new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects

Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the observation spaces to a common canonical space for rendering, dynamic NeRF does not model the change of the reflected color during the warping. As a result, this approach often fails drastically on challenging specular objects in motion. We address this limitation by reformulating the neural radiance field function to be conditioned on surface position and orientation in the observation space. This allows the specular surface at different poses to keep the different reflected colors when mapped to the common canonical space. Additionally, we add the mask of moving objects to guide the deformation field. As the specular surface changes color during motion, the mask mitigates the problem of failure to find temporal correspondences with only RGB supervision. We evaluate our model based on the novel view synthesis quality with a self-collected dataset of different moving specular objects in realistic environments. The experimental results demonstrate that our method significantly improves the reconstruction quality of moving specular objects from monocular RGB videos compared to the existing NeRF models. Our code and data are available at the project website https://github.com/JokerYan/NeRF-DS.

3D$^2$-Actor: Learning Pose-Conditioned 3D-Aware Denoiser for Realistic Gaussian Avatar Modeling

Advancements in neural implicit representations and differentiable rendering have markedly improved the ability to learn animatable 3D avatars from sparse multi-view RGB videos. However, current methods that map observation space to canonical space often face challenges in capturing pose-dependent details and generalizing to novel poses. While diffusion models have demonstrated remarkable zero-shot capabilities in 2D image generation, their potential for creating animatable 3D avatars from 2D inputs remains underexplored. In this work, we introduce 3D^2-Actor, a novel approach featuring a pose-conditioned 3D-aware human modeling pipeline that integrates iterative 2D denoising and 3D rectifying steps. The 2D denoiser, guided by pose cues, generates detailed multi-view images that provide the rich feature set necessary for high-fidelity 3D reconstruction and pose rendering. Complementing this, our Gaussian-based 3D rectifier renders images with enhanced 3D consistency through a two-stage projection strategy and a novel local coordinate representation. Additionally, we propose an innovative sampling strategy to ensure smooth temporal continuity across frames in video synthesis. Our method effectively addresses the limitations of traditional numerical solutions in handling ill-posed mappings, producing realistic and animatable 3D human avatars. Experimental results demonstrate that 3D^2-Actor excels in high-fidelity avatar modeling and robustly generalizes to novel poses. Code is available at: https://github.com/silence-tang/GaussianActor.

TransHuman: A Transformer-based Human Representation for Generalizable Neural Human Rendering

In this paper, we focus on the task of generalizable neural human rendering which trains conditional Neural Radiance Fields (NeRF) from multi-view videos of different characters. To handle the dynamic human motion, previous methods have primarily used a SparseConvNet (SPC)-based human representation to process the painted SMPL. However, such SPC-based representation i) optimizes under the volatile observation space which leads to the pose-misalignment between training and inference stages, and ii) lacks the global relationships among human parts that is critical for handling the incomplete painted SMPL. Tackling these issues, we present a brand-new framework named TransHuman, which learns the painted SMPL under the canonical space and captures the global relationships between human parts with transformers. Specifically, TransHuman is mainly composed of Transformer-based Human Encoding (TransHE), Deformable Partial Radiance Fields (DPaRF), and Fine-grained Detail Integration (FDI). TransHE first processes the painted SMPL under the canonical space via transformers for capturing the global relationships between human parts. Then, DPaRF binds each output token with a deformable radiance field for encoding the query point under the observation space. Finally, the FDI is employed to further integrate fine-grained information from reference images. Extensive experiments on ZJU-MoCap and H36M show that our TransHuman achieves a significantly new state-of-the-art performance with high efficiency. Project page: https://pansanity666.github.io/TransHuman/

SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark

Existing work in language grounding typically study single environments. How do we build unified models that apply across multiple environments? We propose the multi-environment Symbolic Interactive Language Grounding benchmark (SILG), which unifies a collection of diverse grounded language learning environments under a common interface. SILG consists of grid-world environments that require generalization to new dynamics, entities, and partially observed worlds (RTFM, Messenger, NetHack), as well as symbolic counterparts of visual worlds that require interpreting rich natural language with respect to complex scenes (ALFWorld, Touchdown). Together, these environments provide diverse grounding challenges in richness of observation space, action space, language specification, and plan complexity. In addition, we propose the first shared model architecture for RL on these environments, and evaluate recent advances such as egocentric local convolution, recurrent state-tracking, entity-centric attention, and pretrained LM using SILG. Our shared architecture achieves comparable performance to environment-specific architectures. Moreover, we find that many recent modelling advances do not result in significant gains on environments other than the one they were designed for. This highlights the need for a multi-environment benchmark. Finally, the best models significantly underperform humans on SILG, which suggests ample room for future work. We hope SILG enables the community to quickly identify new methodologies for language grounding that generalize to a diverse set of environments and their associated challenges.

VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models

Large language models (LLMs) are shown to possess a wealth of actionable knowledge that can be extracted for robot manipulation in the form of reasoning and planning. Despite the progress, most still rely on pre-defined motion primitives to carry out the physical interactions with the environment, which remains a major bottleneck. In this work, we aim to synthesize robot trajectories, i.e., a dense sequence of 6-DoF end-effector waypoints, for a large variety of manipulation tasks given an open-set of instructions and an open-set of objects. We achieve this by first observing that LLMs excel at inferring affordances and constraints given a free-form language instruction. More importantly, by leveraging their code-writing capabilities, they can interact with a visual-language model (VLM) to compose 3D value maps to ground the knowledge into the observation space of the agent. The composed value maps are then used in a model-based planning framework to zero-shot synthesize closed-loop robot trajectories with robustness to dynamic perturbations. We further demonstrate how the proposed framework can benefit from online experiences by efficiently learning a dynamics model for scenes that involve contact-rich interactions. We present a large-scale study of the proposed method in both simulated and real-robot environments, showcasing the ability to perform a large variety of everyday manipulation tasks specified in free-form natural language. Project website: https://voxposer.github.io

Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models

Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.

Inverse Dynamics Pretraining Learns Good Representations for Multitask Imitation

In recent years, domains such as natural language processing and image recognition have popularized the paradigm of using large datasets to pretrain representations that can be effectively transferred to downstream tasks. In this work we evaluate how such a paradigm should be done in imitation learning, where both pretraining and finetuning data are trajectories collected by experts interacting with an unknown environment. Namely, we consider a setting where the pretraining corpus consists of multitask demonstrations and the task for each demonstration is set by an unobserved latent context variable. The goal is to use the pretraining corpus to learn a low dimensional representation of the high dimensional (e.g., visual) observation space which can be transferred to a novel context for finetuning on a limited dataset of demonstrations. Among a variety of possible pretraining objectives, we argue that inverse dynamics modeling -- i.e., predicting an action given the observations appearing before and after it in the demonstration -- is well-suited to this setting. We provide empirical evidence of this claim through evaluations on a variety of simulated visuomotor manipulation problems. While previous work has attempted various theoretical explanations regarding the benefit of inverse dynamics modeling, we find that these arguments are insufficient to explain the empirical advantages often observed in our settings, and so we derive a novel analysis using a simple but general environment model.

AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents

Autonomy via agents using large language models (LLMs) for personalized, standardized tasks boosts human efficiency. Automating web tasks (like booking hotels within a budget) is increasingly sought after. Fulfilling practical needs, the web agent also serves as an important proof-of-concept example for various agent grounding scenarios, with its success promising advancements in many future applications. Prior research often handcrafts web agent strategies (e.g., prompting templates, multi-agent systems, search methods, etc.) and the corresponding in-context examples, which may not generalize well across all real-world scenarios. On the other hand, there has been limited study on the misalignment between a web agent's observation/action representation and the pre-training data of the LLM it's based on. This discrepancy is especially notable when LLMs are primarily trained for language completion rather than tasks involving embodied navigation actions and symbolic web elements. Our study enhances an LLM-based web agent by simply refining its observation and action space to better align with the LLM's capabilities. This approach enables our base agent to significantly outperform previous methods on a wide variety of web tasks. Specifically, on WebArena, a benchmark featuring general-purpose web interaction tasks, our agent AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively, and boosts the success rate by 26.6 points (+161%) over similar plain web agents with its observation and action space alignment. We achieve this without using in-context examples, new agent roles, online feedback or search strategies. AgentOccam's simple design highlights LLMs' impressive zero-shot performance on web tasks, and underlines the critical role of carefully tuning observation and action spaces for LLM-based agents.

Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction

Magnetic Resonance Imaging can produce detailed images of the anatomy and physiology of the human body that can assist doctors in diagnosing and treating pathologies such as tumours. However, MRI suffers from very long acquisition times that make it susceptible to patient motion artifacts and limit its potential to deliver dynamic treatments. Conventional approaches such as Parallel Imaging and Compressed Sensing allow for an increase in MRI acquisition speed by reconstructing MR images from sub-sampled MRI data acquired using multiple receiver coils. Recent advancements in Deep Learning combined with Parallel Imaging and Compressed Sensing techniques have the potential to produce high-fidelity reconstructions from highly accelerated MRI data. In this work we present a novel Deep Learning-based Inverse Problem solver applied to the task of Accelerated MRI Reconstruction, called the Recurrent Variational Network (RecurrentVarNet), by exploiting the properties of Convolutional Recurrent Neural Networks and unrolled algorithms for solving Inverse Problems. The RecurrentVarNet consists of multiple recurrent blocks, each responsible for one iteration of the unrolled variational optimization scheme for solving the inverse problem of multi-coil Accelerated MRI Reconstruction. Contrary to traditional approaches, the optimization steps are performed in the observation domain (k-space) instead of the image domain. Each block of the RecurrentVarNet refines the observed k-space and comprises a data consistency term and a recurrent unit which takes as input a learned hidden state and the prediction of the previous block. Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-coil brain dataset, outperforming previous conventional and deep learning-based approaches.

The BrowserGym Ecosystem for Web Agent Research

The BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents, particularly those leveraging automation and Large Language Models (LLMs) for web interaction tasks. Many existing benchmarks suffer from fragmentation and inconsistent evaluation methodologies, making it challenging to achieve reliable comparisons and reproducible results. BrowserGym aims to solve this by providing a unified, gym-like environment with well-defined observation and action spaces, facilitating standardized evaluation across diverse benchmarks. Combined with AgentLab, a complementary framework that aids in agent creation, testing, and analysis, BrowserGym offers flexibility for integrating new benchmarks while ensuring consistent evaluation and comprehensive experiment management. This standardized approach seeks to reduce the time and complexity of developing web agents, supporting more reliable comparisons and facilitating in-depth analysis of agent behaviors, and could result in more adaptable, capable agents, ultimately accelerating innovation in LLM-driven automation. As a supporting evidence, we conduct the first large-scale, multi-benchmark web agent experiment and compare the performance of 6 state-of-the-art LLMs across all benchmarks currently available in BrowserGym. Among other findings, our results highlight a large discrepancy between OpenAI and Anthropic's latests models, with Claude-3.5-Sonnet leading the way on almost all benchmarks, except on vision-related tasks where GPT-4o is superior. Despite these advancements, our results emphasize that building robust and efficient web agents remains a significant challenge, due to the inherent complexity of real-world web environments and the limitations of current models.

Provable Benefits of Multi-task RL under Non-Markovian Decision Making Processes

In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures among multiple MDPs has been shown to yield significant benefits to the sample efficiency compared to single-task RL. In this paper, we investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs). The main challenge here is that the large and complex model space makes it hard to identify what types of common latent structure of multi-task PSRs can reduce the model complexity and improve sample efficiency. To this end, we posit a joint model class for tasks and use the notion of eta-bracketing number to quantify its complexity; this number also serves as a general metric to capture the similarity of tasks and thus determines the benefit of multi-task over single-task RL. We first study upstream multi-task learning over PSRs, in which all tasks share the same observation and action spaces. We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSRs has a smaller eta-bracketing number compared to that of individual single-task learning. We also provide several example multi-task PSRs with small eta-bracketing numbers, which reap the benefits of multi-task learning. We further investigate downstream learning, in which the agent needs to learn a new target task that shares some commonalities with the upstream tasks via a similarity constraint. By exploiting the learned PSRs from the upstream, we develop a sample-efficient algorithm that provably finds a near-optimal policy.

Space and Time Continuous Physics Simulation From Partial Observations

Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.

Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks

Owing to the growing concerns about privacy and regulatory compliance, it is desirable to regulate the output of generative models. To that end, the objective of this work is to prevent the generation of outputs containing undesired features from a pre-trained Generative Adversarial Network (GAN) where the underlying training data set is inaccessible. Our approach is inspired by the observation that the parameter space of GANs exhibits meaningful directions that can be leveraged to suppress specific undesired features. However, such directions usually result in the degradation of the quality of generated samples. Our proposed two-stage method, known as 'Adapt-then-Unlearn,' excels at unlearning such undesirable features while also maintaining the quality of generated samples. In the initial stage, we adapt a pre-trained GAN on a set of negative samples (containing undesired features) provided by the user. Subsequently, we train the original pre-trained GAN using positive samples, along with a repulsion regularizer. This regularizer encourages the learned model parameters to move away from the parameters of the adapted model (first stage) while not degrading the generation quality. We provide theoretical insights into the proposed method. To the best of our knowledge, our approach stands as the first method addressing unlearning within the realm of high-fidelity GANs (such as StyleGAN). We validate the effectiveness of our method through comprehensive experiments, encompassing both class-level unlearning on the MNIST and AFHQ dataset and feature-level unlearning tasks on the CelebA-HQ dataset. Our code and implementation is available at: https://github.com/atriguha/Adapt_Unlearn.

Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective

Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.

A Real-time Faint Space Debris Detector With Learning-based LCM

With the development of aerospace technology, the increasing population of space debris has posed a great threat to the safety of spacecraft. However, the low intensity of reflected light and high angular velocity of space debris impede the extraction. Besides, due to the limitations of the ground observation methods, small space debris can hardly be detected, making it necessary to enhance the spacecraft's capacity for space situational awareness (SSA). Considering that traditional methods have some defects in low-SNR target detection, such as low effectiveness and large time consumption, this paper proposes a method for low-SNR streak extraction based on local contrast and maximum likelihood estimation (MLE), which can detect space objects with SNR 2.0 efficiently. In the proposed algorithm, local contrast will be applied for crude classifications, which will return connected components as preliminary results, and then MLE will be performed to reconstruct the connected components of targets via orientated growth, further improving the precision. The algorithm has been verified with both simulated streaks and real star tracker images, and the average centroid error of the proposed algorithm is close to the state-of-the-art method like ODCC. At the same time, the algorithm in this paper has significant advantages in efficiency compared with ODCC. In conclusion, the algorithm in this paper is of high speed and precision, which guarantees its promising applications in the extraction of high dynamic targets.

Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration

Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.

EnerVerse: Envisioning Embodied Future Space for Robotics Manipulation

We introduce EnerVerse, a comprehensive framework for embodied future space generation specifically designed for robotic manipulation tasks. EnerVerse seamlessly integrates convolutional and bidirectional attention mechanisms for inner-chunk space modeling, ensuring low-level consistency and continuity. Recognizing the inherent redundancy in video data, we propose a sparse memory context combined with a chunkwise unidirectional generative paradigm to enable the generation of infinitely long sequences. To further augment robotic capabilities, we introduce the Free Anchor View (FAV) space, which provides flexible perspectives to enhance observation and analysis. The FAV space mitigates motion modeling ambiguity, removes physical constraints in confined environments, and significantly improves the robot's generalization and adaptability across various tasks and settings. To address the prohibitive costs and labor intensity of acquiring multi-camera observations, we present a data engine pipeline that integrates a generative model with 4D Gaussian Splatting (4DGS). This pipeline leverages the generative model's robust generalization capabilities and the spatial constraints provided by 4DGS, enabling an iterative enhancement of data quality and diversity, thus creating a data flywheel effect that effectively narrows the sim-to-real gap. Finally, our experiments demonstrate that the embodied future space generation prior substantially enhances policy predictive capabilities, resulting in improved overall performance, particularly in long-range robotic manipulation tasks.

M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data

Satellite-based remote sensing has revolutionised the way we address global challenges. Huge quantities of Earth Observation (EO) data are generated by satellite sensors daily, but processing these large datasets for use in ML pipelines is technically and computationally challenging. While some preprocessed Earth observation datasets exist, their content is often limited to optical or near-optical wavelength data, which is ineffective at night or in adverse weather conditions. Synthetic Aperture Radar (SAR), an active sensing technique based on microwave length radiation, offers a viable alternative. However, the application of machine learning to SAR has been limited due to a lack of ML-ready data and pipelines, particularly for the full diversity of SAR data, including polarimetry, coherence and interferometry. In this work, we introduce M3LEO, a multi-modal, multi-label Earth observation dataset that includes polarimetric, interferometric, and coherence SAR data derived from Sentinel-1, alongside multispectral Sentinel-2 imagery and auxiliary data describing terrain properties such as land use. M3LEO spans approximately 17M 4x4 km data chips from six diverse geographic regions. The dataset is complemented by a flexible PyTorch Lightning framework configured using Hydra to accommodate its use across diverse ML applications in Earth observation. We provide tools to process any dataset available on popular platforms such as Google Earth Engine for seamless integration with our framework. We show that the distribution shift in self-supervised embeddings is substantial across geographic regions, even when controlling for terrain properties. Data: huggingface.co/M3LEO, Code: github.com/spaceml-org/M3LEO.

Before It's Too Late: A State Space Model for the Early Prediction of Misinformation and Disinformation Engagement

In today's digital age, conspiracies and information campaigns can emerge rapidly and erode social and democratic cohesion. While recent deep learning approaches have made progress in modeling engagement through language and propagation models, they struggle with irregularly sampled data and early trajectory assessment. We present IC-Mamba, a novel state space model that forecasts social media engagement by modeling interval-censored data with integrated temporal embeddings. Our model excels at predicting engagement patterns within the crucial first 15-30 minutes of posting (RMSE 0.118-0.143), enabling rapid assessment of content reach. By incorporating interval-censored modeling into the state space framework, IC-Mamba captures fine-grained temporal dynamics of engagement growth, achieving a 4.72% improvement over state-of-the-art across multiple engagement metrics (likes, shares, comments, and emojis). Our experiments demonstrate IC-Mamba's effectiveness in forecasting both post-level dynamics and broader narrative patterns (F1 0.508-0.751 for narrative-level predictions). The model maintains strong predictive performance across extended time horizons, successfully forecasting opinion-level engagement up to 28 days ahead using observation windows of 3-10 days. These capabilities enable earlier identification of potentially problematic content, providing crucial lead time for designing and implementing countermeasures. Code is available at: https://github.com/ltian678/ic-mamba. An interactive dashboard demonstrating our results is available at: https://ic-mamba.behavioral-ds.science.

A Comparative Study on Generative Models for High Resolution Solar Observation Imaging

Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at https://github.com/SLAMPAI/generative-models-for-highres-solar-images.

ProxyDet: Synthesizing Proxy Novel Classes via Classwise Mixup for Open-Vocabulary Object Detection

Open-vocabulary object detection (OVOD) aims to recognize novel objects whose categories are not included in the training set. In order to classify these unseen classes during training, many OVOD frameworks leverage the zero-shot capability of largely pretrained vision and language models, such as CLIP. To further improve generalization on the unseen novel classes, several approaches proposed to additionally train with pseudo region labeling on the external data sources that contain a substantial number of novel category labels beyond the existing training data. Albeit its simplicity, these pseudo-labeling methods still exhibit limited improvement with regard to the truly unseen novel classes that were not pseudo-labeled. In this paper, we present a novel, yet simple technique that helps generalization on the overall distribution of novel classes. Inspired by our observation that numerous novel classes reside within the convex hull constructed by the base (seen) classes in the CLIP embedding space, we propose to synthesize proxy-novel classes approximating novel classes via linear mixup between a pair of base classes. By training our detector with these synthetic proxy-novel classes, we effectively explore the embedding space of novel classes. The experimental results on various OVOD benchmarks such as LVIS and COCO demonstrate superior performance on novel classes compared to the other state-of-the-art methods. Code is available at https://github.com/clovaai/ProxyDet.

Learnable Commutative Monoids for Graph Neural Networks

Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node's neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.

I Think, Therefore I Diffuse: Enabling Multimodal In-Context Reasoning in Diffusion Models

This paper presents ThinkDiff, a novel alignment paradigm that empowers text-to-image diffusion models with multimodal in-context understanding and reasoning capabilities by integrating the strengths of vision-language models (VLMs). Existing multimodal diffusion finetuning methods largely focus on pixel-level reconstruction rather than in-context reasoning, and are constrained by the complexity and limited availability of reasoning-based datasets. ThinkDiff addresses these challenges by leveraging vision-language training as a proxy task, aligning VLMs with the decoder of an encoder-decoder large language model (LLM) instead of a diffusion decoder. This proxy task builds on the observation that the LLM decoder shares the same input feature space with diffusion decoders that use the corresponding LLM encoder for prompt embedding. As a result, aligning VLMs with diffusion decoders can be simplified through alignment with the LLM decoder. Without complex training and datasets, ThinkDiff effectively unleashes understanding, reasoning, and composing capabilities in diffusion models. Experiments demonstrate that ThinkDiff significantly improves accuracy from 19.2% to 46.3% on the challenging CoBSAT benchmark for multimodal in-context reasoning generation, with only 5 hours of training on 4 A100 GPUs. Additionally, ThinkDiff demonstrates exceptional performance in composing multiple images and texts into logically coherent images. Project page: https://mizhenxing.github.io/ThinkDiff.

Revisiting the Parameter Efficiency of Adapters from the Perspective of Precision Redundancy

Current state-of-the-art results in computer vision depend in part on fine-tuning large pre-trained vision models. However, with the exponential growth of model sizes, the conventional full fine-tuning, which needs to store a individual network copy for each tasks, leads to increasingly huge storage and transmission overhead. Adapter-based Parameter-Efficient Tuning (PET) methods address this challenge by tuning lightweight adapters inserted into the frozen pre-trained models. In this paper, we investigate how to make adapters even more efficient, reaching a new minimum size required to store a task-specific fine-tuned network. Inspired by the observation that the parameters of adapters converge at flat local minima, we find that adapters are resistant to noise in parameter space, which means they are also resistant to low numerical precision. To train low-precision adapters, we propose a computational-efficient quantization method which minimizes the quantization error. Through extensive experiments, we find that low-precision adapters exhibit minimal performance degradation, and even 1-bit precision is sufficient for adapters. The experimental results demonstrate that 1-bit adapters outperform all other PET methods on both the VTAB-1K benchmark and few-shot FGVC tasks, while requiring the smallest storage size. Our findings show, for the first time, the significant potential of quantization techniques in PET, providing a general solution to enhance the parameter efficiency of adapter-based PET methods. Code: https://github.com/JieShibo/PETL-ViT

ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance

Recent text-to-image customization works have been proven successful in generating images of given concepts by fine-tuning the diffusion models on a few examples. However, these methods tend to overfit the concepts, resulting in failure to create the concept under multiple conditions (e.g. headphone is missing when generating a <sks> dog wearing a headphone'). Interestingly, we notice that the base model before fine-tuning exhibits the capability to compose the base concept with other elements (e.g. a dog wearing a headphone) implying that the compositional ability only disappears after personalization tuning. Inspired by this observation, we present ClassDiffusion, a simple technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept. Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts. Extensive qualitative and quantitative experiments demonstrate that the use of semantic preservation loss effectively improves the compositional abilities of the fine-tune models. In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric, a more equitable and effective evaluation metric for this particular domain. We also provide in-depth empirical study and theoretical analysis to better understand the role of the proposed loss. Lastly, we also extend our ClassDiffusion to personalized video generation, demonstrating its flexibility.

Monocular 3D Object Detection with Bounding Box Denoising in 3D by Perceiver

The main challenge of monocular 3D object detection is the accurate localization of 3D center. Motivated by a new and strong observation that this challenge can be remedied by a 3D-space local-grid search scheme in an ideal case, we propose a stage-wise approach, which combines the information flow from 2D-to-3D (3D bounding box proposal generation with a single 2D image) and 3D-to-2D (proposal verification by denoising with 3D-to-2D contexts) in a top-down manner. Specifically, we first obtain initial proposals from off-the-shelf backbone monocular 3D detectors. Then, we generate a 3D anchor space by local-grid sampling from the initial proposals. Finally, we perform 3D bounding box denoising at the 3D-to-2D proposal verification stage. To effectively learn discriminative features for denoising highly overlapped proposals, this paper presents a method of using the Perceiver I/O model to fuse the 3D-to-2D geometric information and the 2D appearance information. With the encoded latent representation of a proposal, the verification head is implemented with a self-attention module. Our method, named as MonoXiver, is generic and can be easily adapted to any backbone monocular 3D detectors. Experimental results on the well-established KITTI dataset and the challenging large-scale Waymo dataset show that MonoXiver consistently achieves improvement with limited computation overhead.

Data Selection for Language Models via Importance Resampling

Selecting a suitable training dataset is crucial for both general-domain (e.g., GPT-3) and domain-specific (e.g., Codex) language models (LMs). We formalize this data selection problem as selecting a subset of a large raw unlabeled dataset to match a desired target distribution, given some unlabeled target samples. Due to the large scale and dimensionality of the raw text data, existing methods use simple heuristics to select data that are similar to a high-quality reference corpus (e.g., Wikipedia), or leverage experts to manually curate data. Instead, we extend the classic importance resampling approach used in low-dimensions for LM data selection. Crucially, we work in a reduced feature space to make importance weight estimation tractable over the space of text. To determine an appropriate feature space, we first show that KL reduction, a data metric that measures the proximity between selected data and the target in a feature space, has high correlation with average accuracy on 8 downstream tasks (r=0.89) when computed with simple n-gram features. From this observation, we present Data Selection with Importance Resampling (DSIR), an efficient and scalable algorithm that estimates importance weights in a reduced feature space (e.g., n-gram features in our instantiation) and selects data with importance resampling according to these weights. When training general-domain models (target is Wikipedia + books), DSIR improves over random selection and heuristic filtering baselines by 2--2.5% on the GLUE benchmark. When performing continued pretraining towards a specific domain, DSIR performs comparably to expert curated data across 8 target distributions.

LLM-PySC2: Starcraft II learning environment for Large Language Models

This paper introduces a new environment LLM-PySC2 (the Large Language Model StarCraft II Learning Environment), a platform derived from DeepMind's StarCraft II Learning Environment that serves to develop Large Language Models (LLMs) based decision-making methodologies. This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database, which are seamlessly connected with various LLMs to facilitate the research of LLMs-based decision-making. To further support multi-agent research, we developed an LLM collaborative framework that supports multi-agent concurrent queries and multi-agent communication. In our experiments, the LLM-PySC2 environment is adapted to be compatible with the StarCraft Multi-Agent Challenge (SMAC) task group and provided eight new scenarios focused on macro-decision abilities. We evaluated nine mainstream LLMs in the experiments, and results show that sufficient parameters are necessary for LLMs to make decisions, but improving reasoning ability does not directly lead to better decision-making outcomes. Our findings further indicate the importance of enabling large models to learn autonomously in the deployment environment through parameter training or train-free learning techniques. Ultimately, we expect that the LLM-PySC2 environment can promote research on learning methods for LLMs, helping LLM-based methods better adapt to task scenarios.

Dynamic Modeling and Vibration Analysis of Large Deployable Mesh Reflectors

Large deployable mesh reflectors are essential for space applications, providing precise reflecting surfaces for high-gain antennas used in satellite communications, Earth observation, and deep-space missions. During on-orbit missions, active shape adjustment and attitude control are crucial for maintaining surface accuracy and proper orientation for these reflectors, ensuring optimal performance. Preventing resonance through thorough dynamic modeling and vibration analysis is vital to avoid structural damage and ensure stability and reliability. Existing dynamic modeling approaches, such as wave and finite element methods, often fail to accurately predict dynamic responses due to the limited capability of handling three-dimensional reflectors or the oversimplification of cable members of a reflector. This paper proposes the Cartesian spatial discretization method for dynamic modeling and vibration analysis of cable-network structures in large deployable mesh reflectors. This method defines cable member positions as a summation of internal and boundary-induced terms within a global Cartesian coordinate system. Numerical simulation on a two-dimensional cable-network structure and a center-feed mesh reflector demonstrates the superiority of the proposed method over traditional approaches, highlighting its accuracy and versatility, and establishing it as a robust tool for analyzing three-dimensional complex reflector configurations.

A hybrid deep-learning-metaheuristic framework for bi-level network design problems

This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks, two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can provide solutions within 1.5% gap of the best results in less than 0.5% of the time used by the exact solution procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the best infrastructure planning and management decisions under different scenarios. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research agenda for this topic. The key observation from our research that can shape future research is that the fitness function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.

Deep Policy Networks for NPC Behaviors that Adapt to Changing Design Parameters in Roguelike Games

Recent advances in Deep Reinforcement Learning (DRL) have largely focused on improving the performance of agents with the aim of replacing humans in known and well-defined environments. The use of these techniques as a game design tool for video game production, where the aim is instead to create Non-Player Character (NPC) behaviors, has received relatively little attention until recently. Turn-based strategy games like Roguelikes, for example, present unique challenges to DRL. In particular, the categorical nature of their complex game state, composed of many entities with different attributes, requires agents able to learn how to compare and prioritize these entities. Moreover, this complexity often leads to agents that overfit to states seen during training and that are unable to generalize in the face of design changes made during development. In this paper we propose two network architectures which, when combined with a procedural loot generation system, are able to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions. The first is based on a dense embedding of the categorical input space that abstracts the discrete observation model and renders trained agents more able to generalize. The second proposed architecture is more general and is based on a Transformer network able to reason relationally about input and input attributes. Our experimental evaluation demonstrates that new agents have better adaptation capacity with respect to a baseline architecture, making this framework more robust to dynamic gameplay changes during development. Based on the results shown in this paper, we believe that these solutions represent a step forward towards making DRL more accessible to the gaming industry.

VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning Decoupled Rotations on the Spherical Representations

Rotation estimation of high precision from an RGB-D object observation is a huge challenge in 6D object pose estimation, due to the difficulty of learning in the non-linear space of SO(3). In this paper, we propose a novel rotation estimation network, termed as VI-Net, to make the task easier by decoupling the rotation as the combination of a viewpoint rotation and an in-plane rotation. More specifically, VI-Net bases the feature learning on the sphere with two individual branches for the estimates of two factorized rotations, where a V-Branch is employed to learn the viewpoint rotation via binary classification on the spherical signals, while another I-Branch is used to estimate the in-plane rotation by transforming the signals to view from the zenith direction. To process the spherical signals, a Spherical Feature Pyramid Network is constructed based on a novel design of SPAtial Spherical Convolution (SPA-SConv), which settles the boundary problem of spherical signals via feature padding and realizesviewpoint-equivariant feature extraction by symmetric convolutional operations. We apply the proposed VI-Net to the challenging task of category-level 6D object pose estimation for predicting the poses of unknown objects without available CAD models; experiments on the benchmarking datasets confirm the efficacy of our method, which outperforms the existing ones with a large margin in the regime of high precision.

Learning in Sparse Rewards settings through Quality-Diversity algorithms

In the Reinforcement Learning (RL) framework, the learning is guided through a reward signal. This means that in situations of sparse rewards the agent has to focus on exploration, in order to discover which action, or set of actions leads to the reward. RL agents usually struggle with this. Exploration is the focus of Quality-Diversity (QD) methods. In this thesis, we approach the problem of sparse rewards with these algorithms, and in particular with Novelty Search (NS). This is a method that only focuses on the diversity of the possible policies behaviors. The first part of the thesis focuses on learning a representation of the space in which the diversity of the policies is evaluated. In this regard, we propose the TAXONS algorithm, a method that learns a low-dimensional representation of the search space through an AutoEncoder. While effective, TAXONS still requires information on when to capture the observation used to learn said space. For this, we study multiple ways, and in particular the signature transform, to encode information about the whole trajectory of observations. The thesis continues with the introduction of the SERENE algorithm, a method that can efficiently focus on the interesting parts of the search space. This method separates the exploration of the search space from the exploitation of the reward through a two-alternating-steps approach. The exploration is performed through NS. Any discovered reward is then locally exploited through emitters. The third and final contribution combines TAXONS and SERENE into a single approach: STAX. Throughout this thesis, we introduce methods that lower the amount of prior information needed in sparse rewards settings. These contributions are a promising step towards the development of methods that can autonomously explore and find high-performance policies in a variety of sparse rewards settings.

Euclid. II. The VIS Instrument

This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.

AstroM^3: A self-supervised multimodal model for astronomy

While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM^3, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an n>2 mode model in astronomy. Extensions to n>3 modes is naturally anticipated with this approach.

Latent Compass: Creation by Navigation

In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.

Dynamics of the Beta Pictoris planetary system and possibility of an additional planet

The Beta Pictoris system is characterized by a dusty debris disk, in addition to the presence of two already known planets. This makes it a particularly interesting case for studying the formation and evolution of planetary systems at a stage where giant planets have already formed, most of the protoplanetary gas has dissipated, and terrestrial planets could emerge. Our goal here is to explore the possibility of additional planets orbiting beyond the outermost known one, beta Pic b. More specifically, we aim to assess whether additional planets in the system could explain the discrepancy between the predicted cutoff of the disk inner cavity at sim28 au with only two planets, and the observed one at sim50 au. We perform an exhaustive dynamical modeling of the debris disk and the carving of its inner edge, by introducing one or two additional planets beyond beta Pic b, coplanar with the disk. Guided by theoretical predictions for the parameter space - mass, semi-major axis, eccentricity - allowed for additional planets, we further carry out a set of N-body simulations, using the symplectic integrator RMVS3. Our simulations indicate that an additional planet with a low eccentricity of 0.05, a mass between 0.15 and 1 M_{Jup}, and a semi-major axis between 30 and 36 au, would be consistent with the observations of an inner debris disk edge at 50 au. We have also explored the hypotheses of a higher eccentricity and the presence of two additional lower mass planets instead of one, which could also account for these observations. While we have found that one or even two additional planets could explain the observed location of the disk inner edge, these hypothetical planets remain in most cases below the current observational limits of high contrast imaging. Future observational campaigns with improved sensitivity will help lowering these limits and perhaps detect that planet.

Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves

Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.

DreamSat: Towards a General 3D Model for Novel View Synthesis of Space Objects

Novel view synthesis (NVS) enables to generate new images of a scene or convert a set of 2D images into a comprehensive 3D model. In the context of Space Domain Awareness, since space is becoming increasingly congested, NVS can accurately map space objects and debris, improving the safety and efficiency of space operations. Similarly, in Rendezvous and Proximity Operations missions, 3D models can provide details about a target object's shape, size, and orientation, allowing for better planning and prediction of the target's behavior. In this work, we explore the generalization abilities of these reconstruction techniques, aiming to avoid the necessity of retraining for each new scene, by presenting a novel approach to 3D spacecraft reconstruction from single-view images, DreamSat, by fine-tuning the Zero123 XL, a state-of-the-art single-view reconstruction model, on a high-quality dataset of 190 high-quality spacecraft models and integrating it into the DreamGaussian framework. We demonstrate consistent improvements in reconstruction quality across multiple metrics, including Contrastive Language-Image Pretraining (CLIP) score (+0.33%), Peak Signal-to-Noise Ratio (PSNR) (+2.53%), Structural Similarity Index (SSIM) (+2.38%), and Learned Perceptual Image Patch Similarity (LPIPS) (+0.16%) on a test set of 30 previously unseen spacecraft images. Our method addresses the lack of domain-specific 3D reconstruction tools in the space industry by leveraging state-of-the-art diffusion models and 3D Gaussian splatting techniques. This approach maintains the efficiency of the DreamGaussian framework while enhancing the accuracy and detail of spacecraft reconstructions. The code for this work can be accessed on GitHub (https://github.com/ARCLab-MIT/space-nvs).

Harnessing the Hubble Space Telescope Archives: A Catalogue of 21,926 Interacting Galaxies

Mergers play a complex role in galaxy formation and evolution. Continuing to improve our understanding of these systems require ever larger samples, which can be difficult (even impossible) to select from individual surveys. We use the new platform ESA Datalabs to assemble a catalogue of interacting galaxies from the Hubble Space Telescope science archives; this catalogue is larger than previously published catalogues by nearly an order of magnitude. In particular, we apply the Zoobot convolutional neural network directly to the entire public archive of HST F814W images and make probabilistic interaction predictions for 126 million sources from the Hubble Source Catalogue. We employ a combination of automated visual representation and visual analysis to identify a clean sample of 21,926 interacting galaxy systems, mostly with z < 1. Sixty five percent of these systems have no previous references in either the NASA Extragalactic Database or Simbad. In the process of removing contamination, we also discover many other objects of interest, such as gravitational lenses, edge-on protoplanetary disks, and `backlit' overlapping galaxies. We briefly investigate the basic properties of this sample, and we make our catalogue publicly available for use by the community. In addition to providing a new catalogue of scientifically interesting objects imaged by HST, this work also demonstrates the power of the ESA Datalabs tool to facilitate substantial archival analysis without placing a high computational or storage burden on the end user.

Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratio in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially-resolved spectroscopy for thousands of nearby galaxies (median redshift of z = 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between redshifts z = 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGN and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5-meter Sloan Foundation Telescope at Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5-meter du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in July 2016.

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three year observing campaign on the Sloan 2.5-m Telescope, APOGEE has collected a half million high resolution (R~22,500), high S/N (>100), infrared (1.51-1.70 microns) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design---hardware, field placement, target selection, operations---and gives an overview of these aspects as well as the data reduction, analysis and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12, all of the APOGEE data products are now publicly available.

The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs

We describe the design and performance of the near-infrared (1.51--1.70 micron), fiber-fed, multi-object (300 fibers), high resolution (R = lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~ 10^5 red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a "gang connector" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ~ 400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.

Galaxy Spectra neural Networks (GaSNets). I. Searching for strong lens candidates in eBOSS spectra using Deep Learning

With the advent of new spectroscopic surveys from ground and space, observing up to hundreds of millions of galaxies, spectra classification will become overwhelming for standard analysis techniques. To prepare for this challenge, we introduce a family of deep learning tools to classify features in one-dimensional spectra. As the first application of these Galaxy Spectra neural Networks (GaSNets), we focus on tools specialized at identifying emission lines from strongly lensed star-forming galaxies in the eBOSS spectra. We first discuss the training and testing of these networks and define a threshold probability, PL, of 95% for the high quality event detection. Then, using a previous set of spectroscopically selected strong lenses from eBOSS, confirmed with HST, we estimate a completeness of ~80% as the fraction of lenses recovered above the adopted PL. We finally apply the GaSNets to ~1.3M spectra to collect a first list of ~430 new high quality candidates identified with deep learning applied to spectroscopy and visually graded as highly probable real events. A preliminary check against ground-based observations tentatively shows that this sample has a confirmation rate of 38%, in line with previous samples selected with standard (no deep learning) classification tools and follow-up by Hubble Space Telescope. This first test shows that machine learning can be efficiently extended to feature recognition in the wavelength space, which will be crucial for future surveys like 4MOST, DESI, Euclid, and the Chinese Space Station Telescope (CSST).

The FAST HI 21-cm absorption blind survey. II. -- Statistic Exploration for Associated and Intervening systems

We present an extragalactic HI 21-cm absorption lines catalog from a blind search at z leqslant 0.35, using drift-scan data collected in 1325.6 hours by the ongoing Commensal Radio Astronomy FasT Survey (CRAFTS) and FAST All Sky HI Survey (FASHI), which spans a sky area of 6072.0 deg^{2} and covers 84533 radio sources with a flux density greater than 12 mJy. 14 previously identified HI absorbers and 20 newly discovered HI absorbers were detected, comprising 15 associated systems, 10 intervening systems, and 9 systems with undetermined classifications. Through spectral stacking, the mean peak optical path, mean velocity-integrated optical path, mean FWHM and mean HI column density are measured to be 0.47 and 0.30; 27.19 and 4.36 km s^{-1}; 42.61 and 9.33 km s^{-1}; 0.49 and 0.08 T_{s} times 10^{20}cm^{-2}K^{-1}, for the associated and intervening samples, respectively. Statistical analysis also reveals that associated systems tend to be hosted by red (g-r>0.7) galaxies at lower redshifts, whereas galaxies hosting intervening HI absorption are typically found at higher redshifts and are of a bluer (g-rleqslant0.7) type. A noticeable difference is observed in the positions of foregrounds, backgrounds of intervening systems, and high-redshift and low-redshift associated systems on the WISE color-color diagram. All identified foreground sources in our sample have W1-W2 magnitudes below 0.8, suggesting no Active Galactic Nuclei (AGN). In contrast, backgrounds of intervening systems tend to have W1-W2 magnitudes above 0.8, indicating AGN presence. For associated absorption, most low-redshift (zleqslant0.5) systems show W1-W2 values below 0.8, while higher-redshift associated absorption (z>0.5) displays a broader range of W1-W2 values.

CfA3: 185 Type Ia Supernova Light Curves from the CfA

We present multi-band photometry of 185 type-Ia supernovae (SN Ia), with over 11500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously-observed and reduced nearby SN Ia (z < 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of 0.02 mag or better in BVRIr'i' and roughly 0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SN Ia are sufficiently distinct from other SN Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory

We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking

Kalman filter (KF) based methods for multi-object tracking (MOT) make an assumption that objects move linearly. While this assumption is acceptable for very short periods of occlusion, linear estimates of motion for prolonged time can be highly inaccurate. Moreover, when there is no measurement available to update Kalman filter parameters, the standard convention is to trust the priori state estimations for posteriori update. This leads to the accumulation of errors during a period of occlusion. The error causes significant motion direction variance in practice. In this work, we show that a basic Kalman filter can still obtain state-of-the-art tracking performance if proper care is taken to fix the noise accumulated during occlusion. Instead of relying only on the linear state estimate (i.e., estimation-centric approach), we use object observations (i.e., the measurements by object detector) to compute a virtual trajectory over the occlusion period to fix the error accumulation of filter parameters during the occlusion period. This allows more time steps to correct errors accumulated during occlusion. We name our method Observation-Centric SORT (OC-SORT). It remains Simple, Online, and Real-Time but improves robustness during occlusion and non-linear motion. Given off-the-shelf detections as input, OC-SORT runs at 700+ FPS on a single CPU. It achieves state-of-the-art on multiple datasets, including MOT17, MOT20, KITTI, head tracking, and especially DanceTrack where the object motion is highly non-linear. The code and models are available at https://github.com/noahcao/OC_SORT.

IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare

The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65.

Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice

Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.

Offline RL with Observation Histories: Analyzing and Improving Sample Complexity

Offline reinforcement learning (RL) can in principle synthesize more optimal behavior from a dataset consisting only of suboptimal trials. One way that this can happen is by "stitching" together the best parts of otherwise suboptimal trajectories that overlap on similar states, to create new behaviors where each individual state is in-distribution, but the overall returns are higher. However, in many interesting and complex applications, such as autonomous navigation and dialogue systems, the state is partially observed. Even worse, the state representation is unknown or not easy to define. In such cases, policies and value functions are often conditioned on observation histories instead of states. In these cases, it is not clear if the same kind of "stitching" is feasible at the level of observation histories, since two different trajectories would always have different histories, and thus "similar states" that might lead to effective stitching cannot be leveraged. Theoretically, we show that standard offline RL algorithms conditioned on observation histories suffer from poor sample complexity, in accordance with the above intuition. We then identify sufficient conditions under which offline RL can still be efficient -- intuitively, it needs to learn a compact representation of history comprising only features relevant for action selection. We introduce a bisimulation loss that captures the extent to which this happens, and propose that offline RL can explicitly optimize this loss to aid worst-case sample complexity. Empirically, we show that across a variety of tasks either our proposed loss improves performance, or the value of this loss is already minimized as a consequence of standard offline RL, indicating that it correlates well with good performance.

Imitation Learning from Observation with Automatic Discount Scheduling

Humans often acquire new skills through observation and imitation. For robotic agents, learning from the plethora of unlabeled video demonstration data available on the Internet necessitates imitating the expert without access to its action, presenting a challenge known as Imitation Learning from Observations (ILfO). A common approach to tackle ILfO problems is to convert them into inverse reinforcement learning problems, utilizing a proxy reward computed from the agent's and the expert's observations. Nonetheless, we identify that tasks characterized by a progress dependency property pose significant challenges for such approaches; in these tasks, the agent needs to initially learn the expert's preceding behaviors before mastering the subsequent ones. Our investigation reveals that the main cause is that the reward signals assigned to later steps hinder the learning of initial behaviors. To address this challenge, we present a novel ILfO framework that enables the agent to master earlier behaviors before advancing to later ones. We introduce an Automatic Discount Scheduling (ADS) mechanism that adaptively alters the discount factor in reinforcement learning during the training phase, prioritizing earlier rewards initially and gradually engaging later rewards only when the earlier behaviors have been mastered. Our experiments, conducted on nine Meta-World tasks, demonstrate that our method significantly outperforms state-of-the-art methods across all tasks, including those that are unsolvable by them.

A Novel Bifurcation Method for Observation Perturbation Attacks on Reinforcement Learning Agents: Load Altering Attacks on a Cyber Physical Power System

Components of cyber physical systems, which affect real-world processes, are often exposed to the internet. Replacing conventional control methods with Deep Reinforcement Learning (DRL) in energy systems is an active area of research, as these systems become increasingly complex with the advent of renewable energy sources and the desire to improve their efficiency. Artificial Neural Networks (ANN) are vulnerable to specific perturbations of their inputs or features, called adversarial examples. These perturbations are difficult to detect when properly regularized, but have significant effects on the ANN's output. Because DRL uses ANN to map optimal actions to observations, they are similarly vulnerable to adversarial examples. This work proposes a novel attack technique for continuous control using Group Difference Logits loss with a bifurcation layer. By combining aspects of targeted and untargeted attacks, the attack significantly increases the impact compared to an untargeted attack, with drastically smaller distortions than an optimally targeted attack. We demonstrate the impacts of powerful gradient-based attacks in a realistic smart energy environment, show how the impacts change with different DRL agents and training procedures, and use statistical and time-series analysis to evaluate attacks' stealth. The results show that adversarial attacks can have significant impacts on DRL controllers, and constraining an attack's perturbations makes it difficult to detect. However, certain DRL architectures are far more robust, and robust training methods can further reduce the impact.

The Price of Differential Privacy under Continual Observation

We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of T inputs and produces, after receiving each input, an accurate output on the obtained inputs. In contrast, a batch algorithm receives the data as one batch and produces a single output. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are widely studied and used in the batch model, we show that the worst case error of every continual release algorithm is tilde Omega(T^{1/3}) times larger than that of the best batch algorithm. Previous work shows only a polylogarithimic (in T) gap between the worst case error achievable in these two models; further, for many problems, including the summation of binary attributes, the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems closely related to summation -- specifically, those that require selecting the largest of a set of sums -- are fundamentally harder in the continual release model than in the batch model. Our lower bounds assume only that privacy holds for streams fixed in advance (the "nonadaptive" setting). However, we provide matching upper bounds that hold in a model where privacy is required even for adaptively selected streams. This model may be of independent interest.

Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications

This technical report presents Prithvi-EO-2.0, a new geospatial foundation model that offers significant improvements over its predecessor, Prithvi-EO-1.0. Trained on 4.2M global time series samples from NASA's Harmonized Landsat and Sentinel-2 data archive at 30m resolution, the new 300M and 600M parameter models incorporate temporal and location embeddings for enhanced performance across various geospatial tasks. Through extensive benchmarking with GEO-Bench, the 600M version outperforms the previous Prithvi-EO model by 8\% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m). The results demonstrate the versatility of the model in both classical earth observation and high-resolution applications. Early involvement of end-users and subject matter experts (SMEs) are among the key factors that contributed to the project's success. In particular, SME involvement allowed for constant feedback on model and dataset design, as well as successful customization for diverse SME-led applications in disaster response, land use and crop mapping, and ecosystem dynamics monitoring. Prithvi-EO-2.0 is available on Hugging Face and IBM terratorch, with additional resources on GitHub. The project exemplifies the Trusted Open Science approach embraced by all involved organizations.

Multi-Label Guided Soft Contrastive Learning for Efficient Earth Observation Pretraining

Self-supervised pretraining on large-scale satellite data has raised great interest in building Earth observation (EO) foundation models. However, many important resources beyond pure satellite imagery, such as land-cover-land-use products that provide free global semantic information, as well as vision foundation models that hold strong knowledge of the natural world, tend to be overlooked. In this work, we show these free additional resources not only help resolve common contrastive learning bottlenecks, but also significantly boost the efficiency and effectiveness of EO pretraining. Specifically, we first propose soft contrastive learning that optimizes cross-scene soft similarity based on land-cover-generated multi-label supervision, naturally solving the issue of multiple positive samples and too strict positive matching in complex scenes. Second, we explore cross-domain continual pretraining for both multispectral and SAR imagery, building efficient EO foundation models from strongest vision models such as DINOv2. Integrating simple weight-initialization and Siamese masking strategies into our soft contrastive learning framework, we demonstrate impressive continual pretraining performance even when the input channels and modalities are not aligned. Without prohibitive training, we produce multispectral and SAR foundation models that achieve significantly better results in 9 out of 10 downstream tasks than most existing SOTA models. For example, our ResNet50/ViT-S achieve 84.8/85.0 linear probing mAP scores on BigEarthNet-10\% which are better than most existing ViT-L models; under the same setting, our ViT-B sets a new record of 86.8 in multispectral, and 82.5 in SAR, the latter even better than many multispectral models. Dataset and models are available at https://github.com/zhu-xlab/softcon.

SkySense: A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery

Prior studies on Remote Sensing Foundation Model (RSFM) reveal immense potential towards a generic model for Earth Observation. Nevertheless, these works primarily focus on a single modality without temporal and geo-context modeling, hampering their capabilities for diverse tasks. In this study, we present SkySense, a generic billion-scale model, pre-trained on a curated multi-modal Remote Sensing Imagery (RSI) dataset with 21.5 million temporal sequences. SkySense incorporates a factorized multi-modal spatiotemporal encoder taking temporal sequences of optical and Synthetic Aperture Radar (SAR) data as input. This encoder is pre-trained by our proposed Multi-Granularity Contrastive Learning to learn representations across different modal and spatial granularities. To further enhance the RSI representations by the geo-context clue, we introduce Geo-Context Prototype Learning to learn region-aware prototypes upon RSI's multi-modal spatiotemporal features. To our best knowledge, SkySense is the largest Multi-Modal RSFM to date, whose modules can be flexibly combined or used individually to accommodate various tasks. It demonstrates remarkable generalization capabilities on a thorough evaluation encompassing 16 datasets over 7 tasks, from single- to multi-modal, static to temporal, and classification to localization. SkySense surpasses 18 recent RSFMs in all test scenarios. Specifically, it outperforms the latest models such as GFM, SatLas and Scale-MAE by a large margin, i.e., 2.76%, 3.67% and 3.61% on average respectively. We will release the pre-trained weights to facilitate future research and Earth Observation applications.

Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for Meteorological Forecasting Based on Real-Time Observation Data from Ground Weather Stations

Weather forecasting is one of the cornerstones of meteorological work. In this paper, we present a new benchmark dataset named Weather2K, which aims to make up for the deficiencies of existing weather forecasting datasets in terms of real-time, reliability, and diversity, as well as the key bottleneck of data quality. To be specific, our Weather2K is featured from the following aspects: 1) Reliable and real-time data. The data is hourly collected from 2,130 ground weather stations covering an area of 6 million square kilometers. 2) Multivariate meteorological variables. 20 meteorological factors and 3 constants for position information are provided with a length of 40,896 time steps. 3) Applicable to diverse tasks. We conduct a set of baseline tests on time series forecasting and spatio-temporal forecasting. To the best of our knowledge, our Weather2K is the first attempt to tackle weather forecasting task by taking full advantage of the strengths of observation data from ground weather stations. Based on Weather2K, we further propose Meteorological Factors based Multi-Graph Convolution Network (MFMGCN), which can effectively construct the intrinsic correlation among geographic locations based on meteorological factors. Sufficient experiments show that MFMGCN improves both the forecasting performance and temporal robustness. We hope our Weather2K can significantly motivate researchers to develop efficient and accurate algorithms to advance the task of weather forecasting. The dataset can be available at https://github.com/bycnfz/weather2k/.

ODS: A self-reporting system for radio telescopes to coexist with adaptive satellite constellations

Low Earth orbit (LEO) satellite constellations bring broadband internet and cellular service to the most remote locations on the planet. Unfortunately, many of these locations also host some of the world's best optical and radio astronomy (RA) observatories. With the number of LEO satellites expected to increase by an order of magnitude in the upcoming decade, satellite downlink radio frequency interference (RFI) is a growing concern in protected radio-quiet areas like the United States National Radio Quiet Zone. When these satellites transmit in the spectrum near protected RA bands, undesired out-of-band emission can leak into these protected bands and impact scientific observations. In this paper, we present a self-reporting system - Operational Data Sharing (ODS) - which enables mutual awareness by publishing radio telescopes' operational information to a protected database that is available to satellite operators through a representational state transfer application programming interface (REST API). Satellite operators can use the ODS data to adapt their downlink tasking algorithms in real time to avoid overwhelming sensitive RA facilities, particularly, through the novel Telescope Boresight Avoidance (TBA) technique. Preliminary results from recent experiments between the NRAO and the SpaceX Starlink teams demonstrate the effectiveness of the ODS and TBA in reducing downlink RFI in the Karl G. Jansky Very Large Array's observations in the 1990-1995 MHz and 10.7-12.7 GHz bands. This automated ODS system is beginning to be implemented by other RA facilities and could be utilized by other satellite operators in the near future.

Using remotely sensed data for air pollution assessment

Air pollution constitutes a global problem of paramount importance that affects not only human health, but also the environment. The existence of spatial and temporal data regarding the concentrations of pollutants is crucial for performing air pollution studies and monitor emissions. However, although observation data presents great temporal coverage, the number of stations is very limited and they are usually built in more populated areas. The main objective of this work is to create models capable of inferring pollutant concentrations in locations where no observation data exists. A machine learning model, more specifically the random forest model, was developed for predicting concentrations in the Iberian Peninsula in 2019 for five selected pollutants: NO_2, O_3 SO_2, PM10, and PM2.5. Model features include satellite measurements, meteorological variables, land use classification, temporal variables (month, day of year), and spatial variables (latitude, longitude, altitude). The models were evaluated using various methods, including station 10-fold cross-validation, in which in each fold observations from 10\% of the stations are used as testing data and the rest as training data. The R^2, RMSE and mean bias were determined for each model. The NO_2 and O_3 models presented good values of R^2, 0.5524 and 0.7462, respectively. However, the SO_2, PM10, and PM2.5 models performed very poorly in this regard, with R^2 values of -0.0231, 0.3722, and 0.3303, respectively. All models slightly overestimated the ground concentrations, except the O_3 model. All models presented acceptable cross-validation RMSE, except the O_3 and PM10 models where the mean value was a little higher (12.5934 mu g/m^3 and 10.4737 mu g/m^3, respectively).

CRASAR-U-DROIDs: A Large Scale Benchmark Dataset for Building Alignment and Damage Assessment in Georectified sUAS Imagery

This document presents the Center for Robot Assisted Search And Rescue - Uncrewed Aerial Systems - Disaster Response Overhead Inspection Dataset (CRASAR-U-DROIDs) for building damage assessment and spatial alignment collected from small uncrewed aerial systems (sUAS) geospatial imagery. This dataset is motivated by the increasing use of sUAS in disaster response and the lack of previous work in utilizing high-resolution geospatial sUAS imagery for machine learning and computer vision models, the lack of alignment with operational use cases, and with hopes of enabling further investigations between sUAS and satellite imagery. The CRASAR-U-DRIODs dataset consists of fifty-two (52) orthomosaics from ten (10) federally declared disasters (Hurricane Ian, Hurricane Ida, Hurricane Harvey, Hurricane Idalia, Hurricane Laura, Hurricane Michael, Musset Bayou Fire, Mayfield Tornado, Kilauea Eruption, and Champlain Towers Collapse) spanning 67.98 square kilometers (26.245 square miles), containing 21,716 building polygons and damage labels, and 7,880 adjustment annotations. The imagery was tiled and presented in conjunction with overlaid building polygons to a pool of 130 annotators who provided human judgments of damage according to the Joint Damage Scale. These annotations were then reviewed via a two-stage review process in which building polygon damage labels were first reviewed individually and then again by committee. Additionally, the building polygons have been aligned spatially to precisely overlap with the imagery to enable more performant machine learning models to be trained. It appears that CRASAR-U-DRIODs is the largest labeled dataset of sUAS orthomosaic imagery.

Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities

Observational studies require adjustment for confounding factors that are correlated with both the treatment and outcome. In the setting where the observed variables are tabular quantities such as average income in a neighborhood, tools have been developed for addressing such confounding. However, in many parts of the developing world, features about local communities may be scarce. In this context, satellite imagery can play an important role, serving as a proxy for the confounding variables otherwise unobserved. In this paper, we study confounder adjustment in this non-tabular setting, where patterns or objects found in satellite images contribute to the confounder bias. Using the evaluation of anti-poverty aid programs in Africa as our running example, we formalize the challenge of performing causal adjustment with such unstructured data -- what conditions are sufficient to identify causal effects, how to perform estimation, and how to quantify the ways in which certain aspects of the unstructured image object are most predictive of the treatment decision. Via simulation, we also explore the sensitivity of satellite image-based observational inference to image resolution and to misspecification of the image-associated confounder. Finally, we apply these tools in estimating the effect of anti-poverty interventions in African communities from satellite imagery.

Text-Guided Generation and Editing of Compositional 3D Avatars

Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description. While this challenge has attracted significant recent interest, existing methods either lack realism, produce unrealistic shapes, or do not support editing, such as modifications to the hairstyle. We argue that existing methods are limited because they employ a monolithic modeling approach, using a single representation for the head, face, hair, and accessories. Our observation is that the hair and face, for example, have very different structural qualities that benefit from different representations. Building on this insight, we generate avatars with a compositional model, in which the head, face, and upper body are represented with traditional 3D meshes, and the hair, clothing, and accessories with neural radiance fields (NeRF). The model-based mesh representation provides a strong geometric prior for the face region, improving realism while enabling editing of the person's appearance. By using NeRFs to represent the remaining components, our method is able to model and synthesize parts with complex geometry and appearance, such as curly hair and fluffy scarves. Our novel system synthesizes these high-quality compositional avatars from text descriptions. The experimental results demonstrate that our method, Text-guided generation and Editing of Compositional Avatars (TECA), produces avatars that are more realistic than those of recent methods while being editable because of their compositional nature. For example, our TECA enables the seamless transfer of compositional features like hairstyles, scarves, and other accessories between avatars. This capability supports applications such as virtual try-on.

Evaluation and Mitigation of Agnosia in Multimodal Large Language Models

While Multimodal Large Language Models (MLLMs) are widely used for a variety of vision-language tasks, one observation is that they sometimes misinterpret visual inputs or fail to follow textual instructions even in straightforward cases, leading to irrelevant responses, mistakes, and ungrounded claims. This observation is analogous to a phenomenon in neuropsychology known as Agnosia, an inability to correctly process sensory modalities and recognize things (e.g., objects, colors, relations). In our study, we adapt this similar concept to define "agnosia in MLLMs", and our goal is to comprehensively evaluate and mitigate such agnosia in MLLMs. Inspired by the diagnosis and treatment process in neuropsychology, we propose a novel framework EMMA (Evaluation and Mitigation of Multimodal Agnosia). In EMMA, we develop an evaluation module that automatically creates fine-grained and diverse visual question answering examples to assess the extent of agnosia in MLLMs comprehensively. We also develop a mitigation module to reduce agnosia in MLLMs through multimodal instruction tuning on fine-grained conversations. To verify the effectiveness of our framework, we evaluate and analyze agnosia in seven state-of-the-art MLLMs using 9K test samples. The results reveal that most of them exhibit agnosia across various aspects and degrees. We further develop a fine-grained instruction set and tune MLLMs to mitigate agnosia, which led to notable improvement in accuracy.

MultiPLY: A Multisensory Object-Centric Embodied Large Language Model in 3D World

Human beings possess the capability to multiply a melange of multisensory cues while actively exploring and interacting with the 3D world. Current multi-modal large language models, however, passively absorb sensory data as inputs, lacking the capacity to actively interact with the objects in the 3D environment and dynamically collect their multisensory information. To usher in the study of this area, we propose MultiPLY, a multisensory embodied large language model that could incorporate multisensory interactive data, including visual, audio, tactile, and thermal information into large language models, thereby establishing the correlation among words, actions, and percepts. To this end, we first collect Multisensory Universe, a large-scale multisensory interaction dataset comprising 500k data by deploying an LLM-powered embodied agent to engage with the 3D environment. To perform instruction tuning with pre-trained LLM on such generated data, we first encode the 3D scene as abstracted object-centric representations and then introduce action tokens denoting that the embodied agent takes certain actions within the environment, as well as state tokens that represent the multisensory state observations of the agent at each time step. In the inference time, MultiPLY could generate action tokens, instructing the agent to take the action in the environment and obtain the next multisensory state observation. The observation is then appended back to the LLM via state tokens to generate subsequent text or action tokens. We demonstrate that MultiPLY outperforms baselines by a large margin through a diverse set of embodied tasks involving object retrieval, tool use, multisensory captioning, and task decomposition.

Emotional Speech-driven 3D Body Animation via Disentangled Latent Diffusion

Existing methods for synthesizing 3D human gestures from speech have shown promising results, but they do not explicitly model the impact of emotions on the generated gestures. Instead, these methods directly output animations from speech without control over the expressed emotion. To address this limitation, we present AMUSE, an emotional speech-driven body animation model based on latent diffusion. Our observation is that content (i.e., gestures related to speech rhythm and word utterances), emotion, and personal style are separable. To account for this, AMUSE maps the driving audio to three disentangled latent vectors: one for content, one for emotion, and one for personal style. A latent diffusion model, trained to generate gesture motion sequences, is then conditioned on these latent vectors. Once trained, AMUSE synthesizes 3D human gestures directly from speech with control over the expressed emotions and style by combining the content from the driving speech with the emotion and style of another speech sequence. Randomly sampling the noise of the diffusion model further generates variations of the gesture with the same emotional expressivity. Qualitative, quantitative, and perceptual evaluations demonstrate that AMUSE outputs realistic gesture sequences. Compared to the state of the art, the generated gestures are better synchronized with the speech content and better represent the emotion expressed by the input speech. Our project website is amuse.is.tue.mpg.de.

Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration

Personalized federated learning (PFL) reduces the impact of non-independent and identically distributed (non-IID) data among clients by allowing each client to train a personalized model when collaborating with others. A key question in PFL is to decide which parameters of a client should be localized or shared with others. In current mainstream approaches, all layers that are sensitive to non-IID data (such as classifier layers) are generally personalized. The reasoning behind this approach is understandable, as localizing parameters that are easily influenced by non-IID data can prevent the potential negative effect of collaboration. However, we believe that this approach is too conservative for collaboration. For example, for a certain client, even if its parameters are easily influenced by non-IID data, it can still benefit by sharing these parameters with clients having similar data distribution. This observation emphasizes the importance of considering not only the sensitivity to non-IID data but also the similarity of data distribution when determining which parameters should be localized in PFL. This paper introduces a novel guideline for client collaboration in PFL. Unlike existing approaches that prohibit all collaboration of sensitive parameters, our guideline allows clients to share more parameters with others, leading to improved model performance. Additionally, we propose a new PFL method named FedCAC, which employs a quantitative metric to evaluate each parameter's sensitivity to non-IID data and carefully selects collaborators based on this evaluation. Experimental results demonstrate that FedCAC enables clients to share more parameters with others, resulting in superior performance compared to state-of-the-art methods, particularly in scenarios where clients have diverse distributions.

Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting

In this paper, we investigate the adversarial robustness of vision transformers that are equipped with BERT pretraining (e.g., BEiT, MAE). A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods. This observation drives us to rethink the basic differences between these BERT pretraining methods and how these differences affect the robustness against adversarial perturbations. Our empirical analysis reveals that the adversarial robustness of BERT pretraining is highly related to the reconstruction target, i.e., predicting the raw pixels of masked image patches will degrade more adversarial robustness of the model than predicting the semantic context, since it guides the model to concentrate more on medium-/high-frequency components of images. Based on our analysis, we provide a simple yet effective way to boost the adversarial robustness of MAE. The basic idea is using the dataset-extracted domain knowledge to occupy the medium-/high-frequency of images, thus narrowing the optimization space of adversarial perturbations. Specifically, we group the distribution of pretraining data and optimize a set of cluster-specific visual prompts on frequency domain. These prompts are incorporated with input images through prototype-based prompt selection during test period. Extensive evaluation shows that our method clearly boost MAE's adversarial robustness while maintaining its clean performance on ImageNet-1k classification. Our code is available at: https://github.com/shikiw/RobustMAE.

Detecting eclipsing double white dwarfs with electromagnetic and gravitational waves

Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred to as Model 1 and Model 2) using the binary population synthesis method. We predicted the number of double white dwarfs in our Galaxy detectable by TianQin and Laser Interferometer Space Antenna (LISA) individually, as well as through their joint observation. In addition, we performed an analysis to evaluate the accuracy of the parameter estimation using the Fisher information matrix. Furthermore, we predicted the number of detached eclipsing double white dwarfs detectable by Gaia and the Vera C. Rubin Observatory (VRO). Our study found that over the nominal mission durations, TianQin, LISA, and their joint observation can detect at least five thousand and potentially several tens of thousands of double white dwarfs with signal-to-noise ratios greater than 7. Gaia and VRO are expected to detect at least several dozen and up to several hundred eclipsing double white dwarfs with orbital periods less than 30 hours. We also found that several dozen eclipsing double white dwarfs can be detected jointly through electromagnetic and gravitational wave observations.

Robust diffraction-limited NIR-to-NUV wide-field imaging from stratospheric balloon-borne platforms -- SuperBIT science telescope commissioning flight & performance

At a fraction the total cost of an equivalent orbital mission, scientific balloon-borne platforms, operating above 99.7% of the Earth's atmosphere, offer attractive, competitive, and effective observational capabilities -- namely space-like resolution, transmission, and backgrounds -- that are well suited for modern astronomy and cosmology. SuperBIT is a diffraction-limited, wide-field, 0.5 m telescope capable of exploiting these observing conditions in order to provide exquisite imaging throughout the near-IR to near-UV. It utilizes a robust active stabilization system that has consistently demonstrated a 1 sigma sky-fixed pointing stability at 48 milliarcseconds over multiple 1 hour observations at float. This is achieved by actively tracking compound pendulations via a three-axis gimballed platform, which provides sky-fixed telescope stability at < 500 milliarcseconds and corrects for field rotation, while employing high-bandwidth tip/tilt optics to remove residual disturbances across the science imaging focal plane. SuperBIT's performance during the 2019 commissioning flight benefited from a customized high-fidelity science-capable telescope designed with exceptional thermo- and opto-mechanical stability as well as tightly constrained static and dynamic coupling between high-rate sensors and telescope optics. At the currently demonstrated level of flight performance, SuperBIT capabilities now surpass the science requirements for a wide variety of experiments in cosmology, astrophysics and stellar dynamics.

AstroLoc: Robust Space to Ground Image Localizer

Astronauts take thousands of photos of Earth per day from the International Space Station, which, once localized on Earth's surface, are used for a multitude of tasks, ranging from climate change research to disaster management. The localization process, which has been performed manually for decades, has recently been approached through image retrieval solutions: given an astronaut photo, find its most similar match among a large database of geo-tagged satellite images, in a task called Astronaut Photography Localization (APL). Yet, existing APL approaches are trained only using satellite images, without taking advantage of the millions open-source astronaut photos. In this work we present the first APL pipeline capable of leveraging astronaut photos for training. We first produce full localization information for 300,000 manually weakly labeled astronaut photos through an automated pipeline, and then use these images to train a model, called AstroLoc. AstroLoc learns a robust representation of Earth's surface features through two losses: astronaut photos paired with their matching satellite counterparts in a pairwise loss, and a second loss on clusters of satellite imagery weighted by their relevance to astronaut photography via unsupervised mining. We find that AstroLoc achieves a staggering 35% average improvement in recall@1 over previous SOTA, pushing the limits of existing datasets with a recall@100 consistently over 99%. Finally, we note that AstroLoc, without any fine-tuning, provides excellent results for related tasks like the lost-in-space satellite problem and historical space imagery localization.

Statistical selection of high-redshift, neutral-hydrogen-rich, lensed galaxies with the Square Kilometre Array

Deep wide spectral line surveys with the Square Kilometre Array (SKA) will expand the cosmic frontiers of neutral atomic hydrogen (HI) in galaxies. However, at cosmologically significant redshifts (z gtrsim 0.5), detections will typically be spatially unresolved and limited to the highest mass systems. Gravitational lensing could potentially alleviate these limitations, enabling lower mass systems to be studied at higher redshift and spatially resolved dynamical studies of some HI discs. Additionally, lensed HI systems would select foreground dark matter haloes using a different, more extended baryonic tracer compared to other lens surveys. This may result in a wider selected range of foreground dark matter halo properties, such as the concentration parameter. This paper uses the distortion of the observed HI mass function (HIMF) produced by strong gravitational lensing to find a flux density criterion for selecting lensed HI sources in future SKA-Mid spectral line surveys. This selection approach could yield lensed HI source densities in the range of sim 0.1--10 galaxies per square degree out to a redshift of z simeq 3 covered by SKA-MID Band 1. Although the sample sizes are modest, even with the proposed SKA-Mid surveys, the selection approach is straightforward and should have a 50% efficiency without any additional information, such as low-impact-factor or lower-redshift massive galaxies. The efficiency of selecting high-redshift, neutral-hydrogen-rich, lensed galaxies should then be greatly enhanced by using SKA-MID data in concert with the Vera C. Rubin Large Survey of Space and Time.

Quantifying spectroscopic Ca II exocomet transit occurrence in two decades of HARPS data

The field of exocomets has been built around the unmatched number of detections made in the circumstellar disc of the archetypal star Beta Pictoris. An exocomet detection in spectroscopy is identified by variable atomic absorption features in a stellar spectrum, associated with transiting gas in and trailing an exocomet coma. This paper presents the largest spectroscopic search for exocomet transits to date, which overcomes the limitations of biased samples of stars with debris discs, and instead looks through the approx7500 stars in the HARPS archive for signs of exocomets in the CaII doublet (H:396.847nm and K:393.366nm). The search resulted in 155 candidate stars, which after filtering for false positives (e.g. binaries, stellar activity, etc.), were cut down to 22 stars. These 22 stars are classified into Tier1, 2, and 3 exocomet candidates, reflecting the confidence level of their exocomet detection. Our two best candidates (Tier1: Beta Pictoris, HD172555) and four lower confidence candidates (Tier2: Gl1, HIP5158, HD94771, HR1996) are discussed, yielding a detection rate of 0.03% (Tier1 only) and 0.1% (Tier1 & 2) in the HARPS sample. Both Tier1 stars are known exocomet host stars. These two young A-type stars correspond to 0.4% of all A-types in the sample, suggesting that detecting signs of exocomet transits using CaII is more likely around young A-type stars. Reanalysing a past HARPS study, we found no evidence to support the previously claimed four exocomet detections, indicating either that those detections are not robust or that we are only sensitive to the strongest signals.

GAIA: A Global, Multi-modal, Multi-scale Vision-Language Dataset for Remote Sensing Image Analysis

The continuous operation of Earth-orbiting satellites generates vast and ever-growing archives of Remote Sensing (RS) images. Natural language presents an intuitive interface for accessing, querying, and interpreting the data from such archives. However, existing Vision-Language Models (VLMs) are predominantly trained on web-scraped, noisy image-text data, exhibiting limited exposure to the specialized domain of RS. This deficiency results in poor performance on RS-specific tasks, as commonly used datasets often lack detailed, scientifically accurate textual descriptions and instead emphasize solely on attributes like date and location. To bridge this critical gap, we introduce GAIA, a novel dataset designed for multi-scale, multi-sensor, and multi-modal RS image analysis. GAIA comprises of 205,150 meticulously curated RS image-text pairs, representing a diverse range of RS modalities associated to different spatial resolutions. Unlike existing vision-language datasets in RS, GAIA specifically focuses on capturing a diverse range of RS applications, providing unique information about environmental changes, natural disasters, and various other dynamic phenomena. The dataset provides a spatially and temporally balanced distribution, spanning across the globe, covering the last 25 years with a balanced temporal distribution of observations. GAIA's construction involved a two-stage process: (1) targeted web-scraping of images and accompanying text from reputable RS-related sources, and (2) generation of five high-quality, scientifically grounded synthetic captions for each image using carefully crafted prompts that leverage the advanced vision-language capabilities of GPT-4o. Our extensive experiments, including fine-tuning of CLIP and BLIP2 models, demonstrate that GAIA significantly improves performance on RS image classification, cross-modal retrieval and image captioning tasks.

FrustumFormer: Adaptive Instance-aware Resampling for Multi-view 3D Detection

The transformation of features from 2D perspective space to 3D space is essential to multi-view 3D object detection. Recent approaches mainly focus on the design of view transformation, either pixel-wisely lifting perspective view features into 3D space with estimated depth or grid-wisely constructing BEV features via 3D projection, treating all pixels or grids equally. However, choosing what to transform is also important but has rarely been discussed before. The pixels of a moving car are more informative than the pixels of the sky. To fully utilize the information contained in images, the view transformation should be able to adapt to different image regions according to their contents. In this paper, we propose a novel framework named FrustumFormer, which pays more attention to the features in instance regions via adaptive instance-aware resampling. Specifically, the model obtains instance frustums on the bird's eye view by leveraging image view object proposals. An adaptive occupancy mask within the instance frustum is learned to refine the instance location. Moreover, the temporal frustum intersection could further reduce the localization uncertainty of objects. Comprehensive experiments on the nuScenes dataset demonstrate the effectiveness of FrustumFormer, and we achieve a new state-of-the-art performance on the benchmark. Codes and models will be made available at https://github.com/Robertwyq/Frustum.