- COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List Classical information retrieval systems such as BM25 rely on exact lexical match and carry out search efficiently with inverted list index. Recent neural IR models shifts towards soft semantic matching all query document terms, but they lose the computation efficiency of exact match systems. This paper presents COIL, a contextualized exact match retrieval architecture that brings semantic lexical matching. COIL scoring is based on overlapping query document tokens' contextualized representations. The new architecture stores contextualized token representations in inverted lists, bringing together the efficiency of exact match and the representation power of deep language models. Our experimental results show COIL outperforms classical lexical retrievers and state-of-the-art deep LM retrievers with similar or smaller latency. 3 authors · Apr 14, 2021
3 What do we learn from inverting CLIP models? We employ an inversion-based approach to examine CLIP models. Our examination reveals that inverting CLIP models results in the generation of images that exhibit semantic alignment with the specified target prompts. We leverage these inverted images to gain insights into various aspects of CLIP models, such as their ability to blend concepts and inclusion of gender biases. We notably observe instances of NSFW (Not Safe For Work) images during model inversion. This phenomenon occurs even for semantically innocuous prompts, like "a beautiful landscape," as well as for prompts involving the names of celebrities. 5 authors · Mar 4, 2024
13 Reverse Training to Nurse the Reversal Curse Large language models (LLMs) have a surprising failure: when trained on "A has a feature B", they do not generalize to "B is a feature of A", which is termed the Reversal Curse. Even when training with trillions of tokens this issue still appears due to Zipf's law - hence even if we train on the entire internet. This work proposes an alternative training scheme, called reverse training, whereby all words are used twice, doubling the amount of available tokens. The LLM is trained in both forward and reverse directions by reversing the training strings while preserving (i.e., not reversing) chosen substrings, such as entities. We show that data-matched reverse-trained models provide superior performance to standard models on standard tasks, and compute-matched reverse-trained models provide far superior performance on reversal tasks, helping resolve the reversal curse issue. 4 authors · Mar 20, 2024 1
- Networks bijective to permutations We study the set of networks, which consist of sources, sinks and neutral points, bijective to the permutations. The set of directed edges, which characterizes a network, is constructed from a polyomino or a Rothe diagram of a permutation through a Dyck tiling on a ribbon. We introduce a new combinatorial object similar to a tree-like tableau, which we call a forest. A forest is shown to give a permutation, and be bijective to a network corresponding to the inverse of the permutation. We show that the poset of networks is a finite graded lattice and admits an EL-labeling. By use of this EL-labeling, we show the lattice is supersolvable and compute the M\"obius function of an interval of the poset. 1 authors · Feb 8, 2024
- Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits We introduce Reverse Derivative Ascent: a categorical analogue of gradient based methods for machine learning. Our algorithm is defined at the level of so-called reverse differential categories. It can be used to learn the parameters of models which are expressed as morphisms of such categories. Our motivating example is boolean circuits: we show how our algorithm can be applied to such circuits by using the theory of reverse differential categories. Note our methodology allows us to learn the parameters of boolean circuits directly, in contrast to existing binarised neural network approaches. Moreover, we demonstrate its empirical value by giving experimental results on benchmark machine learning datasets. 2 authors · Jan 25, 2021
2 Backward Compatibility During Data Updates by Weight Interpolation Backward compatibility of model predictions is a desired property when updating a machine learning driven application. It allows to seamlessly improve the underlying model without introducing regression bugs. In classification tasks these bugs occur in the form of negative flips. This means an instance that was correctly classified by the old model is now classified incorrectly by the updated model. This has direct negative impact on the user experience of such systems e.g. a frequently used voice assistant query is suddenly misclassified. A common reason to update the model is when new training data becomes available and needs to be incorporated. Simply retraining the model with the updated data introduces the unwanted negative flips. We study the problem of regression during data updates and propose Backward Compatible Weight Interpolation (BCWI). This method interpolates between the weights of the old and new model and we show in extensive experiments that it reduces negative flips without sacrificing the improved accuracy of the new model. BCWI is straight forward to implement and does not increase inference cost. We also explore the use of importance weighting during interpolation and averaging the weights of multiple new models in order to further reduce negative flips. 6 authors · Jan 25, 2023
1 Multiresolution Textual Inversion We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of S^*(0)" produces the exact object while the prompt "A photo of S^*(0.8)" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion 2 authors · Nov 30, 2022
- ListT5: Listwise Reranking with Fusion-in-Decoder Improves Zero-shot Retrieval We propose ListT5, a novel reranking approach based on Fusion-in-Decoder (FiD) that handles multiple candidate passages at both train and inference time. We also introduce an efficient inference framework for listwise ranking based on m-ary tournament sort with output caching. We evaluate and compare our model on the BEIR benchmark for zero-shot retrieval task, demonstrating that ListT5 (1) outperforms the state-of-the-art RankT5 baseline with a notable +1.3 gain in the average NDCG@10 score, (2) has an efficiency comparable to pointwise ranking models and surpasses the efficiency of previous listwise ranking models, and (3) overcomes the lost-in-the-middle problem of previous listwise rerankers. Our code, model checkpoints, and the evaluation framework are fully open-sourced at https://github.com/soyoung97/ListT5. 6 authors · Feb 24, 2024
- SPANN: Highly-efficient Billion-scale Approximate Nearest Neighbor Search The in-memory algorithms for approximate nearest neighbor search (ANNS) have achieved great success for fast high-recall search, but are extremely expensive when handling very large scale database. Thus, there is an increasing request for the hybrid ANNS solutions with small memory and inexpensive solid-state drive (SSD). In this paper, we present a simple but efficient memory-disk hybrid indexing and search system, named SPANN, that follows the inverted index methodology. It stores the centroid points of the posting lists in the memory and the large posting lists in the disk. We guarantee both disk-access efficiency (low latency) and high recall by effectively reducing the disk-access number and retrieving high-quality posting lists. In the index-building stage, we adopt a hierarchical balanced clustering algorithm to balance the length of posting lists and augment the posting list by adding the points in the closure of the corresponding clusters. In the search stage, we use a query-aware scheme to dynamically prune the access of unnecessary posting lists. Experiment results demonstrate that SPANN is 2times faster than the state-of-the-art ANNS solution DiskANN to reach the same recall quality 90% with same memory cost in three billion-scale datasets. It can reach 90% recall@1 and recall@10 in just around one millisecond with only 32GB memory cost. Code is available at: {\footnotesizeblue{https://github.com/microsoft/SPTAG}}. 8 authors · Nov 5, 2021