new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

MoE$^2$: Optimizing Collaborative Inference for Edge Large Language Models

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. Exploiting the heterogeneous capabilities of edge LLMs is crucial for diverse emerging applications, as it enables greater cost-effectiveness and reduced latency. In this work, we introduce Mixture-of-Edge-Experts (MoE^2), a novel collaborative inference framework for edge LLMs. We formulate the joint gating and expert selection problem to optimize inference performance under energy and latency constraints. Unlike conventional MoE problems, LLM expert selection is significantly more challenging due to the combinatorial nature and the heterogeneity of edge LLMs across various attributes. To this end, we propose a two-level expert selection mechanism through which we uncover an optimality-preserving property of gating parameters across expert selections. This property enables the decomposition of the training and selection processes, significantly reducing complexity. Furthermore, we leverage the objective's monotonicity and design a discrete monotonic optimization algorithm for optimal expert selection. We implement edge servers with NVIDIA Jetson AGX Orins and NVIDIA RTX 4090 GPUs, and perform extensive experiments. Our results validate that performance improvements of various LLM models and show that our MoE^2 method can achieve optimal trade-offs among different delay and energy budgets, and outperforms baselines under various system resource constraints.

FoldGPT: Simple and Effective Large Language Model Compression Scheme

The demand for deploying large language models(LLMs) on mobile devices continues to increase, driven by escalating data security concerns and cloud costs. However, network bandwidth and memory limitations pose challenges for deploying billion-level models on mobile devices. In this study, we investigate the outputs of different layers across various scales of LLMs and found that the outputs of most layers exhibit significant similarity. Moreover, this similarity becomes more pronounced as the model size increases, indicating substantial redundancy in the depth direction of the LLMs. Based on this observation, we propose an efficient model volume compression strategy, termed FoldGPT, which combines block removal and block parameter sharing.This strategy consists of three parts: (1) Based on the learnable gating parameters, we determine the block importance ranking while modeling the coupling effect between blocks. Then we delete some redundant layers based on the given removal rate. (2) For the retained blocks, we apply a specially designed group parameter sharing strategy, where blocks within the same group share identical weights, significantly compressing the number of parameters and slightly reducing latency overhead. (3) After sharing these Blocks, we "cure" the mismatch caused by sparsity with a minor amount of fine-tuning and introduce a tail-layer distillation strategy to improve the performance. Experiments demonstrate that FoldGPT outperforms previous state-of-the-art(SOTA) methods in efficient model compression, demonstrating the feasibility of achieving model lightweighting through straightforward block removal and parameter sharing.

Statistical Perspective of Top-K Sparse Softmax Gating Mixture of Experts

Top-K sparse softmax gating mixture of experts has been widely used for scaling up massive deep-learning architectures without increasing the computational cost. Despite its popularity in real-world applications, the theoretical understanding of that gating function has remained an open problem. The main challenge comes from the structure of the top-K sparse softmax gating function, which partitions the input space into multiple regions with distinct behaviors. By focusing on a Gaussian mixture of experts, we establish theoretical results on the effects of the top-K sparse softmax gating function on both density and parameter estimations. Our results hinge upon defining novel loss functions among parameters to capture different behaviors of the input regions. When the true number of experts k_{ast} is known, we demonstrate that the convergence rates of density and parameter estimations are both parametric on the sample size. However, when k_{ast} becomes unknown and the true model is over-specified by a Gaussian mixture of k experts where k > k_{ast}, our findings suggest that the number of experts selected from the top-K sparse softmax gating function must exceed the total cardinality of a certain number of Voronoi cells associated with the true parameters to guarantee the convergence of the density estimation. Moreover, while the density estimation rate remains parametric under this setting, the parameter estimation rates become substantially slow due to an intrinsic interaction between the softmax gating and expert functions.

Scaling TransNormer to 175 Billion Parameters

We present TransNormerLLM, the first linear attention-based Large Language Model (LLM) that outperforms conventional softmax attention-based models in terms of both accuracy and efficiency. TransNormerLLM evolves from the previous linear attention architecture TransNormer by making advanced modifications that include positional embedding, linear attention acceleration, gating mechanism, tensor normalization, inference acceleration and stabilization. Specifically, we use LRPE together with an exponential decay to avoid attention dilution issues while allowing the model to retain global interactions between tokens. Additionally, we propose Lightning Attention, a cutting-edge technique that accelerates linear attention by more than twice in runtime and reduces memory usage by a remarkable four times. To further enhance the performance of TransNormer, we leverage a gating mechanism to smooth training and a new tensor normalization scheme to accelerate the model, resulting in an impressive acceleration of over 20%. Furthermore, we have developed a robust inference algorithm that ensures numerical stability and consistent inference speed, regardless of the sequence length, showcasing superior efficiency during both training and inference stages. Scalability is at the heart of our model's design, enabling seamless deployment on large-scale clusters and facilitating expansion to even more extensive models, all while maintaining outstanding performance metrics. Rigorous validation of our model design is achieved through a series of comprehensive experiments on our self-collected corpus, boasting a size exceeding 6TB and containing over 2 trillion tokens. To ensure data quality and relevance, we implement a new self-cleaning strategy to filter our collected data. Our pre-trained models will be released to foster community advancements in efficient LLMs.

ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases

Convolutional architectures have proven extremely successful for vision tasks. Their hard inductive biases enable sample-efficient learning, but come at the cost of a potentially lower performance ceiling. Vision Transformers (ViTs) rely on more flexible self-attention layers, and have recently outperformed CNNs for image classification. However, they require costly pre-training on large external datasets or distillation from pre-trained convolutional networks. In this paper, we ask the following question: is it possible to combine the strengths of these two architectures while avoiding their respective limitations? To this end, we introduce gated positional self-attention (GPSA), a form of positional self-attention which can be equipped with a ``soft" convolutional inductive bias. We initialise the GPSA layers to mimic the locality of convolutional layers, then give each attention head the freedom to escape locality by adjusting a gating parameter regulating the attention paid to position versus content information. The resulting convolutional-like ViT architecture, ConViT, outperforms the DeiT on ImageNet, while offering a much improved sample efficiency. We further investigate the role of locality in learning by first quantifying how it is encouraged in vanilla self-attention layers, then analysing how it is escaped in GPSA layers. We conclude by presenting various ablations to better understand the success of the ConViT. Our code and models are released publicly at https://github.com/facebookresearch/convit.

Is Temperature Sample Efficient for Softmax Gaussian Mixture of Experts?

Dense-to-sparse gating mixture of experts (MoE) has recently become an effective alternative to a well-known sparse MoE. Rather than fixing the number of activated experts as in the latter model, which could limit the investigation of potential experts, the former model utilizes the temperature to control the softmax weight distribution and the sparsity of the MoE during training in order to stabilize the expert specialization. Nevertheless, while there are previous attempts to theoretically comprehend the sparse MoE, a comprehensive analysis of the dense-to-sparse gating MoE has remained elusive. Therefore, we aim to explore the impacts of the dense-to-sparse gate on the maximum likelihood estimation under the Gaussian MoE in this paper. We demonstrate that due to interactions between the temperature and other model parameters via some partial differential equations, the convergence rates of parameter estimations are slower than any polynomial rates, and could be as slow as O(1/log(n)), where n denotes the sample size. To address this issue, we propose using a novel activation dense-to-sparse gate, which routes the output of a linear layer to an activation function before delivering them to the softmax function. By imposing linearly independence conditions on the activation function and its derivatives, we show that the parameter estimation rates are significantly improved to polynomial rates.

Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN

Large pretrained models, coupled with fine-tuning, are slowly becoming established as the dominant architecture in machine learning. Even though these models offer impressive performance, their practical application is often limited by the prohibitive amount of resources required for every inference. Early-exiting dynamic neural networks (EDNN) circumvent this issue by allowing a model to make some of its predictions from intermediate layers (i.e., early-exit). Training an EDNN architecture is challenging as it consists of two intertwined components: the gating mechanism (GM) that controls early-exiting decisions and the intermediate inference modules (IMs) that perform inference from intermediate representations. As a result, most existing approaches rely on thresholding confidence metrics for the gating mechanism and strive to improve the underlying backbone network and the inference modules. Although successful, this approach has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during training, leading to a train-test mismatch; and 2) the thresholding gating mechanism introduces a positive bias into the predictive probabilities, making it difficult to readily extract uncertainty information. We propose a novel architecture that connects these two modules. This leads to significant performance improvements on classification datasets and enables better uncertainty characterization capabilities.

Deep Task-specific Bottom Representation Network for Multi-Task Recommendation

Neural-based multi-task learning (MTL) has gained significant improvement, and it has been successfully applied to recommendation system (RS). Recent deep MTL methods for RS (e.g. MMoE, PLE) focus on designing soft gating-based parameter-sharing networks that implicitly learn a generalized representation for each task. However, MTL methods may suffer from performance degeneration when dealing with conflicting tasks, as negative transfer effects can occur on the task-shared bottom representation. This can result in a reduced capacity for MTL methods to capture task-specific characteristics, ultimately impeding their effectiveness and hindering the ability to generalize well on all tasks. In this paper, we focus on the bottom representation learning of MTL in RS and propose the Deep Task-specific Bottom Representation Network (DTRN) to alleviate the negative transfer problem. DTRN obtains task-specific bottom representation explicitly by making each task have its own representation learning network in the bottom representation modeling stage. Specifically, it extracts the user's interests from multiple types of behavior sequences for each task through the parameter-efficient hypernetwork. To further obtain the dedicated representation for each task, DTRN refines the representation of each feature by employing a SENet-like network for each task. The two proposed modules can achieve the purpose of getting task-specific bottom representation to relieve tasks' mutual interference. Moreover, the proposed DTRN is flexible to combine with existing MTL methods. Experiments on one public dataset and one industrial dataset demonstrate the effectiveness of the proposed DTRN.

The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks

Biological cortical neurons are remarkably sophisticated computational devices, temporally integrating their vast synaptic input over an intricate dendritic tree, subject to complex, nonlinearly interacting internal biological processes. A recent study proposed to characterize this complexity by fitting accurate surrogate models to replicate the input-output relationship of a detailed biophysical cortical pyramidal neuron model and discovered it needed temporal convolutional networks (TCN) with millions of parameters. Requiring these many parameters, however, could stem from a misalignment between the inductive biases of the TCN and cortical neuron's computations. In light of this, and to explore the computational implications of leaky memory units and nonlinear dendritic processing, we introduce the Expressive Leaky Memory (ELM) neuron model, a biologically inspired phenomenological model of a cortical neuron. Remarkably, by exploiting such slowly decaying memory-like hidden states and two-layered nonlinear integration of synaptic input, our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters. To further assess the computational ramifications of our neuron design, we evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets, as well as a novel neuromorphic dataset based on the Spiking Heidelberg Digits dataset (SHD-Adding). Leveraging a larger number of memory units with sufficiently long timescales, and correspondingly sophisticated synaptic integration, the ELM neuron displays substantial long-range processing capabilities, reliably outperforming the classic Transformer or Chrono-LSTM architectures on LRA, and even solving the Pathfinder-X task with over 70% accuracy (16k context length).

Curriculum reinforcement learning for quantum architecture search under hardware errors

The key challenge in the noisy intermediate-scale quantum era is finding useful circuits compatible with current device limitations. Variational quantum algorithms (VQAs) offer a potential solution by fixing the circuit architecture and optimizing individual gate parameters in an external loop. However, parameter optimization can become intractable, and the overall performance of the algorithm depends heavily on the initially chosen circuit architecture. Several quantum architecture search (QAS) algorithms have been developed to design useful circuit architectures automatically. In the case of parameter optimization alone, noise effects have been observed to dramatically influence the performance of the optimizer and final outcomes, which is a key line of study. However, the effects of noise on the architecture search, which could be just as critical, are poorly understood. This work addresses this gap by introducing a curriculum-based reinforcement learning QAS (CRLQAS) algorithm designed to tackle challenges in realistic VQA deployment. The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently, (ii) an episode halting scheme to steer the agent to find shorter circuits, and (iii) a novel variant of simultaneous perturbation stochastic approximation as an optimizer for faster convergence. To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in simulating noisy quantum circuits by employing the Pauli-transfer matrix formalism in the Pauli-Liouville basis. Numerical experiments focusing on quantum chemistry tasks demonstrate that CRLQAS outperforms existing QAS algorithms across several metrics in both noiseless and noisy environments.

MemControl: Mitigating Memorization in Diffusion Models via Automated Parameter Selection

Diffusion models excel in generating images that closely resemble their training data but are also susceptible to data memorization, raising privacy, ethical, and legal concerns, particularly in sensitive domains such as medical imaging. We hypothesize that this memorization stems from the overparameterization of deep models and propose that regularizing model capacity during fine-tuning can mitigate this issue. Firstly, we empirically show that regulating the model capacity via Parameter-efficient fine-tuning (PEFT) mitigates memorization to some extent, however, it further requires the identification of the exact parameter subsets to be fine-tuned for high-quality generation. To identify these subsets, we introduce a bi-level optimization framework, MemControl, that automates parameter selection using memorization and generation quality metrics as rewards during fine-tuning. The parameter subsets discovered through MemControl achieve a superior tradeoff between generation quality and memorization. For the task of medical image generation, our approach outperforms existing state-of-the-art memorization mitigation strategies by fine-tuning as few as 0.019% of model parameters. Moreover, we demonstrate that the discovered parameter subsets are transferable to non-medical domains. Our framework is scalable to large datasets, agnostic to reward functions, and can be integrated with existing approaches for further memorization mitigation. To the best of our knowledge, this is the first study to empirically evaluate memorization in medical images and propose a targeted yet universal mitigation strategy. The code is available at https://github.com/Raman1121/Diffusion_Memorization_HPO.

Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction

Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.

NiNformer: A Network in Network Transformer with Token Mixing Generated Gating Function

The Attention mechanism is the main component of the Transformer architecture, and since its introduction, it has led to significant advancements in Deep Learning that span many domains and multiple tasks. The Attention Mechanism was utilized in Computer Vision as the Vision Transformer ViT, and its usage has expanded into many tasks in the vision domain, such as classification, segmentation, object detection, and image generation. While this mechanism is very expressive and capable, it comes with the drawback of being computationally expensive and requiring datasets of considerable size for effective optimization. To address these shortcomings, many designs have been proposed in the literature to reduce the computational burden and alleviate the data size requirements. Examples of such attempts in the vision domain are the MLP-Mixer, the Conv-Mixer, the Perciver-IO, and many more. This paper introduces a new computational block as an alternative to the standard ViT block that reduces the compute burdens by replacing the normal Attention layers with a Network in Network structure that enhances the static approach of the MLP Mixer with a dynamic system of learning an element-wise gating function by a token mixing process. Extensive experimentation shows that the proposed design provides better performance than the baseline architectures on multiple datasets applied in the image classification task of the vision domain.

PD-Quant: Post-Training Quantization based on Prediction Difference Metric

Post-training quantization (PTQ) is a neural network compression technique that converts a full-precision model into a quantized model using lower-precision data types. Although it can help reduce the size and computational cost of deep neural networks, it can also introduce quantization noise and reduce prediction accuracy, especially in extremely low-bit settings. How to determine the appropriate quantization parameters (e.g., scaling factors and rounding of weights) is the main problem facing now. Existing methods attempt to determine these parameters by minimize the distance between features before and after quantization, but such an approach only considers local information and may not result in the most optimal quantization parameters. We analyze this issue and ropose PD-Quant, a method that addresses this limitation by considering global information. It determines the quantization parameters by using the information of differences between network prediction before and after quantization. In addition, PD-Quant can alleviate the overfitting problem in PTQ caused by the small number of calibration sets by adjusting the distribution of activations. Experiments show that PD-Quant leads to better quantization parameters and improves the prediction accuracy of quantized models, especially in low-bit settings. For example, PD-Quant pushes the accuracy of ResNet-18 up to 53.14% and RegNetX-600MF up to 40.67% in weight 2-bit activation 2-bit. The code is released at https://github.com/hustvl/PD-Quant.

PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp

Understanding Certified Training with Interval Bound Propagation

As robustness verification methods are becoming more precise, training certifiably robust neural networks is becoming ever more relevant. To this end, certified training methods compute and then optimize an upper bound on the worst-case loss over a robustness specification. Curiously, training methods based on the imprecise interval bound propagation (IBP) consistently outperform those leveraging more precise bounding methods. Still, we lack an understanding of the mechanisms making IBP so successful. In this work, we thoroughly investigate these mechanisms by leveraging a novel metric measuring the tightness of IBP bounds. We first show theoretically that, for deep linear models, tightness decreases with width and depth at initialization, but improves with IBP training, given sufficient network width. We, then, derive sufficient and necessary conditions on weight matrices for IBP bounds to become exact and demonstrate that these impose strong regularization, explaining the empirically observed trade-off between robustness and accuracy in certified training. Our extensive experimental evaluation validates our theoretical predictions for ReLU networks, including that wider networks improve performance, yielding state-of-the-art results. Interestingly, we observe that while all IBP-based training methods lead to high tightness, this is neither sufficient nor necessary to achieve high certifiable robustness. This hints at the existence of new training methods that do not induce the strong regularization required for tight IBP bounds, leading to improved robustness and standard accuracy.

A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding

Given a stationary state-space model that relates a sequence of hidden states and corresponding measurements or observations, Bayesian filtering provides a principled statistical framework for inferring the posterior distribution of the current state given all measurements up to the present time. For example, the Apollo lunar module implemented a Kalman filter to infer its location from a sequence of earth-based radar measurements and land safely on the moon. To perform Bayesian filtering, we require a measurement model that describes the conditional distribution of each observation given state. The Kalman filter takes this measurement model to be linear, Gaussian. Here we show how a nonlinear, Gaussian approximation to the distribution of state given observation can be used in conjunction with Bayes' rule to build a nonlinear, non-Gaussian measurement model. The resulting approach, called the Discriminative Kalman Filter (DKF), retains fast closed-form updates for the posterior. We argue there are many cases where the distribution of state given measurement is better-approximated as Gaussian, especially when the dimensionality of measurements far exceeds that of states and the Bernstein-von Mises theorem applies. Online neural decoding for brain-computer interfaces provides a motivating example, where filtering incorporates increasingly detailed measurements of neural activity to provide users control over external devices. Within the BrainGate2 clinical trial, the DKF successfully enabled three volunteers with quadriplegia to control an on-screen cursor in real-time using mental imagery alone. Participant "T9" used the DKF to type out messages on a tablet PC.

Deep Neuromorphic Networks with Superconducting Single Flux Quanta

Conventional semiconductor-based integrated circuits are gradually approaching fundamental scaling limits. Many prospective solutions have recently emerged to supplement or replace both the technology on which basic devices are built and the architecture of data processing. Neuromorphic circuits are a promising approach to computing where techniques used by the brain to achieve high efficiency are exploited. Many existing neuromorphic circuits rely on unconventional and useful properties of novel technologies to better mimic the operation of the brain. One such technology is single flux quantum (SFQ) logic -- a cryogenic superconductive technology in which the data are represented by quanta of magnetic flux (fluxons) produced and processed by Josephson junctions embedded within inductive loops. The movement of a fluxon within a circuit produces a quantized voltage pulse (SFQ pulse), resembling a neuronal spiking event. These circuits routinely operate at clock frequencies of tens to hundreds of gigahertz, making SFQ a natural technology for processing high frequency pulse trains. Prior proposals for SFQ neural networks often require energy-expensive fluxon conversions, involve heterogeneous technologies, or exclusively focus on device level behavior. In this paper, a design methodology for deep single flux quantum neuromorphic networks is presented. Synaptic and neuronal circuits based on SFQ technology are presented and characterized. Based on these primitives, a deep neuromorphic XOR network is evaluated as a case study, both at the architectural and circuit levels, achieving wide classification margins. The proposed methodology does not employ unconventional superconductive devices or semiconductor transistors. The resulting networks are tunable by an external current, making this proposed system an effective approach for scalable cryogenic neuromorphic computing.

Parallel Bayesian Optimization of Agent-based Transportation Simulation

MATSim (Multi-Agent Transport Simulation Toolkit) is an open source large-scale agent-based transportation planning project applied to various areas like road transport, public transport, freight transport, regional evacuation, etc. BEAM (Behavior, Energy, Autonomy, and Mobility) framework extends MATSim to enable powerful and scalable analysis of urban transportation systems. The agents from the BEAM simulation exhibit 'mode choice' behavior based on multinomial logit model. In our study, we consider eight mode choices viz. bike, car, walk, ride hail, driving to transit, walking to transit, ride hail to transit, and ride hail pooling. The 'alternative specific constants' for each mode choice are critical hyperparameters in a configuration file related to a particular scenario under experimentation. We use the 'Urbansim-10k' BEAM scenario (with 10,000 population size) for all our experiments. Since these hyperparameters affect the simulation in complex ways, manual calibration methods are time consuming. We present a parallel Bayesian optimization method with early stopping rule to achieve fast convergence for the given multi-in-multi-out problem to its optimal configurations. Our model is based on an open source HpBandSter package. This approach combines hierarchy of several 1D Kernel Density Estimators (KDE) with a cheap evaluator (Hyperband, a single multidimensional KDE). Our model has also incorporated extrapolation based early stopping rule. With our model, we could achieve a 25% L1 norm for a large-scale BEAM simulation in fully autonomous manner. To the best of our knowledge, our work is the first of its kind applied to large-scale multi-agent transportation simulations. This work can be useful for surrogate modeling of scenarios with very large populations.

The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions

In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.

One-hot Generalized Linear Model for Switching Brain State Discovery

Exposing meaningful and interpretable neural interactions is critical to understanding neural circuits. Inferred neural interactions from neural signals primarily reflect functional interactions. In a long experiment, subject animals may experience different stages defined by the experiment, stimuli, or behavioral states, and hence functional interactions can change over time. To model dynamically changing functional interactions, prior work employs state-switching generalized linear models with hidden Markov models (i.e., HMM-GLMs). However, we argue they lack biological plausibility, as functional interactions are shaped and confined by the underlying anatomical connectome. Here, we propose a novel prior-informed state-switching GLM. We introduce both a Gaussian prior and a one-hot prior over the GLM in each state. The priors are learnable. We will show that the learned prior should capture the state-constant interaction, shedding light on the underlying anatomical connectome and revealing more likely physical neuron interactions. The state-dependent interaction modeled by each GLM offers traceability to capture functional variations across multiple brain states. Our methods effectively recover true interaction structures in simulated data, achieve the highest predictive likelihood with real neural datasets, and render interaction structures and hidden states more interpretable when applied to real neural data.

Measuring the Intrinsic Dimension of Objective Landscapes

Many recently trained neural networks employ large numbers of parameters to achieve good performance. One may intuitively use the number of parameters required as a rough gauge of the difficulty of a problem. But how accurate are such notions? How many parameters are really needed? In this paper we attempt to answer this question by training networks not in their native parameter space, but instead in a smaller, randomly oriented subspace. We slowly increase the dimension of this subspace, note at which dimension solutions first appear, and define this to be the intrinsic dimension of the objective landscape. The approach is simple to implement, computationally tractable, and produces several suggestive conclusions. Many problems have smaller intrinsic dimensions than one might suspect, and the intrinsic dimension for a given dataset varies little across a family of models with vastly different sizes. This latter result has the profound implication that once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold. Intrinsic dimension allows some quantitative comparison of problem difficulty across supervised, reinforcement, and other types of learning where we conclude, for example, that solving the inverted pendulum problem is 100 times easier than classifying digits from MNIST, and playing Atari Pong from pixels is about as hard as classifying CIFAR-10. In addition to providing new cartography of the objective landscapes wandered by parameterized models, the method is a simple technique for constructively obtaining an upper bound on the minimum description length of a solution. A byproduct of this construction is a simple approach for compressing networks, in some cases by more than 100 times.

Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning

Understanding when the noise in stochastic gradient descent (SGD) affects generalization of deep neural networks remains a challenge, complicated by the fact that networks can operate in distinct training regimes. Here we study how the magnitude of this noise T affects performance as the size of the training set P and the scale of initialization alpha are varied. For gradient descent, alpha is a key parameter that controls if the network is `lazy'(alphagg1) or instead learns features (alphall1). For classification of MNIST and CIFAR10 images, our central results are: (i) obtaining phase diagrams for performance in the (alpha,T) plane. They show that SGD noise can be detrimental or instead useful depending on the training regime. Moreover, although increasing T or decreasing alpha both allow the net to escape the lazy regime, these changes can have opposite effects on performance. (ii) Most importantly, we find that the characteristic temperature T_c where the noise of SGD starts affecting the trained model (and eventually performance) is a power law of P. We relate this finding with the observation that key dynamical quantities, such as the total variation of weights during training, depend on both T and P as power laws. These results indicate that a key effect of SGD noise occurs late in training by affecting the stopping process whereby all data are fitted. Indeed, we argue that due to SGD noise, nets must develop a stronger `signal', i.e. larger informative weights, to fit the data, leading to a longer training time. A stronger signal and a longer training time are also required when the size of the training set P increases. We confirm these views in the perceptron model, where signal and noise can be precisely measured. Interestingly, exponents characterizing the effect of SGD depend on the density of data near the decision boundary, as we explain.

MindAgent: Emergent Gaming Interaction

Large Language Models (LLMs) have the capacity of performing complex scheduling in a multi-agent system and can coordinate these agents into completing sophisticated tasks that require extensive collaboration. However, despite the introduction of numerous gaming frameworks, the community has insufficient benchmarks towards building general multi-agents collaboration infrastructure that encompass both LLM and human-NPCs collaborations. In this work, we propose a novel infrastructure - MindAgent - to evaluate planning and coordination emergent capabilities for gaming interaction. In particular, our infrastructure leverages existing gaming framework, to i) require understanding of the coordinator for a multi-agent system, ii) collaborate with human players via un-finetuned proper instructions, and iii) establish an in-context learning on few-shot prompt with feedback. Furthermore, we introduce CUISINEWORLD, a new gaming scenario and related benchmark that dispatch a multi-agent collaboration efficiency and supervise multiple agents playing the game simultaneously. We conduct comprehensive evaluations with new auto-metric CoS for calculating the collaboration efficiency. Finally, our infrastructure can be deployed into real-world gaming scenarios in a customized VR version of CUISINEWORLD and adapted in existing broader Minecraft gaming domain. We hope our findings on LLMs and the new infrastructure for general-purpose scheduling and coordination can help shed light on how such skills can be obtained by learning from large language corpora.

Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions

Hyperparameter optimization can be formulated as a bilevel optimization problem, where the optimal parameters on the training set depend on the hyperparameters. We aim to adapt regularization hyperparameters for neural networks by fitting compact approximations to the best-response function, which maps hyperparameters to optimal weights and biases. We show how to construct scalable best-response approximations for neural networks by modeling the best-response as a single network whose hidden units are gated conditionally on the regularizer. We justify this approximation by showing the exact best-response for a shallow linear network with L2-regularized Jacobian can be represented by a similar gating mechanism. We fit this model using a gradient-based hyperparameter optimization algorithm which alternates between approximating the best-response around the current hyperparameters and optimizing the hyperparameters using the approximate best-response function. Unlike other gradient-based approaches, we do not require differentiating the training loss with respect to the hyperparameters, allowing us to tune discrete hyperparameters, data augmentation hyperparameters, and dropout probabilities. Because the hyperparameters are adapted online, our approach discovers hyperparameter schedules that can outperform fixed hyperparameter values. Empirically, our approach outperforms competing hyperparameter optimization methods on large-scale deep learning problems. We call our networks, which update their own hyperparameters online during training, Self-Tuning Networks (STNs).

GameIR: A Large-Scale Synthesized Ground-Truth Dataset for Image Restoration over Gaming Content

Image restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content.

X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Framework for Large Language Models with Applications in Protein Mechanics and Design

We report a mixture of expert strategy to create fine-tuned large language models using a deep layer-wise token-level approach based on low-rank adaptation (LoRA). Starting with a set of pre-trained LoRA adapters, we propose a gating strategy that uses the hidden states to dynamically mix adapted layers, allowing the resulting X-LoRA model to draw upon different capabilities and create never-before-used deep layer-wise combinations of adaptations are established to solve specific tasks. The design is inspired by the biological principles of universality and diversity, where neural network building blocks are reused in different hierarchical manifestations. Hence, the X-LoRA model can be easily implemented for any existing large language model (LLM) without a need for modifications of the underlying structure. We develop a tailored X-LoRA model that offers scientific capabilities including forward/inverse analysis tasks and enhanced reasoning capability, focused on biomaterial analysis, protein mechanics and design. The impact of this work include access to readily expandable, adaptable and changeable models with strong domain knowledge and the capability to integrate across areas of knowledge. With the X-LoRA model featuring experts in biology, mathematics, reasoning, bio-inspired materials, mechanics and materials, chemistry, and protein mechanics we conduct a series of physics-focused case studies. We examine knowledge recall, protein mechanics forward/inverse tasks, protein design, and adversarial agentic modeling including ontological knowledge graphs. The model is capable not only of making quantitative predictions of nanomechanical properties of proteins, but also reasons over the results and correctly predicts likely mechanisms that explain distinct molecular behaviors.

Unleashing the Potential of Spiking Neural Networks by Dynamic Confidence

This paper presents a new methodology to alleviate the fundamental trade-off between accuracy and latency in spiking neural networks (SNNs). The approach involves decoding confidence information over time from the SNN outputs and using it to develop a decision-making agent that can dynamically determine when to terminate each inference. The proposed method, Dynamic Confidence, provides several significant benefits to SNNs. 1. It can effectively optimize latency dynamically at runtime, setting it apart from many existing low-latency SNN algorithms. Our experiments on CIFAR-10 and ImageNet datasets have demonstrated an average 40% speedup across eight different settings after applying Dynamic Confidence. 2. The decision-making agent in Dynamic Confidence is straightforward to construct and highly robust in parameter space, making it extremely easy to implement. 3. The proposed method enables visualizing the potential of any given SNN, which sets a target for current SNNs to approach. For instance, if an SNN can terminate at the most appropriate time point for each input sample, a ResNet-50 SNN can achieve an accuracy as high as 82.47% on ImageNet within just 4.71 time steps on average. Unlocking the potential of SNNs needs a highly-reliable decision-making agent to be constructed and fed with a high-quality estimation of ground truth. In this regard, Dynamic Confidence represents a meaningful step toward realizing the potential of SNNs.

Foundation Inference Models for Markov Jump Processes

Markov jump processes are continuous-time stochastic processes which describe dynamical systems evolving in discrete state spaces. These processes find wide application in the natural sciences and machine learning, but their inference is known to be far from trivial. In this work we introduce a methodology for zero-shot inference of Markov jump processes (MJPs), on bounded state spaces, from noisy and sparse observations, which consists of two components. First, a broad probability distribution over families of MJPs, as well as over possible observation times and noise mechanisms, with which we simulate a synthetic dataset of hidden MJPs and their noisy observation process. Second, a neural network model that processes subsets of the simulated observations, and that is trained to output the initial condition and rate matrix of the target MJP in a supervised way. We empirically demonstrate that one and the same (pretrained) model can infer, in a zero-shot fashion, hidden MJPs evolving in state spaces of different dimensionalities. Specifically, we infer MJPs which describe (i) discrete flashing ratchet systems, which are a type of Brownian motors, and the conformational dynamics in (ii) molecular simulations, (iii) experimental ion channel data and (iv) simple protein folding models. What is more, we show that our model performs on par with state-of-the-art models which are finetuned to the target datasets.

A Mixture of Expert Approach for Low-Cost Customization of Deep Neural Networks

The ability to customize a trained Deep Neural Network (DNN) locally using user-specific data may greatly enhance user experiences, reduce development costs, and protect user's privacy. In this work, we propose to incorporate a novel Mixture of Experts (MOE) approach to accomplish this goal. This architecture comprises of a Global Expert (GE), a Local Expert (LE) and a Gating Network (GN). The GE is a trained DNN developed on a large training dataset representative of many potential users. After deployment on an embedded edge device, GE will be subject to customized, user-specific data (e.g., accent in speech) and its performance may suffer. This problem may be alleviated by training a local DNN (the local expert, LE) on a small size customized training data to correct the errors made by GE. A gating network then will be trained to determine whether an incoming data should be handled by GE or LE. Since the customized dataset is in general very small, the cost of training LE and GN would be much lower than that of re-training of GE. The training of LE and GN thus can be performed at local device, properly protecting the privacy of customized training data. In this work, we developed a prototype MOE architecture for handwritten alphanumeric character recognition task. We use EMNIST as the generic dataset, LeNet5 as GE, and handwritings of 10 users as the customized dataset. We show that with the LE and GN, the classification accuracy is significantly enhanced over the customized dataset with almost no degradation of accuracy over the generic dataset. In terms of energy and network size, the overhead of LE and GN is around 2.5% compared to those of GE.

Adaptive Computation Modules: Granular Conditional Computation For Efficient Inference

The computational cost of transformer models makes them inefficient in low-latency or low-power applications. While techniques such as quantization or linear attention can reduce the computational load, they may incur a reduction in accuracy. In addition, globally reducing the cost for all inputs may be sub-optimal. We observe that for each layer, the full width of the layer may be needed only for a small subset of tokens inside a batch and that the "effective" width needed to process a token can vary from layer to layer. Motivated by this observation, we introduce the Adaptive Computation Module (ACM), a generic module that dynamically adapts its computational load to match the estimated difficulty of the input on a per-token basis. An ACM consists of a sequence of learners that progressively refine the output of their preceding counterparts. An additional gating mechanism determines the optimal number of learners to execute for each token. We also describe a distillation technique to replace any pre-trained model with an "ACMized" variant. The distillation phase is designed to be highly parallelizable across layers while being simple to plug-and-play into existing networks. Our evaluation of transformer models in computer vision and speech recognition demonstrates that substituting layers with ACMs significantly reduces inference costs without degrading the downstream accuracy for a wide interval of user-defined budgets.

Diffusion Probabilistic Model Made Slim

Despite the recent visually-pleasing results achieved, the massive computational cost has been a long-standing flaw for diffusion probabilistic models (DPMs), which, in turn, greatly limits their applications on resource-limited platforms. Prior methods towards efficient DPM, however, have largely focused on accelerating the testing yet overlooked their huge complexity and sizes. In this paper, we make a dedicated attempt to lighten DPM while striving to preserve its favourable performance. We start by training a small-sized latent diffusion model (LDM) from scratch, but observe a significant fidelity drop in the synthetic images. Through a thorough assessment, we find that DPM is intrinsically biased against high-frequency generation, and learns to recover different frequency components at different time-steps. These properties make compact networks unable to represent frequency dynamics with accurate high-frequency estimation. Towards this end, we introduce a customized design for slim DPM, which we term as Spectral Diffusion (SD), for light-weight image synthesis. SD incorporates wavelet gating in its architecture to enable frequency dynamic feature extraction at every reverse steps, and conducts spectrum-aware distillation to promote high-frequency recovery by inverse weighting the objective based on spectrum magni tudes. Experimental results demonstrate that, SD achieves 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks while retaining competitive image fidelity.

Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation

We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.

ViG: Linear-complexity Visual Sequence Learning with Gated Linear Attention

Recently, linear complexity sequence modeling networks have achieved modeling capabilities similar to Vision Transformers on a variety of computer vision tasks, while using fewer FLOPs and less memory. However, their advantage in terms of actual runtime speed is not significant. To address this issue, we introduce Gated Linear Attention (GLA) for vision, leveraging its superior hardware-awareness and efficiency. We propose direction-wise gating to capture 1D global context through bidirectional modeling and a 2D gating locality injection to adaptively inject 2D local details into 1D global context. Our hardware-aware implementation further merges forward and backward scanning into a single kernel, enhancing parallelism and reducing memory cost and latency. The proposed model, ViG, offers a favorable trade-off in accuracy, parameters, and FLOPs on ImageNet and downstream tasks, outperforming popular Transformer and CNN-based models. Notably, ViG-S matches DeiT-B's accuracy while using only 27% of the parameters and 20% of the FLOPs, running 2times faster on 224times224 images. At 1024times1024 resolution, ViG-T uses 5.2times fewer FLOPs, saves 90% GPU memory, runs 4.8times faster, and achieves 20.7% higher top-1 accuracy than DeiT-T. These results position ViG as an efficient and scalable solution for visual representation learning. Code is available at https://github.com/hustvl/ViG.

CARMA: Context-Aware Runtime Reconfiguration for Energy-Efficient Sensor Fusion

Autonomous systems (AS) are systems that can adapt and change their behavior in response to unanticipated events and include systems such as aerial drones, autonomous vehicles, and ground/aquatic robots. AS require a wide array of sensors, deep-learning models, and powerful hardware platforms to perceive and safely operate in real-time. However, in many contexts, some sensing modalities negatively impact perception while increasing the system's overall energy consumption. Since AS are often energy-constrained edge devices, energy-efficient sensor fusion methods have been proposed. However, existing methods either fail to adapt to changing scenario conditions or to optimize energy efficiency system-wide. We propose CARMA: a context-aware sensor fusion approach that uses context to dynamically reconfigure the computation flow on a Field-Programmable Gate Array (FPGA) at runtime. By clock-gating unused sensors and model sub-components, CARMA significantly reduces the energy used by a multi-sensory object detector without compromising performance. We use a Deep-learning Processor Unit (DPU) based reconfiguration approach to minimize the latency of model reconfiguration. We evaluate multiple context-identification strategies, propose a novel system-wide energy-performance joint optimization, and evaluate scenario-specific perception performance. Across challenging real-world sensing contexts, CARMA outperforms state-of-the-art methods with up to 1.3x speedup and 73% lower energy consumption.

Efficient Personalized Federated Learning via Sparse Model-Adaptation

Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data. Due to the heterogeneity of clients' local data distribution, recent studies explore the personalized FL that learns and deploys distinct local models with the help of auxiliary global models. However, the clients can be heterogeneous in terms of not only local data distribution, but also their computation and communication resources. The capacity and efficiency of personalized models are restricted by the lowest-resource clients, leading to sub-optimal performance and limited practicality of personalized FL. To overcome these challenges, we propose a novel approach named pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models. With a lightweight trainable gating layer, pFedGate enables clients to reach their full potential in model capacity by generating different sparse models accounting for both the heterogeneous data distributions and resource constraints. Meanwhile, the computation and communication efficiency are both improved thanks to the adaptability between the model sparsity and clients' resources. Further, we theoretically show that the proposed pFedGate has superior complexity with guaranteed convergence and generalization error. Extensive experiments show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods. We also demonstrate that pFedGate performs better than competitors in the novel clients participation and partial clients participation scenarios, and can learn meaningful sparse local models adapted to different data distributions.

A Three-regime Model of Network Pruning

Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the hyperparameter of the Sharpness Aware Minimization method for better pruning performance.

SeerAttention: Learning Intrinsic Sparse Attention in Your LLMs

Attention is the cornerstone of modern Large Language Models (LLMs). Yet its quadratic complexity limits the efficiency and scalability of LLMs, especially for those with a long-context window. A promising approach addressing this limitation is to leverage the sparsity in attention. However, existing sparsity-based solutions predominantly rely on predefined patterns or heuristics to approximate sparsity. This practice falls short to fully capture the dynamic nature of attention sparsity in language-based tasks. This paper argues that attention sparsity should be learned rather than predefined. To this end, we design SeerAttention, a new Attention mechanism that augments the conventional attention with a learnable gate that adaptively selects significant blocks in an attention map and deems the rest blocks sparse. Such block-level sparsity effectively balances accuracy and speedup. To enable efficient learning of the gating network, we develop a customized FlashAttention implementation that extracts the block-level ground truth of attention map with minimum overhead. SeerAttention not only applies to post-training, but also excels in long-context fine-tuning. Our results show that at post-training stages, SeerAttention significantly outperforms state-of-the-art static or heuristic-based sparse attention methods, while also being more versatile and flexible to adapt to varying context lengths and sparsity ratios. When applied to long-context fine-tuning with YaRN, SeerAttention can achieve a remarkable 90% sparsity ratio at a 32k context length with minimal perplexity loss, offering a 5.67x speedup over FlashAttention-2.

Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference

Large language models (LLMs) based on transformers have made significant strides in recent years, the success of which is driven by scaling up their model size. Despite their high algorithmic performance, the computational and memory requirements of LLMs present unprecedented challenges. To tackle the high compute requirements of LLMs, the Mixture-of-Experts (MoE) architecture was introduced which is able to scale its model size without proportionally scaling up its computational requirements. Unfortunately, MoE's high memory demands and dynamic activation of sparse experts restrict its applicability to real-world problems. Previous solutions that offload MoE's memory-hungry expert parameters to CPU memory fall short because the latency to migrate activated experts from CPU to GPU incurs high performance overhead. Our proposed Pre-gated MoE system effectively tackles the compute and memory challenges of conventional MoE architectures using our algorithm-system co-design. Pre-gated MoE employs our novel pre-gating function which alleviates the dynamic nature of sparse expert activation, allowing our proposed system to address the large memory footprint of MoEs while also achieving high performance. We demonstrate that Pre-gated MoE is able to improve performance, reduce GPU memory consumption, while also maintaining the same level of model quality. These features allow our Pre-gated MoE system to cost-effectively deploy large-scale LLMs using just a single GPU with high performance.

Zoology: Measuring and Improving Recall in Efficient Language Models

Attention-free language models that combine gating and convolutions are growing in popularity due to their efficiency and increasingly competitive performance. To better understand these architectures, we pretrain a suite of 17 attention and "gated-convolution" language models, finding that SoTA gated-convolution architectures still underperform attention by up to 2.1 perplexity points on the Pile. In fine-grained analysis, we find 82% of the gap is explained by each model's ability to recall information that is previously mentioned in-context, e.g. "Hakuna Matata means no worries Hakuna Matata it means no" rightarrow "??". On this task, termed "associative recall", we find that attention outperforms gated-convolutions by a large margin: a 70M parameter attention model outperforms a 1.4 billion parameter gated-convolution model on associative recall. This is surprising because prior work shows gated convolutions can perfectly solve synthetic tests for AR capability. To close the gap between synthetics and real language, we develop a new formalization of the task called multi-query associative recall (MQAR) that better reflects actual language. We perform an empirical and theoretical study of MQAR that elucidates differences in the parameter-efficiency of attention and gated-convolution recall. Informed by our analysis, we evaluate simple convolution-attention hybrids and show that hybrids with input-dependent sparse attention patterns can close 97.4% of the gap to attention, while maintaining sub-quadratic scaling. Our code is accessible at: https://github.com/HazyResearch/zoology.

Learning a Consensus Sub-Network with Polarization Regularization and One Pass Training

The subject of green AI has been gaining attention within the deep learning community given the recent trend of ever larger and more complex neural network models. Existing solutions for reducing the computational load of training at inference time usually involve pruning the network parameters. Pruning schemes often create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph. We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks. Our proposed pruning scheme is green-oriented, as it only requires a one-off training to discover the optimal static sub-networks by dynamic pruning methods. The pruning scheme consists of a binary gating module and a novel loss function to uncover sub-networks with user-defined sparsity. Our method enables pruning and training simultaneously, which saves energy in both the training and inference phases and avoids extra computational overhead from gating modules at inference time. Our results on CIFAR-10 and CIFAR-100 suggest that our scheme can remove 50% of connections in deep networks with less than 1% reduction in classification accuracy. Compared to other related pruning methods, our method demonstrates a lower drop in accuracy for equivalent reductions in computational cost.

Liger: Linearizing Large Language Models to Gated Recurrent Structures

Transformers with linear recurrent modeling offer linear-time training and constant-memory inference. Despite their demonstrated efficiency and performance, pretraining such non-standard architectures from scratch remains costly and risky. The linearization of large language models (LLMs) transforms pretrained standard models into linear recurrent structures, enabling more efficient deployment. However, current linearization methods typically introduce additional feature map modules that require extensive fine-tuning and overlook the gating mechanisms used in state-of-the-art linear recurrent models. To address these issues, this paper presents Liger, short for Linearizing LLMs to gated recurrent structures. Liger is a novel approach for converting pretrained LLMs into gated linear recurrent models without adding extra parameters. It repurposes the pretrained key matrix weights to construct diverse gating mechanisms, facilitating the formation of various gated recurrent structures while avoiding the need to train additional components from scratch. Using lightweight fine-tuning with Low-Rank Adaptation (LoRA), Liger restores the performance of the linearized gated recurrent models to match that of the original LLMs. Additionally, we introduce Liger Attention, an intra-layer hybrid attention mechanism, which significantly recovers 93\% of the Transformer-based LLM at 0.02\% pre-training tokens during the linearization process, achieving competitive results across multiple benchmarks, as validated on models ranging from 1B to 8B parameters. Code is available at https://github.com/OpenSparseLLMs/Linearization.

Gated Linear Attention Transformers with Hardware-Efficient Training

Transformers with linear attention allow for efficient parallel training but can simultaneously be formulated as an RNN with 2D (matrix-valued) hidden states, thus enjoying linear (with respect to output length) inference complexity. Recent works such as RetNet (Sun et al., 2023) and TransNormerLLM (Qin et al., 2023a) observe that adding a global decay term to the additive RNN update rule greatly improves performance, sometimes outperforming standard Transformers with softmax attention when trained at scale. In this work we show that adding a data-dependent gating mechanism further improves performance. We derive a parallel form of this gated linear attention layer that enables efficient training. However, a straightforward, numerically stable implementation of this parallel form requires generalized matrix multiplications in log-space for numerical stability, and thus cannot take advantage of tensor cores on modern GPUs which are optimized for standard matrix multiplications. We develop a hardware-efficient version of the parallel form that can still make use of tensor cores through block-parallel computations over sequence chunks. Experiments on moderate-scale language modeling (340M-parameter models trained on 15B tokens, 1.3B-parameter models trained on 100B tokens) show that gated linear attention (GLA) Transformers perform competitively against a strong LLaMA-architecture Transformer baseline (Touvron et al., 2023) as well as Mamba (Gu & Dao, 2023), a recently introduced state-space model with a data-dependent state transition mechanism. For training speed, our Triton-based implementation performs comparably to CUDA-optimized FlashAttention-2 (Dao, 2023) under the regular 2048 training length setting, while outperforming FlashAttention-2 when training on longer sequences beyond 4096.

MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts

In this work, we aim to simultaneously enhance the effectiveness and efficiency of Mixture-of-Experts (MoE) methods. To achieve this, we propose MoE++, a general and heterogeneous MoE framework that integrates both Feed-Forward Network~(FFN) and zero-computation experts. Specifically, we introduce three types of zero-computation experts: the zero expert, copy expert, and constant expert, which correspond to discard, skip, and replace operations, respectively. This design offers three key advantages: (i) Low Computing Overhead: Unlike the uniform mixing mechanism for all tokens within vanilla MoE, MoE++ allows each token to engage with a dynamic number of FFNs, be adjusted by constant vectors, or even skip the MoE layer entirely. (ii) High Performance: By enabling simple tokens to utilize fewer FFN experts, MoE++ allows more experts to focus on challenging tokens, thereby unlocking greater performance potential than vanilla MoE. (iii) Deployment Friendly: Given that zero-computation experts have negligible parameters, we can deploy all zero-computation experts on each GPU, eliminating the significant communication overhead and expert load imbalance associated with FFN experts distributed across different GPUs. Moreover, we leverage gating residuals, enabling each token to consider the pathway taken in the previous layer when selecting the appropriate experts. Extensive experimental results demonstrate that MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size, which lays a solid foundation for developing advanced and efficient MoE-related models.

Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts

Reinforcement learning from human feedback (RLHF) has emerged as the primary method for aligning large language models (LLMs) with human preferences. The RLHF process typically starts by training a reward model (RM) using human preference data. Conventional RMs are trained on pairwise responses to the same user request, with relative ratings indicating which response humans prefer. The trained RM serves as a proxy for human preferences. However, due to the black-box nature of RMs, their outputs lack interpretability, as humans cannot intuitively understand why an RM thinks a response is good or not. As RMs act as human preference proxies, we believe they should be human-interpretable to ensure that their internal decision processes are consistent with human preferences and to prevent reward hacking in LLM alignment. To build RMs with interpretable preferences, we propose a two-stage approach: i) train an Absolute-Rating Multi-Objective Reward Model (ArmoRM) with multi-dimensional absolute-rating data, each dimension corresponding to a human-interpretable objective (e.g., honesty, verbosity, safety); ii) employ a Mixture-of-Experts (MoE) strategy with a gating network that automatically selects the most suitable reward objectives based on the context. We efficiently trained an ArmoRM with Llama-3 8B and a gating network consisting of a shallow MLP on top of the ArmoRM. Our trained model, ArmoRM-Llama3-8B, obtains state-of-the-art performance on RewardBench, a benchmark evaluating RMs for language modeling. Notably, the performance of our model surpasses the LLM-as-a-judge method with GPT-4 judges by a margin, and approaches the performance of the much larger Nemotron-4 340B reward model.

Learning to Segment from Scribbles using Multi-scale Adversarial Attention Gates

Large, fine-grained image segmentation datasets, annotated at pixel-level, are difficult to obtain, particularly in medical imaging, where annotations also require expert knowledge. Weakly-supervised learning can train models by relying on weaker forms of annotation, such as scribbles. Here, we learn to segment using scribble annotations in an adversarial game. With unpaired segmentation masks, we train a multi-scale GAN to generate realistic segmentation masks at multiple resolutions, while we use scribbles to learn their correct position in the image. Central to the model's success is a novel attention gating mechanism, which we condition with adversarial signals to act as a shape prior, resulting in better object localization at multiple scales. Subject to adversarial conditioning, the segmentor learns attention maps that are semantic, suppress the noisy activations outside the objects, and reduce the vanishing gradient problem in the deeper layers of the segmentor. We evaluated our model on several medical (ACDC, LVSC, CHAOS) and non-medical (PPSS) datasets, and we report performance levels matching those achieved by models trained with fully annotated segmentation masks. We also demonstrate extensions in a variety of settings: semi-supervised learning; combining multiple scribble sources (a crowdsourcing scenario) and multi-task learning (combining scribble and mask supervision). We release expert-made scribble annotations for the ACDC dataset, and the code used for the experiments, at https://vios-s.github.io/multiscale-adversarial-attention-gates

Discovering highly efficient low-weight quantum error-correcting codes with reinforcement learning

The realization of scalable fault-tolerant quantum computing is expected to hinge on quantum error-correcting codes. In the quest for more efficient quantum fault tolerance, a critical code parameter is the weight of measurements that extract information about errors to enable error correction: as higher measurement weights require higher implementation costs and introduce more errors, it is important in code design to optimize measurement weight. This underlies the surging interest in quantum low-density parity-check (qLDPC) codes, the study of which has primarily focused on the asymptotic (large-code-limit) properties. In this work, we introduce a versatile and computationally efficient approach to stabilizer code weight reduction based on reinforcement learning (RL), which produces new low-weight codes that substantially outperform the state of the art in practically relevant parameter regimes, extending significantly beyond previously accessible small distances. For example, our approach demonstrates savings in physical qubit overhead compared to existing results by 1 to 2 orders of magnitude for weight 6 codes and brings the overhead into a feasible range for near-future experiments. We also investigate the interplay between code parameters using our RL framework, offering new insights into the potential efficiency and power of practically viable coding strategies. Overall, our results demonstrate how RL can effectively advance the crucial yet challenging problem of quantum code discovery and thereby facilitate a faster path to the practical implementation of fault-tolerant quantum technologies.

TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting

Transformers have gained popularity in time series forecasting for their ability to capture long-sequence interactions. However, their high memory and computing requirements pose a critical bottleneck for long-term forecasting. To address this, we propose TSMixer, a lightweight neural architecture exclusively composed of multi-layer perceptron (MLP) modules for multivariate forecasting and representation learning on patched time series. Inspired by MLP-Mixer's success in computer vision, we adapt it for time series, addressing challenges and introducing validated components for enhanced accuracy. This includes a novel design paradigm of attaching online reconciliation heads to the MLP-Mixer backbone, for explicitly modeling the time-series properties such as hierarchy and channel-correlations. We also propose a novel Hybrid channel modeling and infusion of a simple gating approach to effectively handle noisy channel interactions and generalization across diverse datasets. By incorporating these lightweight components, we significantly enhance the learning capability of simple MLP structures, outperforming complex Transformer models with minimal computing usage. Moreover, TSMixer's modular design enables compatibility with both supervised and masked self-supervised learning methods, making it a promising building block for time-series Foundation Models. TSMixer outperforms state-of-the-art MLP and Transformer models in forecasting by a considerable margin of 8-60%. It also outperforms the latest strong benchmarks of Patch-Transformer models (by 1-2%) with a significant reduction in memory and runtime (2-3X). The source code of our model is officially released as PatchTSMixer in the HuggingFace. Model: https://huggingface.co/docs/transformers/main/en/model_doc/patchtsmixer Examples: https://github.com/ibm/tsfm/#notebooks-links

Efficient Transformer Encoders for Mask2Former-style models

Vision transformer based models bring significant improvements for image segmentation tasks. Although these architectures offer powerful capabilities irrespective of specific segmentation tasks, their use of computational resources can be taxing on deployed devices. One way to overcome this challenge is by adapting the computation level to the specific needs of the input image rather than the current one-size-fits-all approach. To this end, we introduce ECO-M2F or EffiCient TransfOrmer Encoders for Mask2Former-style models. Noting that the encoder module of M2F-style models incur high resource-intensive computations, ECO-M2F provides a strategy to self-select the number of hidden layers in the encoder, conditioned on the input image. To enable this self-selection ability for providing a balance between performance and computational efficiency, we present a three step recipe. The first step is to train the parent architecture to enable early exiting from the encoder. The second step is to create an derived dataset of the ideal number of encoder layers required for each training example. The third step is to use the aforementioned derived dataset to train a gating network that predicts the number of encoder layers to be used, conditioned on the input image. Additionally, to change the computational-accuracy tradeoff, only steps two and three need to be repeated which significantly reduces retraining time. Experiments on the public datasets show that the proposed approach reduces expected encoder computational cost while maintaining performance, adapts to various user compute resources, is flexible in architecture configurations, and can be extended beyond the segmentation task to object detection.

Communication Learning in Multi-Agent Systems from Graph Modeling Perspective

In numerous artificial intelligence applications, the collaborative efforts of multiple intelligent agents are imperative for the successful attainment of target objectives. To enhance coordination among these agents, a distributed communication framework is often employed. However, indiscriminate information sharing among all agents can be resource-intensive, and the adoption of manually pre-defined communication architectures imposes constraints on inter-agent communication, thus limiting the potential for effective collaboration. Moreover, the communication framework often remains static during inference, which may result in sustained high resource consumption, as in most cases, only key decisions necessitate information sharing among agents. In this study, we introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph. We formulate this problem as the task of determining the communication graph while enabling the architecture parameters to update normally, thus necessitating a bi-level optimization process. Utilizing continuous relaxation of the graph representation and incorporating attention units, our proposed approach, CommFormer, efficiently optimizes the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner. Additionally, we introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time, based on current observations, thus improving decision-making efficiency. Extensive experiments on a variety of cooperative tasks substantiate the robustness of our model across diverse cooperative scenarios, where agents are able to develop more coordinated and sophisticated strategies regardless of changes in the number of agents.

Mixture of Prompt Learning for Vision Language Models

As powerful pre-trained vision-language models (VLMs) like CLIP gain prominence, numerous studies have attempted to combine VLMs for downstream tasks. Among these, prompt learning has been validated as an effective method for adapting to new tasks, which only requiring a small number of parameters. However, current prompt learning methods face two challenges: first, a single soft prompt struggles to capture the diverse styles and patterns within a dataset; second, fine-tuning soft prompts is prone to overfitting. To address these challenges, we propose a mixture of soft prompt learning method incorporating a routing module. This module is able to capture a dataset's varied styles and dynamically selects the most suitable prompts for each instance. Additionally, we introduce a novel gating mechanism to ensure the router selects prompts based on their similarity to hard prompt templates, which both retaining knowledge from hard prompts and improving selection accuracy. We also implement semantically grouped text-level supervision, initializing each soft prompt with the token embeddings of manually designed templates from its group and applied a contrastive loss between the resulted text feature and hard prompt encoded text feature. This supervision ensures that the text features derived from soft prompts remain close to those from their corresponding hard prompts, preserving initial knowledge and mitigating overfitting. Our method has been validated on 11 datasets, demonstrating evident improvements in few-shot learning, domain generalization, and base-to-new generalization scenarios compared to existing baselines. The code will be available at https://anonymous.4open.science/r/mocoop-6387

PILL: Plug Into LLM with Adapter Expert and Attention Gate

Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.

Scattering Vision Transformer: Spectral Mixing Matters

Vision transformers have gained significant attention and achieved state-of-the-art performance in various computer vision tasks, including image classification, instance segmentation, and object detection. However, challenges remain in addressing attention complexity and effectively capturing fine-grained information within images. Existing solutions often resort to down-sampling operations, such as pooling, to reduce computational cost. Unfortunately, such operations are non-invertible and can result in information loss. In this paper, we present a novel approach called Scattering Vision Transformer (SVT) to tackle these challenges. SVT incorporates a spectrally scattering network that enables the capture of intricate image details. SVT overcomes the invertibility issue associated with down-sampling operations by separating low-frequency and high-frequency components. Furthermore, SVT introduces a unique spectral gating network utilizing Einstein multiplication for token and channel mixing, effectively reducing complexity. We show that SVT achieves state-of-the-art performance on the ImageNet dataset with a significant reduction in a number of parameters and FLOPS. SVT shows 2\% improvement over LiTv2 and iFormer. SVT-H-S reaches 84.2\% top-1 accuracy, while SVT-H-B reaches 85.2\% (state-of-art for base versions) and SVT-H-L reaches 85.7\% (again state-of-art for large versions). SVT also shows comparable results in other vision tasks such as instance segmentation. SVT also outperforms other transformers in transfer learning on standard datasets such as CIFAR10, CIFAR100, Oxford Flower, and Stanford Car datasets. The project page is available on this webpage.https://badripatro.github.io/svt/.

DeFTAN-II: Efficient Multichannel Speech Enhancement with Subgroup Processing

In this work, we present DeFTAN-II, an efficient multichannel speech enhancement model based on transformer architecture and subgroup processing. Despite the success of transformers in speech enhancement, they face challenges in capturing local relations, reducing the high computational complexity, and lowering memory usage. To address these limitations, we introduce subgroup processing in our model, combining subgroups of locally emphasized features with other subgroups containing original features. The subgroup processing is implemented in several blocks of the proposed network. In the proposed split dense blocks extracting spatial features, a pair of subgroups is sequentially concatenated and processed by convolution layers to effectively reduce the computational complexity and memory usage. For the F- and T-transformers extracting temporal and spectral relations, we introduce cross-attention between subgroups to identify relationships between locally emphasized and non-emphasized features. The dual-path feedforward network then aggregates attended features in terms of the gating of local features processed by dilated convolutions. Through extensive comparisons with state-of-the-art multichannel speech enhancement models, we demonstrate that DeFTAN-II with subgroup processing outperforms existing methods at significantly lower computational complexity. Moreover, we evaluate the model's generalization capability on real-world data without fine-tuning, which further demonstrates its effectiveness in practical scenarios.

FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction

Click-through rate (CTR) prediction is one of the fundamental tasks for online advertising and recommendation. While multi-layer perceptron (MLP) serves as a core component in many deep CTR prediction models, it has been widely recognized that applying a vanilla MLP network alone is inefficient in learning multiplicative feature interactions. As such, many two-stream interaction models (e.g., DeepFM and DCN) have been proposed by integrating an MLP network with another dedicated network for enhanced CTR prediction. As the MLP stream learns feature interactions implicitly, existing research focuses mainly on enhancing explicit feature interactions in the complementary stream. In contrast, our empirical study shows that a well-tuned two-stream MLP model that simply combines two MLPs can even achieve surprisingly good performance, which has never been reported before by existing work. Based on this observation, we further propose feature gating and interaction aggregation layers that can be easily plugged to make an enhanced two-stream MLP model, FinalMLP. In this way, it not only enables differentiated feature inputs but also effectively fuses stream-level interactions across two streams. Our evaluation results on four open benchmark datasets as well as an online A/B test in our industrial system show that FinalMLP achieves better performance than many sophisticated two-stream CTR models. Our source code will be available at MindSpore/models.

MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions

Transformer based models have provided significant performance improvements in monaural speech separation. However, there is still a performance gap compared to a recent proposed upper bound. The major limitation of the current dual-path Transformer models is the inefficient modelling of long-range elemental interactions and local feature patterns. In this work, we achieve the upper bound by proposing a gated single-head transformer architecture with convolution-augmented joint self-attentions, named MossFormer (Monaural speech separation TransFormer). To effectively solve the indirect elemental interactions across chunks in the dual-path architecture, MossFormer employs a joint local and global self-attention architecture that simultaneously performs a full-computation self-attention on local chunks and a linearised low-cost self-attention over the full sequence. The joint attention enables MossFormer model full-sequence elemental interaction directly. In addition, we employ a powerful attentive gating mechanism with simplified single-head self-attentions. Besides the attentive long-range modelling, we also augment MossFormer with convolutions for the position-wise local pattern modelling. As a consequence, MossFormer significantly outperforms the previous models and achieves the state-of-the-art results on WSJ0-2/3mix and WHAM!/WHAMR! benchmarks. Our model achieves the SI-SDRi upper bound of 21.2 dB on WSJ0-3mix and only 0.3 dB below the upper bound of 23.1 dB on WSJ0-2mix.

Adaptive Confidence Smoothing for Generalized Zero-Shot Learning

Generalized zero-shot learning (GZSL) is the problem of learning a classifier where some classes have samples and others are learned from side information, like semantic attributes or text description, in a zero-shot learning fashion (ZSL). Training a single model that operates in these two regimes simultaneously is challenging. Here we describe a probabilistic approach that breaks the model into three modular components, and then combines them in a consistent way. Specifically, our model consists of three classifiers: A "gating" model that makes soft decisions if a sample is from a "seen" class, and two experts: a ZSL expert, and an expert model for seen classes. We address two main difficulties in this approach: How to provide an accurate estimate of the gating probability without any training samples for unseen classes; and how to use expert predictions when it observes samples outside of its domain. The key insight to our approach is to pass information between the three models to improve each one's accuracy, while maintaining the modular structure. We test our approach, adaptive confidence smoothing (COSMO), on four standard GZSL benchmark datasets and find that it largely outperforms state-of-the-art GZSL models. COSMO is also the first model that closes the gap and surpasses the performance of generative models for GZSL, even-though it is a light-weight model that is much easier to train and tune. Notably, COSMO offers a new view for developing zero-shot models. Thanks to COSMO's modular structure, instead of trying to perform well both on seen and on unseen classes, models can focus on accurate classification of unseen classes, and later consider seen class models.