new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

LexLIP: Lexicon-Bottlenecked Language-Image Pre-Training for Large-Scale Image-Text Retrieval

Image-text retrieval (ITR) is a task to retrieve the relevant images/texts, given the query from another modality. The conventional dense retrieval paradigm relies on encoding images and texts into dense representations using dual-stream encoders, however, it faces challenges with low retrieval speed in large-scale retrieval scenarios. In this work, we propose the lexicon-weighting paradigm, where sparse representations in vocabulary space are learned for images and texts to take advantage of the bag-of-words models and efficient inverted indexes, resulting in significantly reduced retrieval latency. A crucial gap arises from the continuous nature of image data, and the requirement for a sparse vocabulary space representation. To bridge this gap, we introduce a novel pre-training framework, Lexicon-Bottlenecked Language-Image Pre-Training (LexLIP), that learns importance-aware lexicon representations. This framework features lexicon-bottlenecked modules between the dual-stream encoders and weakened text decoders, allowing for constructing continuous bag-of-words bottlenecks to learn lexicon-importance distributions. Upon pre-training with same-scale data, our LexLIP achieves state-of-the-art performance on two benchmark ITR datasets, MSCOCO and Flickr30k. Furthermore, in large-scale retrieval scenarios, LexLIP outperforms CLIP with a 5.5 ~ 221.3X faster retrieval speed and 13.2 ~ 48.8X less index storage memory.

Visual Lexicon: Rich Image Features in Language Space

We present Visual Lexicon, a novel visual language that encodes rich image information into the text space of vocabulary tokens while retaining intricate visual details that are often challenging to convey in natural language. Unlike traditional methods that prioritize either high-level semantics (e.g., CLIP) or pixel-level reconstruction (e.g., VAE), ViLex simultaneously captures rich semantic content and fine visual details, enabling high-quality image generation and comprehensive visual scene understanding. Through a self-supervised learning pipeline, ViLex generates tokens optimized for reconstructing input images using a frozen text-to-image (T2I) diffusion model, preserving the detailed information necessary for high-fidelity semantic-level reconstruction. As an image embedding in the language space, ViLex tokens leverage the compositionality of natural languages, allowing them to be used independently as "text tokens" or combined with natural language tokens to prompt pretrained T2I models with both visual and textual inputs, mirroring how we interact with vision-language models (VLMs). Experiments demonstrate that ViLex achieves higher fidelity in image reconstruction compared to text embeddings--even with a single ViLex token. Moreover, ViLex successfully performs various DreamBooth tasks in a zero-shot, unsupervised manner without fine-tuning T2I models. Additionally, ViLex serves as a powerful vision encoder, consistently improving vision-language model performance across 15 benchmarks relative to a strong SigLIP baseline.

SWSR: A Chinese Dataset and Lexicon for Online Sexism Detection

Online sexism has become an increasing concern in social media platforms as it has affected the healthy development of the Internet and can have negative effects in society. While research in the sexism detection domain is growing, most of this research focuses on English as the language and on Twitter as the platform. Our objective here is to broaden the scope of this research by considering the Chinese language on Sina Weibo. We propose the first Chinese sexism dataset -- Sina Weibo Sexism Review (SWSR) dataset --, as well as a large Chinese lexicon SexHateLex made of abusive and gender-related terms. We introduce our data collection and annotation process, and provide an exploratory analysis of the dataset characteristics to validate its quality and to show how sexism is manifested in Chinese. The SWSR dataset provides labels at different levels of granularity including (i) sexism or non-sexism, (ii) sexism category and (iii) target type, which can be exploited, among others, for building computational methods to identify and investigate finer-grained gender-related abusive language. We conduct experiments for the three sexism classification tasks making use of state-of-the-art machine learning models. Our results show competitive performance, providing a benchmark for sexism detection in the Chinese language, as well as an error analysis highlighting open challenges needing more research in Chinese NLP. The SWSR dataset and SexHateLex lexicon are publicly available.

Leveraging Natural Language Processing For Public Health Screening On YouTube: A COVID-19 Case Study

Background: Social media platforms have become a viable source of medical information, with patients and healthcare professionals using them to share health-related information and track diseases. Similarly, YouTube, the largest video-sharing platform in the world contains vlogs where individuals talk about their illnesses. The aim of our study was to investigate the use of Natural Language Processing (NLP) to identify the spoken content of YouTube vlogs related to the diagnosis of Coronavirus disease of 2019 (COVID-19) for public health screening. Methods: COVID-19 videos on YouTube were searched using relevant keywords. A total of 1000 videos being spoken in English were downloaded out of which 791 were classified as vlogs, 192 were non-vlogs, and 17 were deleted by the channel. The videos were converted into a textual format using Microsoft Streams. The textual data was preprocessed using basic and advanced preprocessing methods. A lexicon of 200 words was created which contained words related to COVID-19. The data was analyzed using topic modeling, word clouds, and lexicon matching. Results: The word cloud results revealed discussions about COVID-19 symptoms like "fever", along with generic terms such as "mask" and "isolation". Lexical analysis demonstrated that in 96.46% of videos, patients discussed generic terms, and in 95.45% of videos, people talked about COVID-19 symptoms. LDA Topic Modeling results also generated topics that successfully captured key themes and content related to our investigation of COVID-19 diagnoses in YouTube vlogs. Conclusion: By leveraging NLP techniques on YouTube vlogs public health practitioners can enhance their ability to mitigate the effects of pandemics and effectively respond to public health challenges.

A realistic and robust model for Chinese word segmentation

A realistic Chinese word segmentation tool must adapt to textual variations with minimal training input and yet robust enough to yield reliable segmentation result for all variants. Various lexicon-driven approaches to Chinese segmentation, e.g. [1,16], achieve high f-scores yet require massive training for any variation. Text-driven approach, e.g. [12], can be easily adapted for domain and genre changes yet has difficulty matching the high f-scores of the lexicon-driven approaches. In this paper, we refine and implement an innovative text-driven word boundary decision (WBD) segmentation model proposed in [15]. The WBD model treats word segmentation simply and efficiently as a binary decision on whether to realize the natural textual break between two adjacent characters as a word boundary. The WBD model allows simple and quick training data preparation converting characters as contextual vectors for learning the word boundary decision. Machine learning experiments with four different classifiers show that training with 1,000 vectors and 1 million vectors achieve comparable and reliable results. In addition, when applied to SigHAN Bakeoff 3 competition data, the WBD model produces OOV recall rates that are higher than all published results. Unlike all previous work, our OOV recall rate is comparable to our own F-score. Both experiments support the claim that the WBD model is a realistic model for Chinese word segmentation as it can be easily adapted for new variants with the robust result. In conclusion, we will discuss linguistic ramifications as well as future implications for the WBD approach.