under important conditions (i.e., large vocabulary, high instance counts) the default implementation of AP is neither category independent, nor does it directly reward properly calibrated detectors. In fact, we show that on LVIS the default implementation produces a gameable metric, where a simple, un-intuitive re-ranking policy can improve AP by a large margin. To address these limitations, we introduce two complementary metrics. First, we present a simple fix to the default AP implementation, ensuring that it is independent across categories as originally intended. We benchmark recent LVIS detection advances and find that many reported gains do not translate to improvements under our new evaluation, suggesting recent improvements may arise from difficult to interpret changes to cross-category rankings. Given the importance of reliably benchmarking cross-category rankings, we consider a pooled version of AP (AP-Pool) that rewards properly calibrated detectors by directly comparing cross-category rankings. Finally, we revisit classical approaches for calibration and find that explicitly calibrating detectors improves state-of-the-art on AP-Pool by 1.7 points
GNeRP: Gaussian-guided Neural Reconstruction of Reflective Objects with Noisy Polarization Priors
Learning surfaces from neural radiance field (NeRF) became a rising topic in Multi-View Stereo (MVS). Recent Signed Distance Function (SDF)-based methods demonstrated their ability to reconstruct accurate 3D shapes of Lambertian scenes. However, their results on reflective scenes are unsatisfactory due to the entanglement of specular radiance and complicated geometry. To address the challenges, we propose a Gaussian-based representation of normals in SDF fields. Supervised by polarization priors, this representation guides the learning of geometry behind the specular reflection and captures more details than existing methods. Moreover, we propose a reweighting strategy in the optimization process to alleviate the noise issue of polarization priors. To validate the effectiveness of our design, we capture polarimetric information, and ground truth meshes in additional reflective scenes with various geometry. We also evaluated our framework on the PANDORA dataset. Comparisons prove our method outperforms existing neural 3D reconstruction methods in reflective scenes by a large margin.
RGM: Reconstructing High-fidelity 3D Car Assets with Relightable 3D-GS Generative Model from a Single Image
The generation of high-quality 3D car assets is essential for various applications, including video games, autonomous driving, and virtual reality. Current 3D generation methods utilizing NeRF or 3D-GS as representations for 3D objects, generate a Lambertian object under fixed lighting and lack separated modelings for material and global illumination. As a result, the generated assets are unsuitable for relighting under varying lighting conditions, limiting their applicability in downstream tasks. To address this challenge, we propose a novel relightable 3D object generative framework that automates the creation of 3D car assets, enabling the swift and accurate reconstruction of a vehicle's geometry, texture, and material properties from a single input image. Our approach begins with introducing a large-scale synthetic car dataset comprising over 1,000 high-precision 3D vehicle models. We represent 3D objects using global illumination and relightable 3D Gaussian primitives integrating with BRDF parameters. Building on this representation, we introduce a feed-forward model that takes images as input and outputs both relightable 3D Gaussians and global illumination parameters. Experimental results demonstrate that our method produces photorealistic 3D car assets that can be seamlessly integrated into road scenes with different illuminations, which offers substantial practical benefits for industrial applications.
Intrinsic Image Decomposition via Ordinal Shading
Intrinsic decomposition is a fundamental mid-level vision problem that plays a crucial role in various inverse rendering and computational photography pipelines. Generating highly accurate intrinsic decompositions is an inherently under-constrained task that requires precisely estimating continuous-valued shading and albedo. In this work, we achieve high-resolution intrinsic decomposition by breaking the problem into two parts. First, we present a dense ordinal shading formulation using a shift- and scale-invariant loss in order to estimate ordinal shading cues without restricting the predictions to obey the intrinsic model. We then combine low- and high-resolution ordinal estimations using a second network to generate a shading estimate with both global coherency and local details. We encourage the model to learn an accurate decomposition by computing losses on the estimated shading as well as the albedo implied by the intrinsic model. We develop a straightforward method for generating dense pseudo ground truth using our model's predictions and multi-illumination data, enabling generalization to in-the-wild imagery. We present an exhaustive qualitative and quantitative analysis of our predicted intrinsic components against state-of-the-art methods. Finally, we demonstrate the real-world applicability of our estimations by performing otherwise difficult editing tasks such as recoloring and relighting.
SuperNormal: Neural Surface Reconstruction via Multi-View Normal Integration
We present SuperNormal, a fast, high-fidelity approach to multi-view 3D reconstruction using surface normal maps. With a few minutes, SuperNormal produces detailed surfaces on par with 3D scanners. We harness volume rendering to optimize a neural signed distance function (SDF) powered by multi-resolution hash encoding. To accelerate training, we propose directional finite difference and patch-based ray marching to approximate the SDF gradients numerically. While not compromising reconstruction quality, this strategy is nearly twice as efficient as analytical gradients and about three times faster than axis-aligned finite difference. Experiments on the benchmark dataset demonstrate the superiority of SuperNormal in efficiency and accuracy compared to existing multi-view photometric stereo methods. On our captured objects, SuperNormal produces more fine-grained geometry than recent neural 3D reconstruction methods.
LightIt: Illumination Modeling and Control for Diffusion Models
We introduce LightIt, a method for explicit illumination control for image generation. Recent generative methods lack lighting control, which is crucial to numerous artistic aspects of image generation such as setting the overall mood or cinematic appearance. To overcome these limitations, we propose to condition the generation on shading and normal maps. We model the lighting with single bounce shading, which includes cast shadows. We first train a shading estimation module to generate a dataset of real-world images and shading pairs. Then, we train a control network using the estimated shading and normals as input. Our method demonstrates high-quality image generation and lighting control in numerous scenes. Additionally, we use our generated dataset to train an identity-preserving relighting model, conditioned on an image and a target shading. Our method is the first that enables the generation of images with controllable, consistent lighting and performs on par with specialized relighting state-of-the-art methods.
Multi-Space Neural Radiance Fields
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We demonstrate the superiority and compatibility of our approach using three representative NeRF-based models, i.e., NeRF, Mip-NeRF, and Mip-NeRF 360. Comparisons are performed on a novelly constructed dataset consisting of 25 synthetic scenes and 7 real captured scenes with complex reflection and refraction, all having 360-degree viewpoints. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects. Our code and dataset will be publicly available at https://zx-yin.github.io/msnerf.
Polarization aberrations in next-generation Giant Segmented Mirror Telescopes (GSMTs). II. Influence of segment-to-segment coating variations on high-contrast imaging and polarimetry
Direct exo-Earth imaging is a key science goal for astronomy in the next decade. This ambitious task imposes a target contrast of ~10^-7 at wavelengths from I to J-band. In our prior study, we determined that polarization aberrations can limit the achievable contrast to 10^-5 to 10^-6 in the infrared. However, these results assumed a perfect coronagraph coupled to a telescope with an ideal coating on each of the mirrors. In this study we seek to understand the influence of polarization aberrations from segment-to-segment coating variations on coronagraphy and polarimetry. We use the Poke open-source polarization ray tracing package to compute the Jones pupil of each GSMT with spatially-varying coatings applied to the segments. The influence of the resultant polarization aberrations is simulated by propagating the Jones pupil through physical optics models of coronagraphs using HCIPy. After applying wavefront control from an ideal adaptive optics system, we determine that the segment-to-segment variations applied limit the performance of coronagraphy to a raw contrast of approximately 10^-8 in I-band, which is 2-3 orders of magnitude lower the target performance for high-contrast imaging systems on the ground. This is a negligible addition to the nominal polarization aberrations for ground-based systems. We further observe negligible degradation in polarimetric imaging of debris disks from segment-to-segment aberrations above and beyond the impact of nominal polarization aberration.
Neural Relighting with Subsurface Scattering by Learning the Radiance Transfer Gradient
Reconstructing and relighting objects and scenes under varying lighting conditions is challenging: existing neural rendering methods often cannot handle the complex interactions between materials and light. Incorporating pre-computed radiance transfer techniques enables global illumination, but still struggles with materials with subsurface scattering effects. We propose a novel framework for learning the radiance transfer field via volume rendering and utilizing various appearance cues to refine geometry end-to-end. This framework extends relighting and reconstruction capabilities to handle a wider range of materials in a data-driven fashion. The resulting models produce plausible rendering results in existing and novel conditions. We will release our code and a novel light stage dataset of objects with subsurface scattering effects publicly available.
Progressively Optimized Local Radiance Fields for Robust View Synthesis
We present an algorithm for reconstructing the radiance field of a large-scale scene from a single casually captured video. The task poses two core challenges. First, most existing radiance field reconstruction approaches rely on accurate pre-estimated camera poses from Structure-from-Motion algorithms, which frequently fail on in-the-wild videos. Second, using a single, global radiance field with finite representational capacity does not scale to longer trajectories in an unbounded scene. For handling unknown poses, we jointly estimate the camera poses with radiance field in a progressive manner. We show that progressive optimization significantly improves the robustness of the reconstruction. For handling large unbounded scenes, we dynamically allocate new local radiance fields trained with frames within a temporal window. This further improves robustness (e.g., performs well even under moderate pose drifts) and allows us to scale to large scenes. Our extensive evaluation on the Tanks and Temples dataset and our collected outdoor dataset, Static Hikes, show that our approach compares favorably with the state-of-the-art.
Reference-based Controllable Scene Stylization with Gaussian Splatting
Referenced-based scene stylization that edits the appearance based on a content-aligned reference image is an emerging research area. Starting with a pretrained neural radiance field (NeRF), existing methods typically learn a novel appearance that matches the given style. Despite their effectiveness, they inherently suffer from time-consuming volume rendering, and thus are impractical for many real-time applications. In this work, we propose ReGS, which adapts 3D Gaussian Splatting (3DGS) for reference-based stylization to enable real-time stylized view synthesis. Editing the appearance of a pretrained 3DGS is challenging as it uses discrete Gaussians as 3D representation, which tightly bind appearance with geometry. Simply optimizing the appearance as prior methods do is often insufficient for modeling continuous textures in the given reference image. To address this challenge, we propose a novel texture-guided control mechanism that adaptively adjusts local responsible Gaussians to a new geometric arrangement, serving for desired texture details. The proposed process is guided by texture clues for effective appearance editing, and regularized by scene depth for preserving original geometric structure. With these novel designs, we show ReGs can produce state-of-the-art stylization results that respect the reference texture while embracing real-time rendering speed for free-view navigation.
A differentiable binary microlensing model using adaptive contour integration method
We present microlux, which is a Jax-based code that can compute the binary microlensing light curve and its derivatives both efficiently and accurately. The key feature of microlux is the implementation of a modified version of the adaptive sampling algorithm that was originally proposed by V. Bozza to account for the finite-source effect most efficiently. The efficiency and accuracy of microlux have been verified across the relevant parameter space for binary microlensing. As a differentiable code, microlux makes it possible to apply gradient-based algorithms to the search and posterior estimation of the microlensing modeling. As an example, we use microlux to model a real microlensing event and infer the model posterior via both Fisher information matrix and Hamiltonian Monte Carlo, neither of which would have been possible without the access to accurate model gradients.
Ray Conditioning: Trading Photo-consistency for Photo-realism in Multi-view Image Generation
Multi-view image generation attracts particular attention these days due to its promising 3D-related applications, e.g., image viewpoint editing. Most existing methods follow a paradigm where a 3D representation is first synthesized, and then rendered into 2D images to ensure photo-consistency across viewpoints. However, such explicit bias for photo-consistency sacrifices photo-realism, causing geometry artifacts and loss of fine-scale details when these methods are applied to edit real images. To address this issue, we propose ray conditioning, a geometry-free alternative that relaxes the photo-consistency constraint. Our method generates multi-view images by conditioning a 2D GAN on a light field prior. With explicit viewpoint control, state-of-the-art photo-realism and identity consistency, our method is particularly suited for the viewpoint editing task.
Generalized Lightness Adaptation with Channel Selective Normalization
Lightness adaptation is vital to the success of image processing to avoid unexpected visual deterioration, which covers multiple aspects, e.g., low-light image enhancement, image retouching, and inverse tone mapping. Existing methods typically work well on their trained lightness conditions but perform poorly in unknown ones due to their limited generalization ability. To address this limitation, we propose a novel generalized lightness adaptation algorithm that extends conventional normalization techniques through a channel filtering design, dubbed Channel Selective Normalization (CSNorm). The proposed CSNorm purposely normalizes the statistics of lightness-relevant channels and keeps other channels unchanged, so as to improve feature generalization and discrimination. To optimize CSNorm, we propose an alternating training strategy that effectively identifies lightness-relevant channels. The model equipped with our CSNorm only needs to be trained on one lightness condition and can be well generalized to unknown lightness conditions. Experimental results on multiple benchmark datasets demonstrate the effectiveness of CSNorm in enhancing the generalization ability for the existing lightness adaptation methods. Code is available at https://github.com/mdyao/CSNorm.
HiMo: High-Speed Objects Motion Compensation in Point Clouds
LiDAR point clouds often contain motion-induced distortions, degrading the accuracy of object appearances in the captured data. In this paper, we first characterize the underlying reasons for the point cloud distortion and show that this is present in public datasets. We find that this distortion is more pronounced in high-speed environments such as highways, as well as in multi-LiDAR configurations, a common setup for heavy vehicles. Previous work has dealt with point cloud distortion from the ego-motion but fails to consider distortion from the motion of other objects. We therefore introduce a novel undistortion pipeline, HiMo, that leverages scene flow estimation for object motion compensation, correcting the depiction of dynamic objects. We further propose an extension of a state-of-the-art self-supervised scene flow method. Due to the lack of well-established motion distortion metrics in the literature, we also propose two metrics for compensation performance evaluation: compensation accuracy at a point level and shape similarity on objects. To demonstrate the efficacy of our method, we conduct extensive experiments on the Argoverse 2 dataset and a new real-world dataset. Our new dataset is collected from heavy vehicles equipped with multi-LiDARs and on highways as opposed to mostly urban settings in the existing datasets. The source code, including all methods and the evaluation data, will be provided upon publication. See https://kin-zhang.github.io/HiMo for more details.