Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGetting the most out of your tokenizer for pre-training and domain adaptation
Tokenization is an understudied and often neglected component of modern LLMs. Most published works use a single tokenizer for all experiments, often borrowed from another model, without performing ablations or analysis to optimize tokenization. Moreover, the tokenizer is generally kept unchanged when fine-tuning a base model. In this paper, we show that the size, pre-tokenization regular expression, and training data of a tokenizer can significantly impact the model's generation speed, effective context size, memory usage, and downstream performance. We train specialized Byte-Pair Encoding code tokenizers, and conduct extensive ablations on the impact of tokenizer design on the performance of LLMs for code generation tasks such as HumanEval and MBPP, and provide recommendations for tokenizer hyper-parameters selection and switching the tokenizer in a pre-trained LLM. We perform our experiments on models trained from scratch and from pre-trained models, verifying their applicability to a wide range of use-cases. We find that when fine-tuning on more than 50 billion tokens, we can specialize the tokenizer of a pre-trained LLM to obtain large gains in generation speed and effective context size.
Retrofitting (Large) Language Models with Dynamic Tokenization
Current language models (LMs) use a fixed, static subword tokenizer. This choice, often taken for granted, typically results in degraded efficiency and capabilities in languages other than English, and makes it challenging to apply LMs to new domains or languages. To address these issues, we propose retrofitting LMs with dynamic tokenization: a way to dynamically decide on token boundaries based on the input text. For encoder-style models, we introduce a subword-merging algorithm inspired by byte-pair encoding (BPE), but at a batch level. We merge frequent subword sequences in a batch, then apply a pretrained embedding-prediction hypernetwork to compute the token embeddings on-the-fly. When applied with word-level boundaries, this on average reduces token sequence lengths by >20% across 14 languages on XNLI with XLM-R while degrading its task performance by less than 2%. For decoder-style models, we apply dynamic tokenization in two ways: 1) for prefilling, maintaining performance of Mistral-7B almost completely with up to 40% sequence reduction - relative to the word-level; and 2) via an approximate nearest neighbor index, achieving fast generation with a one million token vocabulary, demonstrating scalability to even larger, dynamic vocabularies. Overall, our findings show that dynamic tokenization substantially improves inference speed and promotes fairness across languages, making a leap towards overcoming the limitations of static tokenization and enabling more equitable and adaptable LMs.
Scaffold-BPE: Enhancing Byte Pair Encoding with Simple and Effective Scaffold Token Removal
Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus while keeping all tokens that have been merged in the vocabulary, it unavoidably holds tokens that primarily represent subwords of complete words and appear infrequently on their own in the text corpus. We term such tokens as Scaffold Tokens. Due to their infrequent appearance in the text corpus, Scaffold Tokens pose a learning imbalance issue for language models. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for the given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling tasks and machine translation tasks, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness and superiority.
Discriminative Class Tokens for Text-to-Image Diffusion Models
Recent advances in text-to-image diffusion models have enabled the generation of diverse and high-quality images. However, generated images often fall short of depicting subtle details and are susceptible to errors due to ambiguity in the input text. One way of alleviating these issues is to train diffusion models on class-labeled datasets. This comes with a downside, doing so limits their expressive power: (i) supervised datasets are generally small compared to large-scale scraped text-image datasets on which text-to-image models are trained, and so the quality and diversity of generated images are severely affected, or (ii) the input is a hard-coded label, as opposed to free-form text, which limits the control over the generated images. In this work, we propose a non-invasive fine-tuning technique that capitalizes on the expressive potential of free-form text while achieving high accuracy through discriminative signals from a pretrained classifier, which guides the generation. This is done by iteratively modifying the embedding of a single input token of a text-to-image diffusion model, using the classifier, by steering generated images toward a given target class. Our method is fast compared to prior fine-tuning methods and does not require a collection of in-class images or retraining of a noise-tolerant classifier. We evaluate our method extensively, showing that the generated images are: (i) more accurate and of higher quality than standard diffusion models, (ii) can be used to augment training data in a low-resource setting, and (iii) reveal information about the data used to train the guiding classifier. The code is available at https://github.com/idansc/discriminative_class_tokens
Zero-Shot Tokenizer Transfer
Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer.
Toucan: Token-Aware Character Level Language Modeling
Character-level language models obviate the need for separately trained tokenizers, but efficiency suffers from longer sequence lengths. Learning to combine character representations into tokens has made training these models more efficient, but they still require decoding characters individually. We propose Toucan, an augmentation to character-level models to make them "token-aware". Comparing our method to prior work, we demonstrate significant speed-ups in character generation without a loss in language modeling performance. We then explore differences between our learned dynamic tokenization of character sequences with popular fixed vocabulary solutions such as Byte-Pair Encoding and WordPiece, finding our approach leads to a greater amount of longer sequences tokenized as single items. Our project and code are available at https://nlp.jhu.edu/nuggets/.
Fishing for Magikarp: Automatically Detecting Under-trained Tokens in Large Language Models
The disconnect between tokenizer creation and model training in language models has been known to allow for certain inputs, such as the infamous SolidGoldMagikarp token, to induce unwanted behaviour. Although such `glitch tokens' that are present in the tokenizer vocabulary, but are nearly or fully absent in training, have been observed across a variety of different models, a consistent way of identifying them has been missing. We present a comprehensive analysis of Large Language Model (LLM) tokenizers, specifically targeting this issue of detecting untrained and under-trained tokens. Through a combination of tokenizer analysis, model weight-based indicators, and prompting techniques, we develop effective methods for automatically detecting these problematic tokens. Our findings demonstrate the prevalence of such tokens across various models and provide insights into improving the efficiency and safety of language models.
Tokenization Is More Than Compression
Tokenization is a foundational step in Natural Language Processing (NLP) tasks, bridging raw text and language models. Existing tokenization approaches like Byte-Pair Encoding (BPE) originate from the field of data compression, and it has been suggested that the effectiveness of BPE stems from its ability to condense text into a relatively small number of tokens. We test the hypothesis that fewer tokens lead to better downstream performance by introducing PathPiece, a new tokenizer that segments a document's text into the minimum number of tokens for a given vocabulary. Through extensive experimentation we find this hypothesis not to be the case, casting doubt on the understanding of the reasons for effective tokenization. To examine which other factors play a role, we evaluate design decisions across all three phases of tokenization: pre-tokenization, vocabulary construction, and segmentation, offering new insights into the design of effective tokenizers. Specifically, we illustrate the importance of pre-tokenization and the benefits of using BPE to initialize vocabulary construction. We train 64 language models with varying tokenization, ranging in size from 350M to 2.4B parameters, all of which are made publicly available.
Token Alignment via Character Matching for Subword Completion
Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text autocompletion.
Focus on the Whole Character: Discriminative Character Modeling for Scene Text Recognition
Recently, scene text recognition (STR) models have shown significant performance improvements. However, existing models still encounter difficulties in recognizing challenging texts that involve factors such as severely distorted and perspective characters. These challenging texts mainly cause two problems: (1) Large Intra-Class Variance. (2) Small Inter-Class Variance. An extremely distorted character may prominently differ visually from other characters within the same category, while the variance between characters from different classes is relatively small. To address the above issues, we propose a novel method that enriches the character features to enhance the discriminability of characters. Firstly, we propose the Character-Aware Constraint Encoder (CACE) with multiple blocks stacked. CACE introduces a decay matrix in each block to explicitly guide the attention region for each token. By continuously employing the decay matrix, CACE enables tokens to perceive morphological information at the character level. Secondly, an Intra-Inter Consistency Loss (I^2CL) is introduced to consider intra-class compactness and inter-class separability at feature space. I^2CL improves the discriminative capability of features by learning a long-term memory unit for each character category. Trained with synthetic data, our model achieves state-of-the-art performance on common benchmarks (94.1% accuracy) and Union14M-Benchmark (61.6% accuracy). Code is available at https://github.com/bang123-box/CFE.
Zero-Shot Detection of LLM-Generated Text using Token Cohesiveness
The increasing capability and widespread usage of large language models (LLMs) highlight the desirability of automatic detection of LLM-generated text. Zero-shot detectors, due to their training-free nature, have received considerable attention and notable success. In this paper, we identify a new feature, token cohesiveness, that is useful for zero-shot detection, and we demonstrate that LLM-generated text tends to exhibit higher token cohesiveness than human-written text. Based on this observation, we devise TOCSIN, a generic dual-channel detection paradigm that uses token cohesiveness as a plug-and-play module to improve existing zero-shot detectors. To calculate token cohesiveness, TOCSIN only requires a few rounds of random token deletion and semantic difference measurement, making it particularly suitable for a practical black-box setting where the source model used for generation is not accessible. Extensive experiments with four state-of-the-art base detectors on various datasets, source models, and evaluation settings demonstrate the effectiveness and generality of the proposed approach. Code available at: https://github.com/Shixuan-Ma/TOCSIN.
LongCoder: A Long-Range Pre-trained Language Model for Code Completion
In this paper, we introduce a new task for code completion that focuses on handling long code input and propose a sparse Transformer model, called LongCoder, to address this task. LongCoder employs a sliding window mechanism for self-attention and introduces two types of globally accessible tokens - bridge tokens and memory tokens - to improve performance and efficiency. Bridge tokens are inserted throughout the input sequence to aggregate local information and facilitate global interaction, while memory tokens are included to highlight important statements that may be invoked later and need to be memorized, such as package imports and definitions of classes, functions, or structures. We conduct experiments on a newly constructed dataset that contains longer code context and the publicly available CodeXGLUE benchmark. Experimental results demonstrate that LongCoder achieves superior performance on code completion tasks compared to previous models while maintaining comparable efficiency in terms of computational resources during inference. All the codes and data are available at https://github.com/microsoft/CodeBERT.
Evaluating Tokenizer Performance of Large Language Models Across Official Indian Languages
Large Language Models (LLMs) based on transformer architectures have revolutionized a variety of domains, with tokenization playing a pivotal role in their pre-processing and fine-tuning stages. In multilingual models, particularly those tailored for Indic languages, effective tokenization is crucial for optimizing performance. This paper presents a comprehensive evaluation of tokenizers used by 12 LLMs across all 22 official languages of India, with a focus on comparing the efficiency of their tokenization processes. We employed the Normalized Sequence Length (NSL) as a key metric in our analysis. Our findings reveal that the SUTRA tokenizer outperforms all other models, including several Indic-specific models, excelling in 14 languages. Notable insights include the SUTRA tokenizer's superior handling of Indic languages, GPT-4o's advancement over its predecessor GPT-4 in processing Indian languages, and the limited performance of Project Indus in certain languages. This study underscores the critical importance of developing targeted tokenization strategies for multilingual and Indic-centric models, laying the groundwork for future improvements in tokenizer design to enhance linguistic coverage and model efficiency.
Enhancing Character-Level Understanding in LLMs through Token Internal Structure Learning
Tokenization methods like Byte-Pair Encoding (BPE) enhance computational efficiency in large language models (LLMs) but often obscure internal character structures within tokens. This limitation hinders LLMs' ability to predict precise character positions, which is crucial in tasks like Chinese Spelling Correction (CSC) where identifying the positions of misspelled characters accelerates correction processes. We propose Token Internal Position Awareness (TIPA), a method that significantly improves models' ability to capture character positions within tokens by training them on reverse character prediction tasks using the tokenizer's vocabulary. Experiments demonstrate that TIPA enhances position prediction accuracy in LLMs, enabling more precise identification of target characters in original text. Furthermore, when applied to downstream tasks that do not require exact position prediction, TIPA still boosts performance in tasks needing character-level information, validating its versatility and effectiveness.
Reasoning to Attend: Try to Understand How <SEG> Token Works
Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on <SEG> tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the <SEG> token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the <SEG> token contributes to is semantic similarity within image-text pairs. Specifically, the <SEG> token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient REAsoning capability of where to attenD under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to <SEG>-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.
Object Recognition as Next Token Prediction
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at https://github.com/kaiyuyue/nxtp
Syntax-Aware On-the-Fly Code Completion
Code completion aims to help improve developers' productivity by suggesting the next code tokens from a given context. Various approaches have been proposed to incorporate abstract syntax tree (AST) information for model training, ensuring that code completion is aware of the syntax of the programming languages. However, existing syntax-aware code completion approaches are not on-the-fly, as we found that for every two-thirds of characters that developers type, AST fails to be extracted because it requires the syntactically correct source code, limiting its practicality in real-world scenarios. On the other hand, existing on-the-fly code completion does not consider syntactic information yet. In this paper, we propose PyCoder to leverage token types, a kind of lightweight syntactic information, which is readily available and aligns with the natural order of source code. Our PyCoder is trained in a multi-task training manner so that by learning the supporting task of predicting token types during the training phase, the models achieve better performance on predicting tokens and lines of code without the need for token types in the inference phase. Comprehensive experiments show that PyCoder achieves the first rank on the CodeXGLUE leaderboard with an accuracy of 77.12% for the token-level predictions, which is 0.43%-24.25% more accurate than baselines. In addition, PyCoder achieves an exact match of 43.37% for the line-level predictions, which is 3.63%-84.73% more accurate than baselines. These results lead us to conclude that token type information (an alternative to syntactic information) that is rarely used in the past can greatly improve the performance of code completion approaches, without requiring the syntactically correct source code like AST-based approaches do. Our PyCoder is publicly available on HuggingFace.
Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models
Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach.
Learning to Compose Soft Prompts for Compositional Zero-Shot Learning
We introduce compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) like CLIP. We develop CSP for compositional zero-shot learning, the task of predicting unseen attribute-object compositions (e.g., old cat and young tiger). VLMs have a flexible text encoder that can represent arbitrary classes as natural language prompts but they often underperform task-specific architectures on the compositional zero-shot benchmark datasets. CSP treats the attributes and objects that define classes as learnable tokens of vocabulary. During training, the vocabulary is tuned to recognize classes that compose tokens in multiple ways (e.g., old cat and white cat). At test time, we recompose the learned attribute-object vocabulary in new combinations to recognize novel classes. We show that CSP outperforms the CLIP on benchmark datasets by an average of 10.9 percentage points on AUC. CSP also outperforms CoOp, a soft prompting method that fine-tunes the prefix context tokens, by an average of 5.8 percentage points on AUC. We perform additional experiments to show that CSP improves generalization to higher-order attribute-attribute-object compositions (e.g., old white cat) and combinations of pretrained attributes and fine-tuned objects. The code is available at https://github.com/BatsResearch/csp.
Pretraining Data and Tokenizer for Indic LLM
We present a novel approach to data preparation for developing multilingual Indic large language model. Our meticulous data acquisition spans open-source and proprietary sources, including Common Crawl, Indic books, news articles, and Wikipedia, ensuring a diverse and rich linguistic representation. For each Indic language, we design a custom preprocessing pipeline to effectively eliminate redundant and low-quality text content. Additionally, we perform deduplication on Common Crawl data to address the redundancy present in 70% of the crawled web pages. This study focuses on developing high-quality data, optimizing tokenization for our multilingual dataset for Indic large language models with 3B and 7B parameters, engineered for superior performance in Indic languages. We introduce a novel multilingual tokenizer training strategy, demonstrating our custom-trained Indic tokenizer outperforms the state-of-the-art OpenAI Tiktoken tokenizer, achieving a superior token-to-word ratio for Indic languages.
Byte Pair Encoding for Symbolic Music
When used with deep learning, the symbolic music modality is often coupled with language model architectures. To do so, the music needs to be tokenized, i.e. converted into a sequence of discrete tokens. This can be achieved by different approaches, as music can be composed of simultaneous tracks, of simultaneous notes with several attributes. Until now, the proposed tokenizations rely on small vocabularies of tokens describing the note attributes and time events, resulting in fairly long token sequences, and a sub-optimal use of the embedding space of language models. Recent research has put efforts on reducing the overall sequence length by merging embeddings or combining tokens. In this paper, we show that Byte Pair Encoding, a compression technique widely used for natural language, significantly decreases the sequence length while increasing the vocabulary size. By doing so, we leverage the embedding capabilities of such models with more expressive tokens, resulting in both better results and faster inference in generation and classification tasks. The source code is shared on Github, along with a companion website. Finally, BPE is directly implemented in MidiTok, allowing the reader to easily benefit from this method.
Generation with Dynamic Vocabulary
We introduce a new dynamic vocabulary for language models. It can involve arbitrary text spans during generation. These text spans act as basic generation bricks, akin to tokens in the traditional static vocabularies. We show that, the ability to generate multi-tokens atomically improve both generation quality and efficiency (compared to the standard language model, the MAUVE metric is increased by 25%, the latency is decreased by 20%). The dynamic vocabulary can be deployed in a plug-and-play way, thus is attractive for various downstream applications. For example, we demonstrate that dynamic vocabulary can be applied to different domains in a training-free manner. It also helps to generate reliable citations in question answering tasks (substantially enhancing citation results without compromising answer accuracy).
Learn Your Tokens: Word-Pooled Tokenization for Language Modeling
Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.
ICL Markup: Structuring In-Context Learning using Soft-Token Tags
Large pretrained language models (LLMs) can be rapidly adapted to a wide variety of tasks via a text-to-text approach, where the instruction and input are fed to the model in natural language. Combined with in-context learning (ICL), this paradigm is impressively flexible and powerful. However, it also burdens users with an overwhelming number of choices, many of them arbitrary. Inspired by markup languages like HTML, we contribute a method of using soft-token tags to compose prompt templates. This approach reduces arbitrary decisions and streamlines the application of ICL. Our method is a form of meta-learning for ICL; it learns these tags in advance during a parameter-efficient fine-tuning ``warm-up'' process. The tags can subsequently be used in templates for ICL on new, unseen tasks without any additional fine-tuning. Our experiments with this approach yield promising initial results, improving LLM performance on important enterprise applications such as few-shot and open-world intent detection, as well as text classification in news and legal domains.
A Token-level Text Image Foundation Model for Document Understanding
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
LoPT: Low-Rank Prompt Tuning for Parameter Efficient Language Models
In prompt tuning, a prefix or suffix text is added to the prompt, and the embeddings (soft prompts) or token indices (hard prompts) of the prefix/suffix are optimized to gain more control over language models for specific tasks. This approach eliminates the need for hand-crafted prompt engineering or explicit model fine-tuning. Prompt tuning is significantly more parameter-efficient than model fine-tuning, as it involves optimizing partial inputs of language models to produce desired outputs. In this work, we aim to further reduce the amount of trainable parameters required for a language model to perform well on specific tasks. We propose Low-rank Prompt Tuning (LoPT), a low-rank model for prompts that achieves efficient prompt optimization. The proposed method demonstrates similar outcomes to full parameter prompt tuning while reducing the number of trainable parameters by a factor of 5. It also provides promising results compared to the state-of-the-art methods that would require 10 to 20 times more parameters.
TokenButler: Token Importance is Predictable
Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler
Rethinking Tokenization: Crafting Better Tokenizers for Large Language Models
Tokenization significantly influences language models(LMs)' performance. This paper traces the evolution of tokenizers from word-level to subword-level, analyzing how they balance tokens and types to enhance model adaptability while controlling complexity. Despite subword tokenizers like Byte Pair Encoding (BPE) overcoming many word tokenizer limitations, they encounter difficulties in handling non-Latin languages and depend heavily on extensive training data and computational resources to grasp the nuances of multiword expressions (MWEs). This article argues that tokenizers, more than mere technical tools, should drawing inspiration from the cognitive science about human language processing. This study then introduces the "Principle of Least Effort" from cognitive science, that humans naturally seek to reduce cognitive effort, and discusses the benefits of this principle for tokenizer development. Based on this principle, the paper proposes that the Less-is-Better (LiB) model could be a new approach for LLM tokenizer. The LiB model can autonomously learn an integrated vocabulary consisting of subwords, words, and MWEs, which effectively reduces both the numbers of tokens and types. Comparative evaluations show that the LiB tokenizer outperforms existing word and BPE tokenizers, presenting an innovative method for tokenizer development, and hinting at the possibility of future cognitive science-based tokenizers being more efficient.
SegFace: Face Segmentation of Long-Tail Classes
Face parsing refers to the semantic segmentation of human faces into key facial regions such as eyes, nose, hair, etc. It serves as a prerequisite for various advanced applications, including face editing, face swapping, and facial makeup, which often require segmentation masks for classes like eyeglasses, hats, earrings, and necklaces. These infrequently occurring classes are called long-tail classes, which are overshadowed by more frequently occurring classes known as head classes. Existing methods, primarily CNN-based, tend to be dominated by head classes during training, resulting in suboptimal representation for long-tail classes. Previous works have largely overlooked the problem of poor segmentation performance of long-tail classes. To address this issue, we propose SegFace, a simple and efficient approach that uses a lightweight transformer-based model which utilizes learnable class-specific tokens. The transformer decoder leverages class-specific tokens, allowing each token to focus on its corresponding class, thereby enabling independent modeling of each class. The proposed approach improves the performance of long-tail classes, thereby boosting overall performance. To the best of our knowledge, SegFace is the first work to employ transformer models for face parsing. Moreover, our approach can be adapted for low-compute edge devices, achieving 95.96 FPS. We conduct extensive experiments demonstrating that SegFace significantly outperforms previous state-of-the-art models, achieving a mean F1 score of 88.96 (+2.82) on the CelebAMask-HQ dataset and 93.03 (+0.65) on the LaPa dataset. Code: https://github.com/Kartik-3004/SegFace
Greed is All You Need: An Evaluation of Tokenizer Inference Methods
While subword tokenizers such as BPE and WordPiece are typically used to build vocabularies for NLP models, the method of decoding text into a sequence of tokens from these vocabularies is often left unspecified, or ill-suited to the method in which they were constructed. We provide a controlled analysis of seven tokenizer inference methods across four different algorithms and three vocabulary sizes, performed on a novel intrinsic evaluation suite we curated for English, combining measures rooted in morphology, cognition, and information theory. We show that for the most commonly used tokenizers, greedy inference performs surprisingly well; and that SaGe, a recently-introduced contextually-informed tokenizer, outperforms all others on morphological alignment.
A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task Learning
Subword tokenization is a commonly used input pre-processing step in most recent NLP models. However, it limits the models' ability to leverage end-to-end task learning. Its frequency-based vocabulary creation compromises tokenization in low-resource languages, leading models to produce suboptimal representations. Additionally, the dependency on a fixed vocabulary limits the subword models' adaptability across languages and domains. In this work, we propose a vocabulary-free neural tokenizer by distilling segmentation information from heuristic-based subword tokenization. We pre-train our character-based tokenizer by processing unique words from multilingual corpus, thereby extensively increasing word diversity across languages. Unlike the predefined and fixed vocabularies in subword methods, our tokenizer allows end-to-end task learning, resulting in optimal task-specific tokenization. The experimental results show that replacing the subword tokenizer with our neural tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks, with larger gains in low-resource languages. Additionally, our neural tokenizer exhibits a robust performance on downstream tasks when adversarial noise is present (typos and misspelling), further increasing the initial improvements over statistical subword tokenizers.
WanJuan-CC: A Safe and High-Quality Open-sourced English Webtext Dataset
This paper presents WanJuan-CC, a safe and high-quality open-sourced English webtext dataset derived from Common Crawl data. The study addresses the challenges of constructing large-scale pre-training datasets for language models, which require vast amounts of high-quality data. A comprehensive process was designed to handle Common Crawl data, including extraction, heuristic rule filtering, fuzzy deduplication, content safety filtering, and data quality filtering. From approximately 68 billion original English documents, we obtained 2.22T Tokens of safe data and selected 1.0T Tokens of high-quality data as part of WanJuan-CC. We have open-sourced 300B Tokens from this dataset. The paper also provides statistical information related to data quality, enabling users to select appropriate data according to their needs. To evaluate the quality and utility of the dataset, we trained 1B-parameter and 3B-parameter models using WanJuan-CC and another dataset, RefinedWeb. Results show that WanJuan-CC performs better on validation datasets and downstream tasks.
Lexinvariant Language Models
Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.
Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles
Tokenization is associated with many poorly understood shortcomings in language models (LMs), yet remains an important component for long sequence scaling purposes. This work studies how tokenization impacts model performance by analyzing and comparing the stochastic behavior of tokenized models with their byte-level, or token-free, counterparts. We discover that, even when the two models are statistically equivalent, their predictive distributions over the next byte can be substantially different, a phenomenon we term as "tokenization bias''. To fully characterize this phenomenon, we introduce the Byte-Token Representation Lemma, a framework that establishes a mapping between the learned token distribution and its equivalent byte-level distribution. From this result, we develop a next-byte sampling algorithm that eliminates tokenization bias without requiring further training or optimization. In other words, this enables zero-shot conversion of tokenized LMs into statistically equivalent token-free ones. We demonstrate its broad applicability with two use cases: fill-in-the-middle (FIM) tasks and model ensembles. In FIM tasks where input prompts may terminate mid-token, leading to out-of-distribution tokenization, our method mitigates performance degradation and achieves an approximately 18% improvement in FIM coding benchmarks, consistently outperforming the standard token healing fix. For model ensembles where each model employs a distinct vocabulary, our approach enables seamless integration, resulting in improved performance (up to 3.7%) over individual models across various standard baselines in reasoning, knowledge, and coding.
CODEPROMPTZIP: Code-specific Prompt Compression for Retrieval-Augmented Generation in Coding Tasks with LMs
Retrieval-Augmented Generation (RAG) enhances coding tasks by incorporating retrieved code examples into prompts. However, lengthy prompts, often exceeding tens of thousands of tokens, introduce challenges related to limited context windows of language models (LMs) and high computational costs. Existing prompt compression techniques focus on natural language, lacking tailored solutions for code. To address the gap, we propose CodePromptZip, a framework that compresses code examples before integrating into RAG workflows. Our framework employs a type-aware, priority-driven strategy to construct training samples for training code compression model. By using program analysis, we identify token types (e.g., Identifier) and perform ablation analysis to rank their removal priorities based on their impact on task performance. We then train a small LM as the compressor on these samples, enabling flexible compression conditioned on specified ratios while minimizing performance degradation. Specially, the compressor is augmented with a copy mechanism, allowing tokens to be directly copied from the original code snippets. Evaluation results show that CodePromptZip surpasses SOTA entropy-based and distillation-based baselines, improving by 23.4%, 28.7%, and 8.7% over the best baseline for Assertion Generation, Bugs2Fix, and Code Suggestion, respectively.
Scaling LLM Pre-training with Vocabulary Curriculum
Modern language models rely on static vocabularies, fixed before pretraining, in contrast to the adaptive vocabulary acquisition observed in human language learning. To bridge this gap, we introduce vocabulary curriculum learning, an approach that improves pretraining efficiency with log-linear scaling gains relative to vocabulary size. Our method alternates between entropy-guided vocabulary expansion and model optimization, enabling models to learn transferable representations across diverse tokenization granularities. This approach naturally gives rise to an optimal computation allocation pattern: longer tokens capture predictable content, while shorter tokens focus on more complex, harder-to-predict contexts. Experiments on small-scale GPT models demonstrate improved scaling efficiency, reinforcing the effectiveness of dynamic tokenization. We release our code to support further research and plan to extend our experiments to larger models and diverse domains.
Towards Open-Ended Visual Recognition with Large Language Model
Localizing and recognizing objects in the open-ended physical world poses a long-standing challenge within the domain of machine perception. Recent methods have endeavored to address the issue by employing a class-agnostic mask (or box) proposal model, complemented by an open-vocabulary classifier (e.g., CLIP) using pre-extracted text embeddings. However, it is worth noting that these open-vocabulary recognition models still exhibit limitations in practical applications. On one hand, they rely on the provision of class names during testing, where the recognition performance heavily depends on this predefined set of semantic classes by users. On the other hand, when training with multiple datasets, human intervention is required to alleviate the label definition conflict between them. In this paper, we introduce the OmniScient Model (OSM), a novel Large Language Model (LLM) based mask classifier, as a straightforward and effective solution to the aforementioned challenges. Specifically, OSM predicts class labels in a generative manner, thus removing the supply of class names during both training and testing. It also enables cross-dataset training without any human interference, exhibiting robust generalization capabilities due to the world knowledge acquired from the LLM. By combining OSM with an off-the-shelf mask proposal model, we present promising results on various benchmarks, and demonstrate its effectiveness in handling novel concepts. Code/model are available at https://github.com/bytedance/OmniScient-Model.
Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis
Although text-to-image (T2I) models exhibit remarkable generation capabilities, they frequently fail to accurately bind semantically related objects or attributes in the input prompts; a challenge termed semantic binding. Previous approaches either involve intensive fine-tuning of the entire T2I model or require users or large language models to specify generation layouts, adding complexity. In this paper, we define semantic binding as the task of associating a given object with its attribute, termed attribute binding, or linking it to other related sub-objects, referred to as object binding. We introduce a novel method called Token Merging (ToMe), which enhances semantic binding by aggregating relevant tokens into a single composite token. This ensures that the object, its attributes and sub-objects all share the same cross-attention map. Additionally, to address potential confusion among main objects with complex textual prompts, we propose end token substitution as a complementary strategy. To further refine our approach in the initial stages of T2I generation, where layouts are determined, we incorporate two auxiliary losses, an entropy loss and a semantic binding loss, to iteratively update the composite token to improve the generation integrity. We conducted extensive experiments to validate the effectiveness of ToMe, comparing it against various existing methods on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our method is particularly effective in complex scenarios that involve multiple objects and attributes, which previous methods often fail to address. The code will be publicly available at https://github.com/hutaihang/ToMe.
Tokenization Falling Short: The Curse of Tokenization
Language models typically tokenize raw text into sequences of subword identifiers from a predefined vocabulary, a process inherently sensitive to typographical errors, length variations, and largely oblivious to the internal structure of tokens-issues we term the curse of tokenization. In this study, we delve into these drawbacks and demonstrate that large language models (LLMs) remain susceptible to these problems. This study systematically investigates these challenges and their impact on LLMs through three critical research questions: (1) complex problem solving, (2) token structure probing, and (3) resilience to typographical variation. Our findings reveal that scaling model parameters can mitigate the issue of tokenization; however, LLMs still suffer from biases induced by typos and other text format variations. Our experiments show that subword regularization such as BPE-dropout can mitigate this issue. We will release our code and data to facilitate further research.
Mapping Language to Code in Programmatic Context
Source code is rarely written in isolation. It depends significantly on the programmatic context, such as the class that the code would reside in. To study this phenomenon, we introduce the task of generating class member functions given English documentation and the programmatic context provided by the rest of the class. This task is challenging because the desired code can vary greatly depending on the functionality the class provides (e.g., a sort function may or may not be available when we are asked to "return the smallest element" in a particular member variable list). We introduce CONCODE, a new large dataset with over 100,000 examples consisting of Java classes from online code repositories, and develop a new encoder-decoder architecture that models the interaction between the method documentation and the class environment. We also present a detailed error analysis suggesting that there is significant room for future work on this task.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
PromptSet: A Programmer's Prompting Dataset
The rise of capabilities expressed by large language models has been quickly followed by the integration of the same complex systems into application level logic. Algorithms, programs, systems, and companies are built around structured prompting to black box models where the majority of the design and implementation lies in capturing and quantifying the `agent mode'. The standard way to shape a closed language model is to prime it for a specific task with a tailored prompt, often initially handwritten by a human. The textual prompts co-evolve with the codebase, taking shape over the course of project life as artifacts which must be reviewed and maintained, just as the traditional code files might be. Unlike traditional code, we find that prompts do not receive effective static testing and linting to prevent runtime issues. In this work, we present a novel dataset called PromptSet, with more than 61,000 unique developer prompts used in open source Python programs. We perform analysis on this dataset and introduce the notion of a static linter for prompts. Released with this publication is a HuggingFace dataset and a Github repository to recreate collection and processing efforts, both under the name pisterlabs/promptset.
LBPE: Long-token-first Tokenization to Improve Large Language Models
The prevalent use of Byte Pair Encoding (BPE) in Large Language Models (LLMs) facilitates robust handling of subword units and avoids issues of out-of-vocabulary words. Despite its success, a critical challenge persists: long tokens, rich in semantic information, have fewer occurrences in tokenized datasets compared to short tokens, which can result in imbalanced learning issue across different tokens. To address that, we propose LBPE, which prioritizes long tokens during the encoding process. LBPE generates tokens according to their reverse ranks of token length rather than their ranks in the vocabulary, granting longer tokens higher priority during the encoding process. Consequently, LBPE smooths the frequency differences between short and long tokens, and thus mitigates the learning imbalance. Extensive experiments across diverse language modeling tasks demonstrate that LBPE consistently outperforms the original BPE, well demonstrating its effectiveness.
Classification Done Right for Vision-Language Pre-Training
We introduce SuperClass, a super simple classification method for vision-language pre-training on image-text data. Unlike its contrastive counterpart CLIP who contrast with a text encoder, SuperClass directly utilizes tokenized raw text as supervised classification labels, without the need for additional text filtering or selection. Due to the absence of the text encoding as contrastive target, SuperClass does not require a text encoder and does not need to maintain a large batch size as CLIP does. SuperClass demonstrated superior performance on various downstream tasks, including classic computer vision benchmarks and vision language downstream tasks. We further explored the scaling behavior of SuperClass on model size, training length, or data size, and reported encouraging results and comparisons to CLIP. https://github.com/x-cls/superclass
VNLP: Turkish NLP Package
In this work, we present VNLP: the first dedicated, complete, open-source, well-documented, lightweight, production-ready, state-of-the-art Natural Language Processing (NLP) package for the Turkish language. It contains a wide variety of tools, ranging from the simplest tasks, such as sentence splitting and text normalization, to the more advanced ones, such as text and token classification models. Its token classification models are based on "Context Model", a novel architecture that is both an encoder and an auto-regressive model. NLP tasks solved by VNLP models include but are not limited to Sentiment Analysis, Named Entity Recognition, Morphological Analysis \& Disambiguation and Part-of-Speech Tagging. Moreover, it comes with pre-trained word embeddings and corresponding SentencePiece Unigram tokenizers. VNLP has an open-source GitHub repository, ReadtheDocs documentation, PyPi package for convenient installation, Python and command-line API and a demo page to test all the functionality. Consequently, our main contribution is a complete, compact, easy-to-install and easy-to-use NLP package for Turkish.
Incorporating Context into Subword Vocabularies
Most current popular subword tokenizers are trained based on word frequency statistics over a corpus, without considering information about co-occurrence or context. Nevertheless, the resulting vocabularies are used in language models' highly contextualized settings. We present SaGe, a tokenizer that tailors subwords for their downstream use by baking in the contextualized signal at the vocabulary creation phase. We show that SaGe does a better job than current widespread tokenizers in keeping token contexts cohesive, while not incurring a large price in terms of encoding efficiency or domain robustness. SaGe improves performance on English GLUE classification tasks as well as on NER, and on Inference and NER in Turkish, demonstrating its robustness to language properties such as morphological exponence and agglutination.
Hiding Text in Large Language Models: Introducing Unconditional Token Forcing Confusion
With the help of simple fine-tuning, one can artificially embed hidden text into large language models (LLMs). This text is revealed only when triggered by a specific query to the LLM. Two primary applications are LLM fingerprinting and steganography. In the context of LLM fingerprinting, a unique text identifier (fingerprint) is embedded within the model to verify licensing compliance. In the context of steganography, the LLM serves as a carrier for hidden messages that can be disclosed through a designated trigger. Our work demonstrates that embedding hidden text in the LLM via fine-tuning, though seemingly secure due to the vast number of potential triggers (any sequence of characters or tokens could serve as a trigger), is susceptible to extraction through analysis of the LLM's output decoding process. We propose a novel approach to extraction called Unconditional Token Forcing. It is premised on the hypothesis that iteratively feeding each token from the LLM's vocabulary into the model should reveal sequences with abnormally high token probabilities, indicating potential embedded text candidates. Additionally, our experiments show that when the first token of a hidden fingerprint is used as an input, the LLM not only produces an output sequence with high token probabilities, but also repetitively generates the fingerprint itself. We also present a method to hide text in such a way that it is resistant to Unconditional Token Forcing, which we named Unconditional Token Forcing Confusion.
Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository
LLMs have demonstrated significant potential in code generation tasks, achieving promising results at the function or statement level across various benchmarks. However, the complexities associated with creating code artifacts like classes, particularly within the context of real-world software repositories, remain underexplored. Prior research treats class-level generation as an isolated task, neglecting the intricate dependencies & interactions that characterize real-world software environments. To address this gap, we introduce RepoClassBench, a comprehensive benchmark designed to rigorously evaluate LLMs in generating complex, class-level code within real-world repositories. RepoClassBench includes "Natural Language to Class generation" tasks across Java, Python & C# from a selection of repositories. We ensure that each class in our dataset not only has cross-file dependencies within the repository but also includes corresponding test cases to verify its functionality. We find that current models struggle with the realistic challenges posed by our benchmark, primarily due to their limited exposure to relevant repository contexts. To address this shortcoming, we introduce Retrieve-Repotools-Reflect (RRR), a novel approach that equips LLMs with static analysis tools to iteratively navigate & reason about repository-level context in an agent-based framework. Our experiments demonstrate that RRR significantly outperforms existing baselines on RepoClassBench, showcasing its effectiveness across programming languages & under various settings. Our findings emphasize the critical need for code-generation benchmarks to incorporate repo-level dependencies to more accurately reflect the complexities of software development. Our work shows the benefits of leveraging specialized tools to enhance LLMs' understanding of repository context. We plan to make our dataset & evaluation harness public.
Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence
We propose a novel approach for learning interchangeable tokens in language models to obtain an extendable vocabulary that can generalize to new tokens. Our method is designed to address alpha-equivalence, the principle that renaming bound variables in a syntactic expression preserves semantics. This property arises in many formal languages such as temporal logics, in which all proposition symbols represent the same concept but are distinguishable from each other. To handle such tokens, we develop a dual-part embedding approach. The first part is shared across all interchangeable tokens, thereby enforcing that they represent the same core concept. The second part is randomly generated for each token, which enables distinguishability. We evaluate our method in a Transformer encoder-decoder model on two tasks: solving linear temporal logic formulae and copying with extendable vocabulary. Our method demonstrates promising generalization capabilities in addition to introducing a favorable inductive bias for alpha-equivalence.
CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences
Code completion is an essential feature of IDEs, yet current autocompleters are restricted to either grammar-based or NLP-based single token completions. Both approaches have significant drawbacks: grammar-based autocompletion is restricted in dynamically-typed language environments, whereas NLP-based autocompleters struggle to understand the semantics of the programming language and the developer's code context. In this work, we present CodeFill, a language model for autocompletion that combines learned structure and naming information. Using a parallel Transformer architecture and multi-task learning, CodeFill consumes sequences of source code token names and their equivalent AST token types. Uniquely, CodeFill is trained both for single-token and multi-token (statement) prediction, which enables it to learn long-range dependencies among grammatical and naming elements. We train CodeFill on two datasets, consisting of 29M and 425M lines of code, respectively. To make the evaluation more realistic, we develop a method to automatically infer points in the source code at which completion matters. We compare CodeFill against four baselines and two state-of-the-art models, GPT-C and TravTrans+.CodeFill surpasses all baselines in single token prediction (MRR: 70.9% vs. 66.2% and 67.8%) and outperforms the state of the art for multi-token prediction (ROUGE-L: 63.7% vs. 52.4% and 59.2%, for n=4 tokens). We publicly release our source code and datasets.
Local Byte Fusion for Neural Machine Translation
Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus do not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes over-segment low-resource languages leading to a drop in translation performance. A simple alternative to subword tokenizers is byte-based methods i.e. tokenization into byte sequences using encoding schemes such as UTF-8. Byte tokens often represent inputs at a sub-character granularity i.e. one character can be represented by a sequence of multiple byte tokens. This results in byte sequences that are significantly longer than character sequences. Enforcing aggregation of local information in the lower layers can guide the model to build higher-level semantic information. We propose a Local Byte Fusion (LOBEF) method for byte-based machine translation -- utilizing byte n-gram and word boundaries -- to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional byte-based models and even over subword techniques. Further analysis also indicates that our byte-based models are parameter-efficient and can be trained faster than subword models.
StablePT: Towards Stable Prompting for Few-shot Learning via Input Separation
Large language models have shown their ability to become effective few-shot learners with prompting, revoluting the paradigm of learning with data scarcity. However, this approach largely depends on the quality of prompt initialization, and always exhibits large variability among different runs. Such property makes prompt tuning highly unreliable and vulnerable to poorly constructed prompts, which limits its extension to more real-world applications. To tackle this issue, we propose to treat the hard prompt and soft prompt as separate inputs to mitigate noise brought by the prompt initialization. Furthermore, we optimize soft prompts with contrastive learning for utilizing class-aware information in the training process to maintain model performance. Experimental results demonstrate that \sysname outperforms state-of-the-art methods by 7.20% in accuracy and reduces the standard deviation by 2.02 on average. Furthermore, extensive experiments underscore its robustness and stability across 7 datasets covering various tasks.
Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More
Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99times and 2.99times speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.
EMS-SD: Efficient Multi-sample Speculative Decoding for Accelerating Large Language Models
Speculative decoding emerges as a pivotal technique for enhancing the inference speed of Large Language Models (LLMs). Despite recent research aiming to improve prediction efficiency, multi-sample speculative decoding has been overlooked due to varying numbers of accepted tokens within a batch in the verification phase. Vanilla method adds padding tokens in order to ensure that the number of new tokens remains consistent across samples. However, this increases the computational and memory access overhead, thereby reducing the speedup ratio. We propose a novel method that can resolve the issue of inconsistent tokens accepted by different samples without necessitating an increase in memory or computing overhead. Furthermore, our proposed method can handle the situation where the prediction tokens of different samples are inconsistent without the need to add padding tokens. Sufficient experiments demonstrate the efficacy of our method. Our code is available at https://github.com/niyunsheng/EMS-SD.
Exploring Continual Learning for Code Generation Models
Large-scale code generation models such as Codex and CodeT5 have achieved impressive performance. However, libraries are upgraded or deprecated very frequently and re-training large-scale language models is computationally expensive. Therefore, Continual Learning (CL) is an important aspect that remains underexplored in the code domain. In this paper, we introduce a benchmark called CodeTask-CL that covers a wide range of tasks, including code generation, translation, summarization, and refinement, with different input and output programming languages. Next, on our CodeTask-CL benchmark, we compare popular CL techniques from NLP and Vision domains. We find that effective methods like Prompt Pooling (PP) suffer from catastrophic forgetting due to the unstable training of the prompt selection mechanism caused by stark distribution shifts in coding tasks. We address this issue with our proposed method, Prompt Pooling with Teacher Forcing (PP-TF), that stabilizes training by enforcing constraints on the prompt selection mechanism and leads to a 21.54% improvement over Prompt Pooling. Along with the benchmark, we establish a training pipeline that can be used for CL on code models, which we believe can motivate further development of CL methods for code models. Our code is available at https://github.com/amazon-science/codetaskcl-pptf
Neural Machine Translation without Embeddings
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular.
Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP
What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications.
Strongly Incremental Constituency Parsing with Graph Neural Networks
Parsing sentences into syntax trees can benefit downstream applications in NLP. Transition-based parsers build trees by executing actions in a state transition system. They are computationally efficient, and can leverage machine learning to predict actions based on partial trees. However, existing transition-based parsers are predominantly based on the shift-reduce transition system, which does not align with how humans are known to parse sentences. Psycholinguistic research suggests that human parsing is strongly incremental: humans grow a single parse tree by adding exactly one token at each step. In this paper, we propose a novel transition system called attach-juxtapose. It is strongly incremental; it represents a partial sentence using a single tree; each action adds exactly one token into the partial tree. Based on our transition system, we develop a strongly incremental parser. At each step, it encodes the partial tree using a graph neural network and predicts an action. We evaluate our parser on Penn Treebank (PTB) and Chinese Treebank (CTB). On PTB, it outperforms existing parsers trained with only constituency trees; and it performs on par with state-of-the-art parsers that use dependency trees as additional training data. On CTB, our parser establishes a new state of the art. Code is available at https://github.com/princeton-vl/attach-juxtapose-parser.
Improving FIM Code Completions via Context & Curriculum Based Learning
Fill-in-the-Middle (FIM) models play a vital role in code completion tasks, leveraging both prefix and suffix context to provide more accurate and contextually relevant suggestions. This paper presents approaches to improve FIM code completion while addressing the challenge of maintaining low latency for real-time coding assistance. We enhance FIM code completion by incorporating context and curriculum examples in the training process. We identify patterns where completion suggestions fail more frequently, revealing complexities that smaller language models struggle with. To address these challenges, we develop a curriculum dataset by extracting hard-to-complete patterns from code repositories and generate context examples using semantic and static analysis tools (e.g. TSC compiler). We fine-tune various sized models, including StarCoder and DeepSeek, on this enhanced dataset. Our evaluation encompasses three key dimensions: the Santa Coder FIM task, the Amazon CCEval benchmark, and a new Multi-Line Infilling evaluation benchmark derived from SWE-bench. Comprehensive ablation studies across multiple model sizes reveal that while all fine-tuned models show improvements, the performance gains are more pronounced for smaller parameter models and incorporating difficult-to-complete examples, as part of curriculum learning, improves the code completion performance. This finding is particularly significant given the latency constraints of code completion tasks. While larger models like GPT and Claude perform well in multi-line completions but are prohibitively challenging to use given high latency, and our fine-tuned models achieve a balance between performance and latency. Finally, we validate our approach through online A/B testing, demonstrating tangible improvements in Completion Acceptance Rate (CAR) and Completion Persistence Rate (CPR), with zero latency impact.
Statically Contextualizing Large Language Models with Typed Holes
Large language models (LLMs) have reshaped the landscape of program synthesis. However, contemporary LLM-based code completion systems often hallucinate broken code because they lack appropriate context, particularly when working with definitions not in the training data nor near the cursor. This paper demonstrates that tight integration with the type and binding structure of a language, as exposed by its language server, can address this contextualization problem in a token-efficient manner. In short, we contend that AIs need IDEs, too! In particular, we integrate LLM code generation into the Hazel live program sketching environment. The Hazel Language Server identifies the type and typing context of the hole being filled, even in the presence of errors, ensuring that a meaningful program sketch is always available. This allows prompting with codebase-wide contextual information not lexically local to the cursor, nor necessarily in the same file, but that is likely to be semantically local to the developer's goal. Completions synthesized by the LLM are then iteratively refined via further dialog with the language server. To evaluate these techniques, we introduce MVUBench, a dataset of model-view-update (MVU) web applications. These applications serve as challenge problems due to their reliance on application-specific data structures. We find that contextualization with type definitions is particularly impactful. After introducing our ideas in the context of Hazel we duplicate our techniques and port MVUBench to TypeScript in order to validate the applicability of these methods to higher-resource languages. Finally, we outline ChatLSP, a conservative extension to the Language Server Protocol (LSP) that language servers can implement to expose capabilities that AI code completion systems of various designs can use to incorporate static context when generating prompts for an LLM.
Domain-Agnostic Tuning-Encoder for Fast Personalization of Text-To-Image Models
Text-to-image (T2I) personalization allows users to guide the creative image generation process by combining their own visual concepts in natural language prompts. Recently, encoder-based techniques have emerged as a new effective approach for T2I personalization, reducing the need for multiple images and long training times. However, most existing encoders are limited to a single-class domain, which hinders their ability to handle diverse concepts. In this work, we propose a domain-agnostic method that does not require any specialized dataset or prior information about the personalized concepts. We introduce a novel contrastive-based regularization technique to maintain high fidelity to the target concept characteristics while keeping the predicted embeddings close to editable regions of the latent space, by pushing the predicted tokens toward their nearest existing CLIP tokens. Our experimental results demonstrate the effectiveness of our approach and show how the learned tokens are more semantic than tokens predicted by unregularized models. This leads to a better representation that achieves state-of-the-art performance while being more flexible than previous methods.
RazorAttention: Efficient KV Cache Compression Through Retrieval Heads
The memory and computational demands of Key-Value (KV) cache present significant challenges for deploying long-context language models. Previous approaches attempt to mitigate this issue by selectively dropping tokens, which irreversibly erases critical information that might be needed for future queries. In this paper, we propose a novel compression technique for KV cache that preserves all token information. Our investigation reveals that: i) Most attention heads primarily focus on the local context; ii) Only a few heads, denoted as retrieval heads, can essentially pay attention to all input tokens. These key observations motivate us to use separate caching strategy for attention heads. Therefore, we propose RazorAttention, a training-free KV cache compression algorithm, which maintains a full cache for these crucial retrieval heads and discards the remote tokens in non-retrieval heads. Furthermore, we introduce a novel mechanism involving a "compensation token" to further recover the information in the dropped tokens. Extensive evaluations across a diverse set of large language models (LLMs) demonstrate that RazorAttention achieves a reduction in KV cache size by over 70% without noticeable impacts on performance. Additionally, RazorAttention is compatible with FlashAttention, rendering it an efficient and plug-and-play solution that enhances LLM inference efficiency without overhead or retraining of the original model.
TokenVerse: Versatile Multi-concept Personalization in Token Modulation Space
We present TokenVerse -- a method for multi-concept personalization, leveraging a pre-trained text-to-image diffusion model. Our framework can disentangle complex visual elements and attributes from as little as a single image, while enabling seamless plug-and-play generation of combinations of concepts extracted from multiple images. As opposed to existing works, TokenVerse can handle multiple images with multiple concepts each, and supports a wide-range of concepts, including objects, accessories, materials, pose, and lighting. Our work exploits a DiT-based text-to-image model, in which the input text affects the generation through both attention and modulation (shift and scale). We observe that the modulation space is semantic and enables localized control over complex concepts. Building on this insight, we devise an optimization-based framework that takes as input an image and a text description, and finds for each word a distinct direction in the modulation space. These directions can then be used to generate new images that combine the learned concepts in a desired configuration. We demonstrate the effectiveness of TokenVerse in challenging personalization settings, and showcase its advantages over existing methods. project's webpage in https://token-verse.github.io/
Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?
The pretraining data of today's strongest language models is opaque. In particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information -- byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first merge is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o's tokenizer is much more multilingual than its predecessors, training on 39% non-English data; Llama3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.
Arabic-Nougat: Fine-Tuning Vision Transformers for Arabic OCR and Markdown Extraction
We present Arabic-Nougat, a suite of OCR models for converting Arabic book pages into structured Markdown text. Based on Meta's Nougat architecture, Arabic-Nougat includes three specialized models: arabic-small-nougat, arabic-base-nougat, and arabic-large-nougat. These models are fine-tuned on a synthetic dataset, arabic-img2md, comprising 13.7k pairs of Arabic book pages and their Markdown representations. Key contributions include the Aranizer-PBE-86k tokenizer, designed for efficient tokenization, and the use of torch.bfloat16 precision with Flash Attention 2 for optimized training and inference. Our models achieve state-of-the-art performance, with arabic-large-nougat delivering the highest Markdown Structure Accuracy and the lowest Character Error Rate. Additionally, we release a large-scale dataset containing 1.1 billion Arabic tokens extracted from over 8,500 books using our best-performing model, providing a valuable resource for Arabic OCR research. All models, datasets, and code are open-sourced and available at https://github.com/MohamedAliRashad/arabic-nougat.
CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Source Code
Recent works have widely adopted large language model pretraining for source code, suggested source code-specific pretraining objectives and investigated the applicability of various Transformer-based language model architectures for source code. This work investigates another important aspect of such models, namely the effect of different subtokenization options, and aims at identifying most effective and length-efficient subtokenizations, taking into account code specifics. We propose subtokenziation that reduces average length by 17% without downstream performance drop, and show that a carefully chosen subtokenization may improve quality by 0.5-2%, possibly with some length increase.
Learning to Name Classes for Vision and Language Models
Large scale vision and language models can achieve impressive zero-shot recognition performance by mapping class specific text queries to image content. Two distinct challenges that remain however, are high sensitivity to the choice of handcrafted class names that define queries, and the difficulty of adaptation to new, smaller datasets. Towards addressing these problems, we propose to leverage available data to learn, for each class, an optimal word embedding as a function of the visual content. By learning new word embeddings on an otherwise frozen model, we are able to retain zero-shot capabilities for new classes, easily adapt models to new datasets, and adjust potentially erroneous, non-descriptive or ambiguous class names. We show that our solution can easily be integrated in image classification and object detection pipelines, yields significant performance gains in multiple scenarios and provides insights into model biases and labelling errors.
Efficient Transformers with Dynamic Token Pooling
Transformers achieve unrivalled performance in modelling language, but remain inefficient in terms of memory and time complexity. A possible remedy is to reduce the sequence length in the intermediate layers by pooling fixed-length segments of tokens. Nevertheless, natural units of meaning, such as words or phrases, display varying sizes. To address this mismatch, we equip language models with a dynamic-pooling mechanism, which predicts segment boundaries in an autoregressive fashion. We compare several methods to infer boundaries, including end-to-end learning through stochastic re-parameterisation, supervised learning (based on segmentations from subword tokenizers or spikes in conditional entropy), as well as linguistically motivated boundaries. We perform character-level evaluation on texts from multiple datasets and morphologically diverse languages. The results demonstrate that dynamic pooling, which jointly segments and models language, is both faster and more accurate than vanilla Transformers and fixed-length pooling within the same computational budget.
TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
CoRe: Context-Regularized Text Embedding Learning for Text-to-Image Personalization
Recent advances in text-to-image personalization have enabled high-quality and controllable image synthesis for user-provided concepts. However, existing methods still struggle to balance identity preservation with text alignment. Our approach is based on the fact that generating prompt-aligned images requires a precise semantic understanding of the prompt, which involves accurately processing the interactions between the new concept and its surrounding context tokens within the CLIP text encoder. To address this, we aim to embed the new concept properly into the input embedding space of the text encoder, allowing for seamless integration with existing tokens. We introduce Context Regularization (CoRe), which enhances the learning of the new concept's text embedding by regularizing its context tokens in the prompt. This is based on the insight that appropriate output vectors of the text encoder for the context tokens can only be achieved if the new concept's text embedding is correctly learned. CoRe can be applied to arbitrary prompts without requiring the generation of corresponding images, thus improving the generalization of the learned text embedding. Additionally, CoRe can serve as a test-time optimization technique to further enhance the generations for specific prompts. Comprehensive experiments demonstrate that our method outperforms several baseline methods in both identity preservation and text alignment. Code will be made publicly available.
Impact of Tokenization on Language Models: An Analysis for Turkish
Tokenization is an important text preprocessing step to prepare input tokens for deep language models. WordPiece and BPE are de facto methods employed by important models, such as BERT and GPT. However, the impact of tokenization can be different for morphologically rich languages, such as Turkic languages, where many words can be generated by adding prefixes and suffixes. We compare five tokenizers at different granularity levels, i.e. their outputs vary from smallest pieces of characters to the surface form of words, including a Morphological-level tokenizer. We train these tokenizers and pretrain medium-sized language models using RoBERTa pretraining procedure on the Turkish split of the OSCAR corpus. We then fine-tune our models on six downstream tasks. Our experiments, supported by statistical tests, reveal that Morphological-level tokenizer has challenging performance with de facto tokenizers. Furthermore, we find that increasing the vocabulary size improves the performance of Morphological and Word-level tokenizers more than that of de facto tokenizers. The ratio of the number of vocabulary parameters to the total number of model parameters can be empirically chosen as 20% for de facto tokenizers and 40% for other tokenizers to obtain a reasonable trade-off between model size and performance.
One-D-Piece: Image Tokenizer Meets Quality-Controllable Compression
Current image tokenization methods require a large number of tokens to capture the information contained within images. Although the amount of information varies across images, most image tokenizers only support fixed-length tokenization, leading to inefficiency in token allocation. In this study, we introduce One-D-Piece, a discrete image tokenizer designed for variable-length tokenization, achieving quality-controllable mechanism. To enable variable compression rate, we introduce a simple but effective regularization mechanism named "Tail Token Drop" into discrete one-dimensional image tokenizers. This method encourages critical information to concentrate at the head of the token sequence, enabling support of variadic tokenization, while preserving state-of-the-art reconstruction quality. We evaluate our tokenizer across multiple reconstruction quality metrics and find that it delivers significantly better perceptual quality than existing quality-controllable compression methods, including JPEG and WebP, at smaller byte sizes. Furthermore, we assess our tokenizer on various downstream computer vision tasks, including image classification, object detection, semantic segmentation, and depth estimation, confirming its adaptability to numerous applications compared to other variable-rate methods. Our approach demonstrates the versatility of variable-length discrete image tokenization, establishing a new paradigm in both compression efficiency and reconstruction performance. Finally, we validate the effectiveness of tail token drop via detailed analysis of tokenizers.
OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text
There is growing evidence that pretraining on high quality, carefully thought-out tokens such as code or mathematics plays an important role in improving the reasoning abilities of large language models. For example, Minerva, a PaLM model finetuned on billions of tokens of mathematical documents from arXiv and the web, reported dramatically improved performance on problems that require quantitative reasoning. However, because all known open source web datasets employ preprocessing that does not faithfully preserve mathematical notation, the benefits of large scale training on quantitive web documents are unavailable to the research community. We introduce OpenWebMath, an open dataset inspired by these works containing 14.7B tokens of mathematical webpages from Common Crawl. We describe in detail our method for extracting text and LaTeX content and removing boilerplate from HTML documents, as well as our methods for quality filtering and deduplication. Additionally, we run small-scale experiments by training 1.4B parameter language models on OpenWebMath, showing that models trained on 14.7B tokens of our dataset surpass the performance of models trained on over 20x the amount of general language data. We hope that our dataset, openly released on the Hugging Face Hub, will help spur advances in the reasoning abilities of large language models.
Mastering Text, Code and Math Simultaneously via Fusing Highly Specialized Language Models
Underlying data distributions of natural language, programming code, and mathematical symbols vary vastly, presenting a complex challenge for large language models (LLMs) that strive to achieve high performance across all three domains simultaneously. Achieving a very high level of proficiency for an LLM within a specific domain often requires extensive training with relevant corpora, which is typically accompanied by a sacrifice in performance in other domains. In this paper, we propose to fuse models that are already highly-specialized directly. The proposed fusing framework, UltraFuser, consists of three distinct specialists that are already sufficiently trained on language, coding, and mathematics. A token-level gating mechanism is introduced to blend the specialists' outputs. A two-stage training strategy accompanied by balanced sampling is designed to ensure stability. To effectively train the fused model, we further construct a high-quality supervised instruction tuning dataset, UltraChat 2, which includes text, code, and mathematical content. This dataset comprises approximately 300,000 instructions and covers a wide range of topics in each domain. Experiments show that our model could simultaneously achieve mastery of the three crucial domains.
MANTa: Efficient Gradient-Based Tokenization for Robust End-to-End Language Modeling
Static subword tokenization algorithms have been an essential component of recent works on language modeling. However, their static nature results in important flaws that degrade the models' downstream performance and robustness. In this work, we propose MANTa, a Module for Adaptive Neural TokenizAtion. MANTa is a differentiable tokenizer trained end-to-end with the language model. The resulting system offers a trade-off between the expressiveness of byte-level models and the speed of models trained using subword tokenization. In addition, our tokenizer is highly explainable since it produces an explicit segmentation of sequences into blocks. We evaluate our pre-trained model on several English datasets from different domains as well as on synthetic noise. We find that MANTa improves robustness to character perturbations and out-of-domain data. We then show that MANTa performs comparably to other models on the general-domain GLUE benchmark. Finally, we show that it is considerably faster than strictly byte-level models.
Biomedical Language Models are Robust to Sub-optimal Tokenization
As opposed to general English, many concepts in biomedical terminology have been designed in recent history by biomedical professionals with the goal of being precise and concise. This is often achieved by concatenating meaningful biomedical morphemes to create new semantic units. Nevertheless, most modern biomedical language models (LMs) are pre-trained using standard domain-specific tokenizers derived from large scale biomedical corpus statistics without explicitly leveraging the agglutinating nature of biomedical language. In this work, we first find that standard open-domain and biomedical tokenizers are largely unable to segment biomedical terms into meaningful components. Therefore, we hypothesize that using a tokenizer which segments biomedical terminology more accurately would enable biomedical LMs to improve their performance on downstream biomedical NLP tasks, especially ones which involve biomedical terms directly such as named entity recognition (NER) and entity linking. Surprisingly, we find that pre-training a biomedical LM using a more accurate biomedical tokenizer does not improve the entity representation quality of a language model as measured by several intrinsic and extrinsic measures such as masked language modeling prediction (MLM) accuracy as well as NER and entity linking performance. These quantitative findings, along with a case study which explores entity representation quality more directly, suggest that the biomedical pre-training process is quite robust to instances of sub-optimal tokenization.
Agglomerative Token Clustering
We present Agglomerative Token Clustering (ATC), a novel token merging method that consistently outperforms previous token merging and pruning methods across image classification, image synthesis, and object detection & segmentation tasks. ATC merges clusters through bottom-up hierarchical clustering, without the introduction of extra learnable parameters. We find that ATC achieves state-of-the-art performance across all tasks, and can even perform on par with prior state-of-the-art when applied off-the-shelf, i.e. without fine-tuning. ATC is particularly effective when applied with low keep rates, where only a small fraction of tokens are kept and retaining task performance is especially difficult.
WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models
Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method -- called WECHSEL -- to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.
Narrow Transformer: Starcoder-Based Java-LM For Desktop
This paper presents NT-Java-1.1B, an open-source specialized code language model built on StarCoderBase-1.1B, designed for coding tasks in Java programming. NT-Java-1.1B achieves state-of-the-art performance, surpassing its base model and majority of other models of similar size on MultiPL-E Java code benchmark. While there have been studies on extending large, generic pre-trained models to improve proficiency in specific programming languages like Python, similar investigations on small code models for other programming languages are lacking. Large code models require specialized hardware like GPUs for inference, highlighting the need for research into building small code models that can be deployed on developer desktops. This paper addresses this research gap by focusing on the development of a small Java code model, NT-Java-1.1B, and its quantized versions, which performs comparably to open models around 1.1B on MultiPL-E Java code benchmarks, making them ideal for desktop deployment. This paper establishes the foundation for specialized models across languages and sizes for a family of NT Models.
A transformer-based method for zero and few-shot biomedical named entity recognition
Supervised named entity recognition (NER) in the biomedical domain is dependent on large sets of annotated texts with the given named entities, whose creation can be time-consuming and expensive. Furthermore, the extraction of new entities often requires conducting additional annotation tasks and retraining the model. To address these challenges, this paper proposes a transformer-based method for zero- and few-shot NER in the biomedical domain. The method is based on transforming the task of multi-class token classification into binary token classification (token contains the searched entity or does not contain the searched entity) and pre-training on a larger amount of datasets and biomedical entities, from where the method can learn semantic relations between the given and potential classes. We have achieved average F1 scores of 35.44% for zero-shot NER, 50.10% for one-shot NER, 69.94% for 10-shot NER, and 79.51% for 100-shot NER on 9 diverse evaluated biomedical entities with PubMedBERT fine-tuned model. The results demonstrate the effectiveness of the proposed method for recognizing new entities with limited examples, with comparable or better results from the state-of-the-art zero- and few-shot NER methods.
Exploring and Evaluating Personalized Models for Code Generation
Large Transformer models achieved the state-of-the-art status for Natural Language Understanding tasks and are increasingly becoming the baseline model architecture for modeling source code. Transformers are usually pre-trained on large unsupervised corpora, learning token representations and transformations relevant to modeling generally available text, and are then fine-tuned on a particular downstream task of interest. While fine-tuning is a tried-and-true method for adapting a model to a new domain -- for example, question-answering on a given topic -- generalization remains an on-going challenge. In this paper, we explore and evaluate transformer model fine-tuning for personalization. In the context of generating unit tests for Java methods, we evaluate learning to personalize to a specific software project using several personalization techniques. We consider three key approaches: (i) custom fine-tuning, which allows all the model parameters to be tuned; (ii) lightweight fine-tuning, which freezes most of the model's parameters, allowing tuning of the token embeddings and softmax layer only or the final layer alone; (iii) prefix tuning, which keeps model parameters frozen, but optimizes a small project-specific prefix vector. Each of these techniques offers a trade-off in total compute cost and predictive performance, which we evaluate by code and task-specific metrics, training time, and total computational operations. We compare these fine-tuning strategies for code generation and discuss the potential generalization and cost benefits of each in various deployment scenarios.
Reading Order Matters: Information Extraction from Visually-rich Documents by Token Path Prediction
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
Contextual API Completion for Unseen Repositories Using LLMs
Large language models have made substantial progress in addressing diverse code-related tasks. However, their adoption is hindered by inconsistencies in generating output due to the lack of real-world, domain-specific information, such as for intra-repository API calls for unseen software projects. We introduce a novel technique to mitigate hallucinations by leveraging global and local contextual information within a code repository for API completion tasks. Our approach is tailored to refine code completion tasks, with a focus on optimizing local API completions. We examine relevant import statements during API completion to derive insights into local APIs, drawing from their method signatures. For API token completion, we analyze the inline variables and correlate them with the appropriate imported modules, thereby allowing our approach to rank the most contextually relevant suggestions from the available local APIs. Further, for conversational API completion, we gather APIs that are most relevant to the developer query with a retrieval-based search across the project. We employ our tool, LANCE, within the framework of our proposed benchmark, APIEval, encompassing two different programming languages. Our evaluation yields an average accuracy of 82.6% for API token completion and 76.9% for conversational API completion tasks. On average, LANCE surpasses Copilot by 143% and 142% for API token completion and conversational API completion, respectively. The implications of our findings are substantial for developers, suggesting that our lightweight context analysis can be applied to multilingual environments without language-specific training or fine-tuning, allowing for efficient implementation with minimal examples and effort.
ScienceExamCER: A High-Density Fine-Grained Science-Domain Corpus for Common Entity Recognition
Named entity recognition identifies common classes of entities in text, but these entity labels are generally sparse, limiting utility to downstream tasks. In this work we present ScienceExamCER, a densely-labeled semantic classification corpus of 133k mentions in the science exam domain where nearly all (96%) of content words have been annotated with one or more fine-grained semantic class labels including taxonomic groups, meronym groups, verb/action groups, properties and values, and synonyms. Semantic class labels are drawn from a manually-constructed fine-grained typology of 601 classes generated through a data-driven analysis of 4,239 science exam questions. We show an off-the-shelf BERT-based named entity recognition model modified for multi-label classification achieves an accuracy of 0.85 F1 on this task, suggesting strong utility for downstream tasks in science domain question answering requiring densely-labeled semantic classification.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
Flexibly Scaling Large Language Models Contexts Through Extensible Tokenization
Large language models (LLMs) are in need of sufficient contexts to handle many critical applications, such as retrieval augmented generation and few-shot learning. However, due to the constrained window size, the LLMs can only access to the information within a limited context. Although the size of context window can be extended by fine-tuning, it will result in a substantial cost in both training and inference stage. In this paper, we present Extensible Tokenization as an alternative method which realizes the flexible scaling of LLMs' context. Extensible Tokenization stands as a midware in between of the tokenized context and the LLM, which transforms the raw token embeddings into the extensible embeddings. Such embeddings provide a more compact representation for the long context, on top of which the LLM is able to perceive more information with the same context window. Extensible Tokenization is also featured by its flexibility: the scaling factor can be flexibly determined within a feasible scope, leading to the extension of an arbitrary context length at the inference time. Besides, Extensible Tokenization is introduced as a drop-in component, which can be seamlessly plugged into not only the LLM itself and but also its fine-tuned derivatives, bringing in the extended contextual information while fully preserving the LLM's existing capabilities. We perform comprehensive experiments on long-context language modeling and understanding tasks, which verify Extensible Tokenization as an effective, efficient, flexible, and compatible method to extend LLM's context. Our model and source code will be made publicly available.
Qtok: A Comprehensive Framework for Evaluating Multilingual Tokenizer Quality in Large Language Models
In the development of Large Language Models (LLMs), considerable attention has been given to the quality of training datasets. However, the role of tokenizers in the LLM training pipeline, particularly for multilingual models, has received less focus. The quality of tokenization can significantly impact a model's ability to handle diverse languages effectively. We introduce Qtok, a tool designed to assess tokenizer quality with a specific emphasis on their performance in multilingual contexts. Our research proposes a set of metrics for evaluating tokenizer quality, including measures of language coverage, token completeness, and distribution across languages and linguistic categories. Qtok applies these metrics to evaluate 13 distinct tokenizers from 58 publicly available models, analyzing their output across different linguistic contexts. Our analysis revealed significant variations in token distribution across languages and categories, highlighting potential biases and areas for improvement in current tokenization strategies. This research contributes to the field of tokenizer evaluation within multilingual LLM development by providing a systematic approach to assessing tokenizer quality. Our findings highlight the critical role of tokenization in multilingual LLM capability. The Qtok tool and our analysis methodology offer practical means for researchers to evaluate and improve tokenization strategies for multilingual applications. We offer a method to compare tokenizer quality across these metrics, which may be useful when selecting or adjusting tokenizers for specific multilingual LLM applications.
Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters
Scaling the context size of large language models (LLMs) enables them to perform various new tasks, e.g., book summarization. However, the memory cost of the Key and Value (KV) cache in attention significantly limits the practical applications of LLMs. Recent works have explored token pruning for KV cache reduction in LLMs, relying solely on attention scores as a token importance indicator. However, our investigation into value vector norms revealed a notably non-uniform pattern questioning their reliance only on attention scores. Inspired by this, we propose a new method: Value-Aware Token Pruning (VATP) which uses both attention scores and the ell_{1} norm of value vectors to evaluate token importance. Extensive experiments on LLaMA2-7B-chat and Vicuna-v1.5-7B across 16 LongBench tasks demonstrate VATP's superior performance.
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification through their ability generate embeddings for each class based on their (natural language) names. Prior work has focused on improving the accuracy of these models through prompt engineering or by incorporating a small amount of labeled downstream data (via finetuning). However, there has been little focus on improving the richness of the class names themselves, which can pose issues when class labels are coarsely-defined and are uninformative. We propose Classification with Hierarchical Label Sets (or CHiLS), an alternative strategy for zero-shot classification specifically designed for datasets with implicit semantic hierarchies. CHiLS proceeds in three steps: (i) for each class, produce a set of subclasses, using either existing label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP procedure as though these subclasses were the labels of interest; (iii) map the predicted subclass back to its parent to produce the final prediction. Across numerous datasets with underlying hierarchical structure, CHiLS leads to improved accuracy in situations both with and without ground-truth hierarchical information. CHiLS is simple to implement within existing zero-shot pipelines and requires no additional training cost. Code is available at: https://github.com/acmi-lab/CHILS.
Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation
Autoregressive (AR) modeling, known for its next-token prediction paradigm, underpins state-of-the-art language and visual generative models. Traditionally, a ``token'' is treated as the smallest prediction unit, often a discrete symbol in language or a quantized patch in vision. However, the optimal token definition for 2D image structures remains an open question. Moreover, AR models suffer from exposure bias, where teacher forcing during training leads to error accumulation at inference. In this paper, we propose xAR, a generalized AR framework that extends the notion of a token to an entity X, which can represent an individual patch token, a cell (a ktimes k grouping of neighboring patches), a subsample (a non-local grouping of distant patches), a scale (coarse-to-fine resolution), or even a whole image. Additionally, we reformulate discrete token classification as continuous entity regression, leveraging flow-matching methods at each AR step. This approach conditions training on noisy entities instead of ground truth tokens, leading to Noisy Context Learning, which effectively alleviates exposure bias. As a result, xAR offers two key advantages: (1) it enables flexible prediction units that capture different contextual granularity and spatial structures, and (2) it mitigates exposure bias by avoiding reliance on teacher forcing. On ImageNet-256 generation benchmark, our base model, xAR-B (172M), outperforms DiT-XL/SiT-XL (675M) while achieving 20times faster inference. Meanwhile, xAR-H sets a new state-of-the-art with an FID of 1.24, running 2.2times faster than the previous best-performing model without relying on vision foundation modules (\eg, DINOv2) or advanced guidance interval sampling.
Hierarchical Autoregressive Transformers: Combining Byte-~and Word-Level Processing for Robust, Adaptable Language Models
Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains.
From Words to Music: A Study of Subword Tokenization Techniques in Symbolic Music Generation
Subword tokenization has been widely successful in text-based natural language processing (NLP) tasks with Transformer-based models. As Transformer models become increasingly popular in symbolic music-related studies, it is imperative to investigate the efficacy of subword tokenization in the symbolic music domain. In this paper, we explore subword tokenization techniques, such as byte-pair encoding (BPE), in symbolic music generation and its impact on the overall structure of generated songs. Our experiments are based on three types of MIDI datasets: single track-melody only, multi-track with a single instrument, and multi-track and multi-instrument. We apply subword tokenization on post-musical tokenization schemes and find that it enables the generation of longer songs at the same time and improves the overall structure of the generated music in terms of objective metrics like structure indicator (SI), Pitch Class Entropy, etc. We also compare two subword tokenization methods, BPE and Unigram, and observe that both methods lead to consistent improvements. Our study suggests that subword tokenization is a promising technique for symbolic music generation and may have broader implications for music composition, particularly in cases involving complex data such as multi-track songs.
NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector. Such a shallow lookup results in a linear growth of memory consumption for storing the embedding matrix and incurs high computational costs when working with real-world KGs. Drawing parallels with subword tokenization commonly used in NLP, we explore the landscape of more parameter-efficient node embedding strategies with possibly sublinear memory requirements. To this end, we propose NodePiece, an anchor-based approach to learn a fixed-size entity vocabulary. In NodePiece, a vocabulary of subword/sub-entity units is constructed from anchor nodes in a graph with known relation types. Given such a fixed-size vocabulary, it is possible to bootstrap an encoding and embedding for any entity, including those unseen during training. Experiments show that NodePiece performs competitively in node classification, link prediction, and relation prediction tasks while retaining less than 10% of explicit nodes in a graph as anchors and often having 10x fewer parameters. To this end, we show that a NodePiece-enabled model outperforms existing shallow models on a large OGB WikiKG 2 graph having 70x fewer parameters.
Towards a Dataset of Programming Contest Plagiarism in Java
In this paper, we describe and present the first dataset of source code plagiarism specifically aimed at contest plagiarism. The dataset contains 251 pairs of plagiarized solutions of competitive programming tasks in Java, as well as 660 non-plagiarized ones, however, the described approach can be used to extend the dataset in the future. Importantly, each pair comes in two versions: (a) "raw" and (b) with participants' repeated template code removed, allowing for evaluating tools in different settings. We used the collected dataset to compare the available source code plagiarism detection tools, including state-of-the-art ones, specifically in their ability to detect contest plagiarism. Our results indicate that the tools show significantly worse performance on the contest plagiarism because of the template code and the presence of other misleadingly similar code. Of the tested tools, token-based ones demonstrated the best performance in both variants of the dataset.
PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
Large pre-trained language models for textual data have an unconstrained output space; at each decoding step, they can produce any of 10,000s of sub-word tokens. When fine-tuned to target constrained formal languages like SQL, these models often generate invalid code, rendering it unusable. We propose PICARD (code and trained models available at https://github.com/ElementAI/picard), a method for constraining auto-regressive decoders of language models through incremental parsing. PICARD helps to find valid output sequences by rejecting inadmissible tokens at each decoding step. On the challenging Spider and CoSQL text-to-SQL translation tasks, we show that PICARD transforms fine-tuned T5 models with passable performance into state-of-the-art solutions.
A Deep Dive into Large Language Models for Automated Bug Localization and Repair
Large language models (LLMs) have shown impressive effectiveness in various software engineering tasks, including automated program repair (APR). In this study, we take a deep dive into automated bug fixing utilizing LLMs. In contrast to many deep learning-based APR methods that assume known bug locations, rely on line-level localization tools, or address bug prediction and fixing in one step, our approach uniquely employs LLMs to predict bug location at the token level and subsequently utilizes them for bug fixing. This methodological separation of bug localization and fixing using different LLMs enables effective integration of diverse contextual information and improved incorporation of inductive biases. We introduce Toggle: Token-Granulated Bug Localization and Repair, a comprehensive program repair framework that integrates a bug localization model, an adjustment unit, and a bug-fixing model. Toggle takes a buggy function as input and generates a complete corrected function. We investigate various styles of prompting to the bug fixing model to identify the most effective prompts that better utilize the inductive bias and significantly outperform others. Toggle achieves the new state-of-the-art (SOTA) performance on the CodeXGLUE code refinement benchmark, and exhibits better and comparable performance on several other widely-used APR datasets, including Defects4J.
The Hidden Language of Diffusion Models
Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual concept (e.g., "a doctor", "love"). However, the internal process of mapping text to a rich visual representation remains an enigma. In this work, we tackle the challenge of understanding concept representations in text-to-image models by decomposing an input text prompt into a small set of interpretable elements. This is achieved by learning a pseudo-token that is a sparse weighted combination of tokens from the model's vocabulary, with the objective of reconstructing the images generated for the given concept. Applied over the state-of-the-art Stable Diffusion model, this decomposition reveals non-trivial and surprising structures in the representations of concepts. For example, we find that some concepts such as "a president" or "a composer" are dominated by specific instances (e.g., "Obama", "Biden") and their interpolations. Other concepts, such as "happiness" combine associated terms that can be concrete ("family", "laughter") or abstract ("friendship", "emotion"). In addition to peering into the inner workings of Stable Diffusion, our method also enables applications such as single-image decomposition to tokens, bias detection and mitigation, and semantic image manipulation. Our code will be available at: https://hila-chefer.github.io/Conceptor/
Critical Tokens Matter: Token-Level Contrastive Estimation Enhence LLM's Reasoning Capability
Large Language Models (LLMs) have exhibited remarkable performance on reasoning tasks. They utilize autoregressive token generation to construct reasoning trajectories, enabling the development of a coherent chain of thought. In this work, we explore the impact of individual tokens on the final outcomes of reasoning tasks. We identify the existence of ``critical tokens'' that lead to incorrect reasoning trajectories in LLMs. Specifically, we find that LLMs tend to produce positive outcomes when forced to decode other tokens instead of critical tokens. Motivated by this observation, we propose a novel approach - cDPO - designed to automatically recognize and conduct token-level rewards for the critical tokens during the alignment process. Specifically, we develop a contrastive estimation approach to automatically identify critical tokens. It is achieved by comparing the generation likelihood of positive and negative models. To achieve this, we separately fine-tune the positive and negative models on various reasoning trajectories, consequently, they are capable of identifying identify critical tokens within incorrect trajectories that contribute to erroneous outcomes. Moreover, to further align the model with the critical token information during the alignment process, we extend the conventional DPO algorithms to token-level DPO and utilize the differential likelihood from the aforementioned positive and negative model as important weight for token-level DPO learning.Experimental results on GSM8K and MATH500 benchmarks with two-widely used models Llama-3 (8B and 70B) and deepseek-math (7B) demonstrate the effectiveness of the propsoed approach cDPO.
Planting a SEED of Vision in Large Language Model
We present SEED, an elaborate image tokenizer that empowers Large Language Models (LLMs) with the emergent ability to SEE and Draw at the same time. Research on image tokenizers has previously reached an impasse, as frameworks employing quantized visual tokens have lost prominence due to subpar performance and convergence in multimodal comprehension (compared to BLIP-2, etc.) or generation (compared to Stable Diffusion, etc.). Despite the limitations, we remain confident in its natural capacity to unify visual and textual representations, facilitating scalable multimodal training with LLM's original recipe. In this study, we identify two crucial principles for the architecture and training of SEED that effectively ease subsequent alignment with LLMs. (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. As a result, the off-the-shelf LLM is able to perform both image-to-text and text-to-image generation by incorporating our SEED through efficient LoRA tuning. Comprehensive multimodal pretraining and instruction tuning, which may yield improved results, are reserved for future investigation. This version of SEED was trained in 5.7 days using only 64 V100 GPUs and 5M publicly available image-text pairs. Our preliminary study emphasizes the great potential of discrete visual tokens in versatile multimodal LLMs and the importance of proper image tokenizers in broader research.
The first step is the hardest: Pitfalls of Representing and Tokenizing Temporal Data for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable generalization across diverse tasks, leading individuals to increasingly use them as personal assistants and universal computing engines. Nevertheless, a notable obstacle emerges when feeding numerical/temporal data into these models, such as data sourced from wearables or electronic health records. LLMs employ tokenizers in their input that break down text into smaller units. However, tokenizers are not designed to represent numerical values and might struggle to understand repetitive patterns and context, treating consecutive values as separate tokens and disregarding their temporal relationships. Here, we discuss recent works that employ LLMs for human-centric tasks such as in mobile health sensing and present a case study showing that popular LLMs tokenize temporal data incorrectly. To address that, we highlight potential solutions such as prompt tuning with lightweight embedding layers as well as multimodal adapters, that can help bridge this "modality gap". While the capability of language models to generalize to other modalities with minimal or no finetuning is exciting, this paper underscores the fact that their outputs cannot be meaningful if they stumble over input nuances.
From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model's robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift.
HiNER: A Large Hindi Named Entity Recognition Dataset
Named Entity Recognition (NER) is a foundational NLP task that aims to provide class labels like Person, Location, Organisation, Time, and Number to words in free text. Named Entities can also be multi-word expressions where the additional I-O-B annotation information helps label them during the NER annotation process. While English and European languages have considerable annotated data for the NER task, Indian languages lack on that front -- both in terms of quantity and following annotation standards. This paper releases a significantly sized standard-abiding Hindi NER dataset containing 109,146 sentences and 2,220,856 tokens, annotated with 11 tags. We discuss the dataset statistics in all their essential detail and provide an in-depth analysis of the NER tag-set used with our data. The statistics of tag-set in our dataset show a healthy per-tag distribution, especially for prominent classes like Person, Location and Organisation. Since the proof of resource-effectiveness is in building models with the resource and testing the model on benchmark data and against the leader-board entries in shared tasks, we do the same with the aforesaid data. We use different language models to perform the sequence labelling task for NER and show the efficacy of our data by performing a comparative evaluation with models trained on another dataset available for the Hindi NER task. Our dataset helps achieve a weighted F1 score of 88.78 with all the tags and 92.22 when we collapse the tag-set, as discussed in the paper. To the best of our knowledge, no available dataset meets the standards of volume (amount) and variability (diversity), as far as Hindi NER is concerned. We fill this gap through this work, which we hope will significantly help NLP for Hindi. We release this dataset with our code and models at https://github.com/cfiltnlp/HiNER
ByT5: Towards a token-free future with pre-trained byte-to-byte models
Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. By comparison, token-free models that operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments.
Infusing clinical knowledge into tokenisers for language models
This study introduces a novel knowledge enhanced tokenisation mechanism, K-Tokeniser, for clinical text processing. Technically, at initialisation stage, K-Tokeniser populates global representations of tokens based on semantic types of domain concepts (such as drugs or diseases) from either a domain ontology like Unified Medical Language System or the training data of the task related corpus. At training or inference stage, sentence level localised context will be utilised for choosing the optimal global token representation to realise the semantic-based tokenisation. To avoid pretraining using the new tokeniser, an embedding initialisation approach is proposed to generate representations for new tokens. Using three transformer-based language models, a comprehensive set of experiments are conducted on four real-world datasets for evaluating K-Tokeniser in a wide range of clinical text analytics tasks including clinical concept and relation extraction, automated clinical coding, clinical phenotype identification, and clinical research article classification. Overall, our models demonstrate consistent improvements over their counterparts in all tasks. In particular, substantial improvements are observed in the automated clinical coding task with 13\% increase on Micro F_1 score. Furthermore, K-Tokeniser also shows significant capacities in facilitating quicker converge of language models. Specifically, using K-Tokeniser, the language models would only require 50\% of the training data to achieve the best performance of the baseline tokeniser using all training data in the concept extraction task and less than 20\% of the data for the automated coding task. It is worth mentioning that all these improvements require no pre-training process, making the approach generalisable.
Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair
During Automated Program Repair (APR), it can be challenging to synthesize correct patches for real-world systems in general-purpose programming languages. Recent Large Language Models (LLMs) have been shown to be helpful "copilots" in assisting developers with various coding tasks, and have also been directly applied for patch synthesis. However, most LLMs treat programs as sequences of tokens, meaning that they are ignorant of the underlying semantics constraints of the target programming language. This results in plenty of statically invalid generated patches, impeding the practicality of the technique. Therefore, we propose Repilot, a framework to further copilot the AI "copilots" (i.e., LLMs) by synthesizing more valid patches during the repair process. Our key insight is that many LLMs produce outputs autoregressively (i.e., token by token), resembling human writing programs, which can be significantly boosted and guided through a Completion Engine. Repilot synergistically synthesizes a candidate patch through the interaction between an LLM and a Completion Engine, which 1) prunes away infeasible tokens suggested by the LLM and 2) proactively completes the token based on the suggestions provided by the Completion Engine. Our evaluation on a subset of the widely-used Defects4j 1.2 and 2.0 datasets shows that Repilot fixes 66 and 50 bugs, respectively, surpassing the best-performing baseline by 14 and 16 bugs fixed. More importantly, Repilot is capable of producing more valid and correct patches than the base LLM when given the same generation budget.
Byte BPE Tokenization as an Inverse string Homomorphism
Tokenization is an important preprocessing step in the training and inference of large language models (LLMs). While there has been extensive research on the expressive power of the neural achitectures used in LLMs, the impact of tokenization has not been well understood. In this work, we demonstrate that tokenization, irrespective of the algorithm used, acts as an inverse homomorphism between strings and tokens. This suggests that the character space of the source language and the token space of the tokenized language are homomorphic, preserving the structural properties of the source language. Additionally, we explore the concept of proper tokenization, which refers to an unambiguous tokenization returned from the tokenizer. Our analysis reveals that the expressiveness of neural architectures in recognizing context-free languages is not affected by tokenization.
Class-relation Knowledge Distillation for Novel Class Discovery
We tackle the problem of novel class discovery, which aims to learn novel classes without supervision based on labeled data from known classes. A key challenge lies in transferring the knowledge in the known-class data to the learning of novel classes. Previous methods mainly focus on building a shared representation space for knowledge transfer and often ignore modeling class relations. To address this, we introduce a class relation representation for the novel classes based on the predicted class distribution of a model trained on known classes. Empirically, we find that such class relation becomes less informative during typical discovery training. To prevent such information loss, we propose a novel knowledge distillation framework, which utilizes our class-relation representation to regularize the learning of novel classes. In addition, to enable a flexible knowledge distillation scheme for each data point in novel classes, we develop a learnable weighting function for the regularization, which adaptively promotes knowledge transfer based on the semantic similarity between the novel and known classes. To validate the effectiveness and generalization of our method, we conduct extensive experiments on multiple benchmarks, including CIFAR100, Stanford Cars, CUB, and FGVC-Aircraft datasets. Our results demonstrate that the proposed method outperforms the previous state-of-the-art methods by a significant margin on almost all benchmarks. Code is available at https://github.com/kleinzcy/Cr-KD-NCD{here}.
Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset
Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html
Utilizing Neural Transducers for Two-Stage Text-to-Speech via Semantic Token Prediction
We propose a novel text-to-speech (TTS) framework centered around a neural transducer. Our approach divides the whole TTS pipeline into semantic-level sequence-to-sequence (seq2seq) modeling and fine-grained acoustic modeling stages, utilizing discrete semantic tokens obtained from wav2vec2.0 embeddings. For a robust and efficient alignment modeling, we employ a neural transducer named token transducer for the semantic token prediction, benefiting from its hard monotonic alignment constraints. Subsequently, a non-autoregressive (NAR) speech generator efficiently synthesizes waveforms from these semantic tokens. Additionally, a reference speech controls temporal dynamics and acoustic conditions at each stage. This decoupled framework reduces the training complexity of TTS while allowing each stage to focus on semantic and acoustic modeling. Our experimental results on zero-shot adaptive TTS demonstrate that our model surpasses the baseline in terms of speech quality and speaker similarity, both objectively and subjectively. We also delve into the inference speed and prosody control capabilities of our approach, highlighting the potential of neural transducers in TTS frameworks.
List Items One by One: A New Data Source and Learning Paradigm for Multimodal LLMs
Set-of-Mark (SoM) Prompting unleashes the visual grounding capability of GPT-4V, by enabling the model to associate visual objects with tags inserted on the image. These tags, marked with alphanumerics, can be indexed via text tokens for easy reference. Despite the extraordinary performance from GPT-4V, we observe that other Multimodal Large Language Models (MLLMs) struggle to understand these visual tags. To promote the learning of SoM prompting for open-source models, we propose a new learning paradigm: "list items one by one," which asks the model to enumerate and describe all visual tags placed on the image following the alphanumeric orders of tags. By integrating our curated dataset with other visual instruction tuning datasets, we are able to equip existing MLLMs with the SoM prompting ability. Furthermore, we evaluate our finetuned SoM models on five MLLM benchmarks. We find that this new dataset, even in a relatively small size (10k-30k images with tags), significantly enhances visual reasoning capabilities and reduces hallucinations for MLLMs. Perhaps surprisingly, these improvements persist even when the visual tags are omitted from input images during inference. This suggests the potential of "list items one by one" as a new paradigm for training MLLMs, which strengthens the object-text alignment through the use of visual tags in the training stage. Finally, we conduct analyses by probing trained models to understand the working mechanism of SoM. Our code and data are available at https://github.com/zzxslp/SoM-LLaVA.
AutoGUI: Scaling GUI Grounding with Automatic Functionality Annotations from LLMs
User interface understanding with vision-language models has received much attention due to its potential for enabling next-generation software automation. However, existing UI datasets either only provide large-scale context-free element annotations or contextualized functional descriptions for elements at a much smaller scale. In this work, we propose the pipeline for automatically annotating UI elements with detailed functionality descriptions at scale. Specifically, we leverage large language models (LLMs) to infer element functionality by comparing the UI content changes before and after simulated interactions with specific UI elements. To improve annotation quality, we propose LLM-aided rejection and verification, eliminating invalid and incorrect annotations without human labor. We construct an -704k dataset using the proposed pipeline, featuring multi-resolution, multi-device screenshots, diverse data domains, and detailed functionality annotations that have never been provided by previous datasets. Human evaluation shows that the AutoGUI pipeline achieves annotation correctness comparable to trained human annotators. Extensive experimental results show that our -704k dataset remarkably enhances VLM's UI grounding capabilities, exhibits significant scaling effects, and outperforms existing web pre-training data types. We envision AutoGUI as a scalable pipeline for generating massive data to build GUI-oriented VLMs. AutoGUI dataset can be viewed at this anonymous URL: https://autogui-project.github.io/.
LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens
Large context window is a desirable feature in large language models (LLMs). However, due to high fine-tuning costs, scarcity of long texts, and catastrophic values introduced by new token positions, current extended context windows are limited to around 128k tokens. This paper introduces LongRoPE that, for the first time, extends the context window of pre-trained LLMs to an impressive 2048k tokens, with up to only 1k fine-tuning steps at within 256k training lengths, while maintaining performance at the original short context window. This is achieved by three key innovations: (i) we identify and exploit two forms of non-uniformities in positional interpolation through an efficient search, providing a better initialization for fine-tuning and enabling an 8x extension in non-fine-tuning scenarios; (ii) we introduce a progressive extension strategy that first fine-tunes a 256k length LLM and then conducts a second positional interpolation on the fine-tuned extended LLM to achieve a 2048k context window; (iii) we readjust LongRoPE on 8k length to recover the short context window performance. Extensive experiments on LLaMA2 and Mistral across various tasks demonstrate the effectiveness of our method. Models extended via LongRoPE retain the original architecture with minor modifications to the positional embedding, and can reuse most pre-existing optimizations.
Which Tokens to Use? Investigating Token Reduction in Vision Transformers
Since the introduction of the Vision Transformer (ViT), researchers have sought to make ViTs more efficient by removing redundant information in the processed tokens. While different methods have been explored to achieve this goal, we still lack understanding of the resulting reduction patterns and how those patterns differ across token reduction methods and datasets. To close this gap, we set out to understand the reduction patterns of 10 different token reduction methods using four image classification datasets. By systematically comparing these methods on the different classification tasks, we find that the Top-K pruning method is a surprisingly strong baseline. Through in-depth analysis of the different methods, we determine that: the reduction patterns are generally not consistent when varying the capacity of the backbone model, the reduction patterns of pruning-based methods significantly differ from fixed radial patterns, and the reduction patterns of pruning-based methods are correlated across classification datasets. Finally we report that the similarity of reduction patterns is a moderate-to-strong proxy for model performance. Project page at https://vap.aau.dk/tokens.
Efficient Sequence Packing without Cross-contamination: Accelerating Large Language Models without Impacting Performance
Effective training of today's large language models (LLMs) depends on large batches and long sequences for throughput and accuracy. To handle variable-length sequences on hardware accelerators, it is common practice to introduce padding tokens, so that all sequences in a batch have the same length. We show in this paper that the variation in sequence lengths in common NLP datasets is such that up to 50% of all tokens can be padding. In less common, but not extreme, cases (e.g. GLUE-cola with sequence length 128), the ratio is up to 89%. Existing methods to address the resulting inefficiency are complicated by the need to avoid cross-contamination in self-attention, by a reduction in accuracy when sequence ordering information is lost, or by customized kernel implementations only valid for specific accelerators. This paper introduces a new formalization of sequence packing in the context of the well-studied bin packing problem, and presents new algorithms based on this formulation which, for example, confer a 2x speedup for phase 2 pre-training in BERT. We show how existing models can be adapted to ensure mathematical equivalence between the original and packed models, meaning that packed models can be trained with existing pre-training and fine-tuning practices.
Byte Pair Encoding is Suboptimal for Language Model Pretraining
The success of pretrained transformer language models (LMs) in natural language processing has led to a wide range of pretraining setups. In particular, these models employ a variety of subword tokenization methods, most notably byte-pair encoding (BPE) (Sennrich et al., 2016; Gage, 1994), the WordPiece method (Schuster and Nakajima, 2012), and unigram language modeling (Kudo, 2018), to segment text. However, to the best of our knowledge, the literature does not contain a direct evaluation of the impact of tokenization on language model pretraining. We analyze differences between BPE and unigram LM tokenization, finding that the latter method recovers subword units that align more closely with morphology and avoids problems stemming from BPE's greedy construction procedure. We then compare the fine-tuned task performance of identical transformer masked language models pretrained with these tokenizations. Across downstream tasks and two languages (English and Japanese), we find that the unigram LM tokenization method matches or outperforms BPE. We hope that developers of future pretrained LMs will consider adopting the unigram LM method over the more prevalent BPE.
Token Highlighter: Inspecting and Mitigating Jailbreak Prompts for Large Language Models
Large Language Models (LLMs) are increasingly being integrated into services such as ChatGPT to provide responses to user queries. To mitigate potential harm and prevent misuse, there have been concerted efforts to align the LLMs with human values and legal compliance by incorporating various techniques, such as Reinforcement Learning from Human Feedback (RLHF), into the training of the LLMs. However, recent research has exposed that even aligned LLMs are susceptible to adversarial manipulations known as Jailbreak Attacks. To address this challenge, this paper proposes a method called Token Highlighter to inspect and mitigate the potential jailbreak threats in the user query. Token Highlighter introduced a concept called Affirmation Loss to measure the LLM's willingness to answer the user query. It then uses the gradient of Affirmation Loss for each token in the user query to locate the jailbreak-critical tokens. Further, Token Highlighter exploits our proposed Soft Removal technique to mitigate the jailbreak effects of critical tokens via shrinking their token embeddings. Experimental results on two aligned LLMs (LLaMA-2 and Vicuna-V1.5) demonstrate that the proposed method can effectively defend against a variety of Jailbreak Attacks while maintaining competent performance on benign questions of the AlpacaEval benchmark. In addition, Token Highlighter is a cost-effective and interpretable defense because it only needs to query the protected LLM once to compute the Affirmation Loss and can highlight the critical tokens upon refusal.
FlexTok: Resampling Images into 1D Token Sequences of Flexible Length
Image tokenization has enabled major advances in autoregressive image generation by providing compressed, discrete representations that are more efficient to process than raw pixels. While traditional approaches use 2D grid tokenization, recent methods like TiTok have shown that 1D tokenization can achieve high generation quality by eliminating grid redundancies. However, these methods typically use a fixed number of tokens and thus cannot adapt to an image's inherent complexity. We introduce FlexTok, a tokenizer that projects 2D images into variable-length, ordered 1D token sequences. For example, a 256x256 image can be resampled into anywhere from 1 to 256 discrete tokens, hierarchically and semantically compressing its information. By training a rectified flow model as the decoder and using nested dropout, FlexTok produces plausible reconstructions regardless of the chosen token sequence length. We evaluate our approach in an autoregressive generation setting using a simple GPT-style Transformer. On ImageNet, this approach achieves an FID<2 across 8 to 128 tokens, outperforming TiTok and matching state-of-the-art methods with far fewer tokens. We further extend the model to support to text-conditioned image generation and examine how FlexTok relates to traditional 2D tokenization. A key finding is that FlexTok enables next-token prediction to describe images in a coarse-to-fine "visual vocabulary", and that the number of tokens to generate depends on the complexity of the generation task.
Learning to Look Inside: Augmenting Token-Based Encoders with Character-Level Information
Commonly-used transformer language models depend on a tokenization schema which sets an unchangeable subword vocabulary prior to pre-training, destined to be applied to all downstream tasks regardless of domain shift, novel word formations, or other sources of vocabulary mismatch. Recent work has shown that "token-free" models can be trained directly on characters or bytes, but training these models from scratch requires substantial computational resources, and this implies discarding the many domain-specific models that were trained on tokens. In this paper, we present XRayEmb, a method for retrofitting existing token-based models with character-level information. XRayEmb is composed of a character-level "encoder" that computes vector representations of character sequences, and a generative component that decodes from the internal representation to a character sequence. We show that incorporating XRayEmb's learned vectors into sequences of pre-trained token embeddings helps performance on both autoregressive and masked pre-trained transformer architectures and on both sequence-level and sequence tagging tasks, particularly on non-standard English text.
Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models
The problem of pre-training data detection for large language models (LLMs) has received growing attention due to its implications in critical issues like copyright violation and test data contamination. The current state-of-the-art approach, Min-K%, measures the raw token probability which we argue may not be the most informative signal. Instead, we propose Min-K%++ to normalize the token probability with statistics of the categorical distribution over the whole vocabulary, which accurately reflects the relative likelihood of the target token compared with other candidate tokens in the vocabulary. Theoretically, we back up our method by showing that the statistic it estimates is explicitly optimized during LLM training, thus serving as a reliable indicator for detecting training data. Empirically, on the WikiMIA benchmark, Min-K%++ outperforms the SOTA Min-K% by 6.2% to 10.5% in detection AUROC averaged over five models. On the more challenging MIMIR benchmark, Min-K%++ consistently improves upon Min-K% and performs on par with reference-based method, despite not requiring an extra reference model.
Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that popular encoding schemes, such as maximum prefix encoding (MPE) and byte-pair-encoding (BPE), induce a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, for each encoding scheme above, we propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data. Our methods do not require finetuning the model, and the complexity, defined as the number of model runs, scales linearly with the sequence length in the case of MPE. As a result, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
Instruction Tuning with Human Curriculum
The dominant paradigm for instruction tuning is the random-shuffled training of maximally diverse instruction-response pairs. This paper explores the potential benefits of applying a structured cognitive learning approach to instruction tuning in contemporary large language models like ChatGPT and GPT-4. Unlike the previous conventional randomized instruction dataset, we propose a highly structured synthetic dataset that mimics the progressive and organized nature of human education. We curate our dataset by aligning it with educational frameworks, incorporating meta information including its topic and cognitive rigor level for each sample. Our dataset covers comprehensive fine-grained topics spanning diverse educational stages (from middle school to graduate school) with various questions for each topic to enhance conceptual depth using Bloom's taxonomy-a classification framework distinguishing various levels of human cognition for each concept. The results demonstrate that this cognitive rigorous training approach yields significant performance enhancements - +3.06 on the MMLU benchmark and an additional +1.28 on AI2 Reasoning Challenge (hard set) - compared to conventional randomized training, all while avoiding additional computational costs. This research highlights the potential of leveraging human learning principles to enhance the capabilities of language models in comprehending and responding to complex instructions and tasks.
Efficient Guided Generation for Large Language Models
In this article we describe an efficient approach to guiding language model text generation with regular expressions and context-free grammars. Our approach adds little to no overhead to the token sequence generation process, and makes guided generation feasible in practice. An implementation is provided in the open source Python library Outlines.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
Simple Hack for Transformers against Heavy Long-Text Classification on a Time- and Memory-Limited GPU Service
Many NLP researchers rely on free computational services, such as Google Colab, to fine-tune their Transformer models, causing a limitation for hyperparameter optimization (HPO) in long-text classification due to the method having quadratic complexity and needing a bigger resource. In Indonesian, only a few works were found on long-text classification using Transformers. Most only use a small amount of data and do not report any HPO. In this study, using 18k news articles, we investigate which pretrained models are recommended to use based on the output length of the tokenizer. We then compare some hacks to shorten and enrich the sequences, which are the removals of stopwords, punctuation, low-frequency words, and recurring words. To get a fair comparison, we propose and run an efficient and dynamic HPO procedure that can be done gradually on a limited resource and does not require a long-running optimization library. Using the best hack found, we then compare 512, 256, and 128 tokens length. We find that removing stopwords while keeping punctuation and low-frequency words is the best hack. Some of our setups manage to outperform taking 512 first tokens using a smaller 128 or 256 first tokens which manage to represent the same information while requiring less computational resources. The findings could help developers to efficiently pursue optimal performance of the models using limited resources.
Mitigating Word Bias in Zero-shot Prompt-based Classifiers
Prompt-based classifiers are an attractive approach for zero-shot classification. However, the precise choice of the prompt template and label words can largely influence performance, with semantically equivalent settings often showing notable performance difference. This discrepancy can be partly attributed to word biases, where the classifier may be biased towards classes. To address this problem, it is possible to optimise classification thresholds on a labelled data set, however, this mitigates some of the advantages of prompt-based classifiers. This paper instead approaches this problem by examining the expected marginal probabilities of the classes. Here, probabilities are reweighted to have a uniform prior over classes, in an unsupervised fashion. Further, we draw a theoretical connection between the class priors and the language models' word prior, and offer the ability to set a threshold in a zero-resource fashion. We show that matching class priors correlates strongly with the oracle upper bound performance and demonstrate large consistent performance gains for prompt settings over a range of NLP tasks.
TULIP: Token-length Upgraded CLIP
We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.
A New Generation of Perspective API: Efficient Multilingual Character-level Transformers
On the world wide web, toxic content detectors are a crucial line of defense against potentially hateful and offensive messages. As such, building highly effective classifiers that enable a safer internet is an important research area. Moreover, the web is a highly multilingual, cross-cultural community that develops its own lingo over time. As such, it is crucial to develop models that are effective across a diverse range of languages, usages, and styles. In this paper, we present the fundamentals behind the next version of the Perspective API from Google Jigsaw. At the heart of the approach is a single multilingual token-free Charformer model that is applicable across a range of languages, domains, and tasks. We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings. We additionally outline the techniques employed to make such a byte-level model efficient and feasible for productionization. Through extensive experiments on multilingual toxic comment classification benchmarks derived from real API traffic and evaluation on an array of code-switching, covert toxicity, emoji-based hate, human-readable obfuscation, distribution shift, and bias evaluation settings, we show that our proposed approach outperforms strong baselines. Finally, we present our findings from deploying this system in production.
Subobject-level Image Tokenization
Transformer-based vision models typically tokenize images into fixed-size square patches as input units, which lacks the adaptability to image content and overlooks the inherent pixel grouping structure. Inspired by the subword tokenization widely adopted in language models, we propose an image tokenizer at a subobject level, where the subobjects are represented by semantically meaningful image segments obtained by segmentation models (e.g., segment anything models). To implement a learning system based on subobject tokenization, we first introduced a Sequence-to-sequence AutoEncoder (SeqAE) to compress subobject segments of varying sizes and shapes into compact embedding vectors, then fed the subobject embeddings into a large language model for vision language learning. Empirical results demonstrated that our subobject-level tokenization significantly facilitates efficient learning of translating images into object and attribute descriptions compared to the traditional patch-level tokenization. Codes and models will be open-sourced at https://github.com/ChenDelong1999/subobjects.
Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs
Tokenization, the division of input text into input tokens, is an often overlooked aspect of the large language model (LLM) pipeline and could be the source of useful or harmful inductive biases. Historically, LLMs have relied on byte pair encoding, without care to specific input domains. With the increased use of LLMs for reasoning, various number-specific tokenization schemes have been adopted, with popular models like LLaMa and PaLM opting for single-digit tokenization while GPT-3.5 and GPT-4 have separate tokens for each 1-, 2-, and 3-digit numbers. In this work, we study the effect this choice has on numerical reasoning through the use of arithmetic tasks. We consider left-to-right and right-to-left tokenization for GPT-3.5 and -4, finding that right-to-left tokenization (enforced by comma separating numbers at inference time) leads to largely improved performance. Furthermore, we find that model errors when using standard left-to-right tokenization follow stereotyped error patterns, suggesting that model computations are systematic rather than approximate. We show that the model is able to convert between tokenizations easily, thus allowing chain-of-thought-inspired approaches to recover performance on left-to-right tokenized inputs. We also find the gap between tokenization directions decreases when models are scaled, possibly indicating that larger models are better able to override this tokenization-dependent inductive bias. In summary, our work performs the first study of how number tokenization choices lead to differences in model performance on arithmetic tasks, accompanied by a thorough analysis of error patterns. We hope this work inspires practitioners to more carefully ablate number tokenization-related choices when working towards general models of numerical reasoning.
A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained Models
Recent work on tokenizer-free multilingual pretrained models show promising results in improving cross-lingual transfer and reducing engineering overhead (Clark et al., 2022; Xue et al., 2022). However, these works mainly focus on reporting accuracy on a limited set of tasks and data settings, placing less emphasis on other important factors when tuning and deploying the models in practice, such as memory usage, inference speed, and fine-tuning data robustness. We attempt to fill this gap by performing a comprehensive empirical comparison of multilingual tokenizer-free and subword-based models considering these various dimensions. Surprisingly, we find that subword-based models might still be the most practical choice in many settings, achieving better performance for lower inference latency and memory usage. Based on these results, we encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models.
SubGen: Token Generation in Sublinear Time and Memory
Despite the significant success of large language models (LLMs), their extensive memory requirements pose challenges for deploying them in long-context token generation. The substantial memory footprint of LLM decoders arises from the necessity to store all previous tokens in the attention module, a requirement imposed by key-value (KV) caching. In this work, our focus is on developing an efficient compression technique for the KV cache. Empirical evidence indicates a significant clustering tendency within key embeddings in the attention module. Building on this key insight, we have devised a novel caching method with sublinear complexity, employing online clustering on key tokens and online ell_2 sampling on values. The result is a provably accurate and efficient attention decoding algorithm, termed SubGen. Not only does this algorithm ensure a sublinear memory footprint and sublinear time complexity, but we also establish a tight error bound for our approach. Empirical evaluations on long-context question-answering tasks demonstrate that SubGen significantly outperforms existing and state-of-the-art KV cache compression methods in terms of performance and efficiency.
Assessing the Importance of Frequency versus Compositionality for Subword-based Tokenization in NMT
Subword tokenization is the de facto standard for tokenization in neural language models and machine translation systems. Three advantages are frequently cited in favor of subwords: shorter encoding of frequent tokens, compositionality of subwords, and ability to deal with unknown words. As their relative importance is not entirely clear yet, we propose a tokenization approach that enables us to separate frequency (the first advantage) from compositionality. The approach uses Huffman coding to tokenize words, by order of frequency, using a fixed amount of symbols. Experiments with CS-DE, EN-FR and EN-DE NMT show that frequency alone accounts for 90%-95% of the scores reached by BPE, hence compositionality has less importance than previously thought.
PEEB: Part-based Image Classifiers with an Explainable and Editable Language Bottleneck
CLIP-based classifiers rely on the prompt containing a {class name} that is known to the text encoder. Therefore, they perform poorly on new classes or the classes whose names rarely appear on the Internet (e.g., scientific names of birds). For fine-grained classification, we propose PEEB - an explainable and editable classifier to (1) express the class name into a set of text descriptors that describe the visual parts of that class; and (2) match the embeddings of the detected parts to their textual descriptors in each class to compute a logit score for classification. In a zero-shot setting where the class names are unknown, PEEB outperforms CLIP by a huge margin (~10x in top-1 accuracy). Compared to part-based classifiers, PEEB is not only the state-of-the-art (SOTA) on the supervised-learning setting (88.80% and 92.20% accuracy on CUB-200 and Dogs-120, respectively) but also the first to enable users to edit the text descriptors to form a new classifier without any re-training. Compared to concept bottleneck models, PEEB is also the SOTA in both zero-shot and supervised-learning settings.
BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models
Retrieval augmentation addresses many critical problems in large language models such as hallucination, staleness, and privacy leaks. However, running retrieval-augmented language models (LMs) is slow and difficult to scale due to processing large amounts of retrieved text. We introduce binary token representations (BTR), which use 1-bit vectors to precompute every token in passages, significantly reducing computation during inference. Despite the potential loss of accuracy, our new calibration techniques and training objectives restore performance. Combined with offline and runtime compression, this only requires 127GB of disk space for encoding 3 billion tokens in Wikipedia. Our experiments show that on five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art inference by up to 4x and reduces storage by over 100x while maintaining over 95% task performance.
Precise Length Control in Large Language Models
Large Language Models (LLMs) are increasingly used in production systems, powering applications such as chatbots, summarization, and question answering. Despite their success, controlling the length of their response remains a significant challenge, particularly for tasks requiring structured outputs or specific levels of detail. In this work, we propose a method to adapt pre-trained decoder-only LLMs for precise control of response length. Our approach incorporates a secondary length-difference positional encoding (LDPE) into the input embeddings, which counts down to a user-set response termination length. Fine-tuning with LDPE allows the model to learn to terminate responses coherently at the desired length, achieving mean token errors of less than 3 tokens. We also introduce Max New Tokens++, an extension that enables flexible upper-bound length control, rather than an exact target. Experimental results on tasks such as question answering and document summarization demonstrate that our method enables precise length control without compromising response quality.
Super Tiny Language Models
The rapid advancement of large language models (LLMs) has led to significant improvements in natural language processing but also poses challenges due to their high computational and energy demands. This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs), which aim to deliver high performance with significantly reduced parameter counts. We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies. These methods collectively reduce the parameter count by 90% to 95% compared to traditional models while maintaining competitive performance. This series of papers will explore into various subproblems, including tokenizer-free models, self-play based training, and alternative training objectives, targeting models with 10M, 50M, and 100M parameters. Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications.
Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
Recent advances in image tokenizers, such as VQ-VAE, have enabled text-to-image generation using auto-regressive methods, similar to language modeling. However, these methods have yet to leverage pre-trained language models, despite their adaptability to various downstream tasks. In this work, we explore this gap by adapting a pre-trained language model for auto-regressive text-to-image generation, and find that pre-trained language models offer limited help. We provide a two-fold explanation by analyzing tokens from each modality. First, we demonstrate that image tokens possess significantly different semantics compared to text tokens, rendering pre-trained language models no more effective in modeling them than randomly initialized ones. Second, the text tokens in the image-text datasets are too simple compared to normal language model pre-training data, which causes the catastrophic degradation of language models' capability.
PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization
The recent emergence of Large Language Models (LLMs) has heralded a new era of human-AI interaction. These sophisticated models, exemplified by Chat-GPT and its successors, have exhibited remarkable capabilities in language understanding. However, as these LLMs have undergone exponential growth, a crucial dimension that remains understudied is the personalization of these models. Large foundation models such as GPT-3 etc. focus on creating a universal model that serves a broad range of tasks and users. This approach emphasizes the model's generalization capabilities, treating users as a collective rather than as distinct individuals. While practical for many common applications, this one-size-fits-all approach often fails to address the rich tapestry of human diversity and individual needs. To explore this issue we introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization. consists of a series of user-centered tasks containing diverse and individualized expressions where the preferences of users can potentially differ for the same input. Using PEFT-U, we explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
Small Language Model Makes an Effective Long Text Extractor
Named Entity Recognition (NER) is a fundamental problem in natural language processing (NLP). However, the task of extracting longer entity spans (e.g., awards) from extended texts (e.g., homepages) is barely explored. Current NER methods predominantly fall into two categories: span-based methods and generation-based methods. Span-based methods require the enumeration of all possible token-pair spans, followed by classification on each span, resulting in substantial redundant computations and excessive GPU memory usage. In contrast, generation-based methods involve prompting or fine-tuning large language models (LLMs) to adapt to downstream NER tasks. However, these methods struggle with the accurate generation of longer spans and often incur significant time costs for effective fine-tuning. To address these challenges, this paper introduces a lightweight span-based NER method called SeNER, which incorporates a bidirectional arrow attention mechanism coupled with LogN-Scaling on the [CLS] token to embed long texts effectively, and comprises a novel bidirectional sliding-window plus-shaped attention (BiSPA) mechanism to reduce redundant candidate token-pair spans significantly and model interactions between token-pair spans simultaneously. Extensive experiments demonstrate that our method achieves state-of-the-art extraction accuracy on three long NER datasets and is capable of extracting entities from long texts in a GPU-memory-friendly manner. Code: https://github.com/THUDM/scholar-profiling/tree/main/sener
DisCup: Discriminator Cooperative Unlikelihood Prompt-tuning for Controllable Text Generation
Prompt learning with immensely large Casual Language Models (CLMs) has been shown promising for attribute-controllable text generation (CTG). However, vanilla prompt tuning tends to imitate training corpus characteristics beyond the control attributes, resulting in a poor generalization ability. Moreover, it is less able to capture the relationship between different attributes, further limiting the control performance. In this paper, we propose a new CTG approach, namely DisCup, which incorporates the attribute knowledge of discriminator to optimize the control-prompts, steering a frozen CLM to produce attribute-specific texts. Specifically, the frozen CLM model, capable of producing multitudinous texts, is first used to generate the next-token candidates based on the context, so as to ensure the diversity of tokens to be predicted. Then, we leverage an attribute-discriminator to select desired/undesired tokens from those candidates, providing the inter-attribute knowledge. Finally, we bridge the above two traits by an unlikelihood objective for prompt-tuning. Extensive experimental results show that DisCup can achieve a new state-of-the-art control performance while maintaining an efficient and high-quality text generation, only relying on around 10 virtual tokens.
Performance Evaluation of Tokenizers in Large Language Models for the Assamese Language
Training of a tokenizer plays an important role in the performance of deep learning models. This research aims to understand the performance of tokenizers in five state-of-the-art (SOTA) large language models (LLMs) in the Assamese language of India. The research is important to understand the multi-lingual support for a low-resourced language such as Assamese. Our research reveals that the tokenizer of SUTRA from Two AI performs the best with an average Normalized Sequence Length (NSL) value of 0.45, closely followed by the tokenizer of GPT-4o from Open AI with an average NSL value of 0.54, followed by Gemma 2, Meta Llama 3.1, and Mistral Large Instruct 2407 with an average NSL value of 0.82, 1.4, and 1.48 respectively.
Zyda-2: a 5 Trillion Token High-Quality Dataset
In this technical report, we present Zyda-2: a five trillion token dataset for language model pretraining. Zyda-2 was used to train our Zamba2 series of models which are state-of-the-art for their weight class. We build Zyda-2 by collating high-quality open-source tokens such as FineWeb and DCLM, then distilling them to the highest-quality subset via cross-deduplication and model-based quality filtering. Zyda-2 is released under a permissive open license, and is available at https://huggingface.co/datasets/Zyphra/Zyda-2
DySpec: Faster Speculative Decoding with Dynamic Token Tree Structure
While speculative decoding has recently appeared as a promising direction for accelerating the inference of large language models (LLMs), the speedup and scalability are strongly bounded by the token acceptance rate. Prevalent methods usually organize predicted tokens as independent chains or fixed token trees, which fails to generalize to diverse query distributions. In this paper, we propose DySpec, a faster speculative decoding algorithm with a novel dynamic token tree structure. We begin by bridging the draft distribution and acceptance rate from intuitive and empirical clues, and successfully show that the two variables are strongly correlated. Based on this, we employ a greedy strategy to dynamically expand the token tree at run time. Theoretically, we show that our method can achieve optimal results under mild assumptions. Empirically, DySpec yields a higher acceptance rate and speedup than fixed trees. DySpec can drastically improve the throughput and reduce the latency of token generation across various data distribution and model sizes, which significantly outperforms strong competitors, including Specinfer and Sequoia. Under low temperature setting, DySpec can improve the throughput up to 9.1times and reduce the latency up to 9.4times on Llama2-70B. Under high temperature setting, DySpec can also improve the throughput up to 6.21times, despite the increasing difficulty of speculating more than one token per step for draft model.
Constrained Decoding for Fill-in-the-Middle Code Language Models via Efficient Left and Right Quotienting of Context-Sensitive Grammars
Large Language Models are powerful tools for program synthesis and advanced auto-completion, but come with no guarantee that their output code is syntactically correct. This paper contributes an incremental parser that allows early rejection of syntactically incorrect code, as well as efficient detection of complete programs for fill-in-the-middle (FIM) tasks. We extend the Earley parsing algorithm to allow for left and right quotients of context-free grammars, and develop methods to handle quotienting of several context-sensitive features present in the grammars of many common programming languages. The result of these contributions is an efficient, general, and well-grounded method for left and right quotient parsing. To validate our theoretical contributions -- and the effectiveness of certain design decisions -- we evaluate our method on the particularly difficult case of FIM completion for Python 3, with syntax-correctness constraints. Our results demonstrate that constrained generation can significantly reduce the incidence of syntax errors in recommended code.
Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation
Distribution shifts are a major source of failure of deployed machine learning models. However, evaluating a model's reliability under distribution shifts can be challenging, especially since it may be difficult to acquire counterfactual examples that exhibit a specified shift. In this work, we introduce dataset interfaces: a framework which allows users to scalably synthesize such counterfactual examples from a given dataset. Specifically, we represent each class from the input dataset as a custom token within the text space of a text-to-image diffusion model. By incorporating these tokens into natural language prompts, we can then generate instantiations of objects in that dataset under desired distribution shifts. We demonstrate how applying our framework to the ImageNet dataset enables us to study model behavior across a diverse array of shifts, including variations in background, lighting, and attributes of the objects themselves. Code available at https://github.com/MadryLab/dataset-interfaces.
LegalLens: Leveraging LLMs for Legal Violation Identification in Unstructured Text
In this study, we focus on two main tasks, the first for detecting legal violations within unstructured textual data, and the second for associating these violations with potentially affected individuals. We constructed two datasets using Large Language Models (LLMs) which were subsequently validated by domain expert annotators. Both tasks were designed specifically for the context of class-action cases. The experimental design incorporated fine-tuning models from the BERT family and open-source LLMs, and conducting few-shot experiments using closed-source LLMs. Our results, with an F1-score of 62.69\% (violation identification) and 81.02\% (associating victims), show that our datasets and setups can be used for both tasks. Finally, we publicly release the datasets and the code used for the experiments in order to advance further research in the area of legal natural language processing (NLP).
Revisiting Token Dropping Strategy in Efficient BERT Pretraining
Token dropping is a recently-proposed strategy to speed up the pretraining of masked language models, such as BERT, by skipping the computation of a subset of the input tokens at several middle layers. It can effectively reduce the training time without degrading much performance on downstream tasks. However, we empirically find that token dropping is prone to a semantic loss problem and falls short in handling semantic-intense tasks. Motivated by this, we propose a simple yet effective semantic-consistent learning method (ScTD) to improve the token dropping. ScTD aims to encourage the model to learn how to preserve the semantic information in the representation space. Extensive experiments on 12 tasks show that, with the help of our ScTD, token dropping can achieve consistent and significant performance gains across all task types and model sizes. More encouragingly, ScTD saves up to 57% of pretraining time and brings up to +1.56% average improvement over the vanilla token dropping.
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
Language Model Tokenizers Introduce Unfairness Between Languages
Recent language models have shown impressive multilingual performance, even when not explicitly trained for it. Despite this, there are concerns about the quality of their outputs across different languages. In this paper, we show how disparity in the treatment of different languages arises at the tokenization stage, well before a model is even invoked. The same text translated into different languages can have drastically different tokenization lengths, with differences up to 15 times in some cases. These disparities persist even for tokenizers that are intentionally trained for multilingual support. Character-level and byte-level models also exhibit over 4 times the difference in the encoding length for some language pairs. This induces unfair treatment for some language communities in regard to the cost of accessing commercial language services, the processing time and latency, as well as the amount of content that can be provided as context to the models. Therefore, we make the case that we should train future language models using multilingually fair subword tokenizers.
Pop Quiz! Do Pre-trained Code Models Possess Knowledge of Correct API Names?
Recent breakthroughs in pre-trained code models, such as CodeBERT and Codex, have shown their superior performance in various downstream tasks. The correctness and unambiguity of API usage among these code models are crucial for achieving desirable program functionalities, requiring them to learn various API fully qualified names structurally and semantically. Recent studies reveal that even state-of-the-art pre-trained code models struggle with suggesting the correct APIs during code generation. However, the reasons for such poor API usage performance are barely investigated. To address this challenge, we propose using knowledge probing as a means of interpreting code models, which uses cloze-style tests to measure the knowledge stored in models. Our comprehensive study examines a code model's capability of understanding API fully qualified names from two different perspectives: API call and API import. Specifically, we reveal that current code models struggle with understanding API names, with pre-training strategies significantly affecting the quality of API name learning. We demonstrate that natural language context can assist code models in locating Python API names and generalize Python API name knowledge to unseen data. Our findings provide insights into the limitations and capabilities of current pre-trained code models, and suggest that incorporating API structure into the pre-training process can improve automated API usage and code representations. This work provides significance for advancing code intelligence practices and direction for future studies. All experiment results, data and source code used in this work are available at https://doi.org/10.5281/zenodo.7902072.
Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models
Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.
Guiding Language Models of Code with Global Context using Monitors
Language models of code (LMs) work well when the surrounding code in the vicinity of generation provides sufficient context. This is not true when it becomes necessary to use types or functionality defined in another module or library, especially those not seen during training. LMs suffer from limited awareness of such global context and end up hallucinating, e.g., using types defined in other files incorrectly. Recent work tries to overcome this issue by retrieving global information to augment the local context. However, this bloats the prompt or requires architecture modifications and additional training. Integrated development environments (IDEs) assist developers by bringing the global context at their fingertips using static analysis. We extend this assistance, enjoyed by developers, to the LMs. We propose a notion of monitors that use static analysis in the background to guide the decoding. Unlike a priori retrieval, static analysis is invoked iteratively during the entire decoding process, providing the most relevant suggestions on demand. We demonstrate the usefulness of our proposal by monitoring for type-consistent use of identifiers whenever an LM generates code for object dereference. To evaluate our approach, we curate PragmaticCode, a dataset of open-source projects with their development environments. On models of varying parameter scale, we show that monitor-guided decoding consistently improves the ability of an LM to not only generate identifiers that match the ground truth but also improves compilation rates and agreement with ground truth. We find that LMs with fewer parameters, when guided with our monitor, can outperform larger LMs. With monitor-guided decoding, SantaCoder-1.1B achieves better compilation rate and next-identifier match than the much larger text-davinci-003 model. The datasets and code will be released at https://aka.ms/monitors4codegen .
Repository-Level Prompt Generation for Large Language Models of Code
With the success of large language models (LLMs) of code and their use as code assistants (e.g. Codex used in GitHub Copilot), techniques for introducing domain-specific knowledge in the prompt design process become important. In this work, we propose a framework called Repo-Level Prompt Generator that learns to generate example-specific prompts using prompt proposals. The prompt proposals take context from the entire repository, thereby incorporating both the structure of the repository and the context from other relevant files (e.g. imports, parent class files). Our technique doesn't require any access to the weights of the LLM, making it applicable in cases where we only have black-box access to the LLM. We conduct experiments on the task of single-line code-autocompletion using code repositories taken from Google Code archives. We demonstrate that an oracle constructed from our prompt proposals gives a remarkably high relative improvement of 36% over Codex, showing the quality of these proposals. Further, we show that when we train a model to predict a prompt proposal, we can achieve significant performance gains over Codex and other baselines. We release our code, data, and trained checkpoints at: https://github.com/shrivastavadisha/repo_level_prompt_generation.
1.5-Pints Technical Report: Pretraining in Days, Not Months -- Your Language Model Thrives on Quality Data
This paper presents a compute-efficient approach to pre-training a Language Model-the "1.5-Pints"-in only 9 days, while outperforming state-of-the-art models as an instruction-following assistant.Based on MT-Bench (a benchmark that emulates human judgments), 1.5-Pints outperforms Apple's OpenELM and Microsoft's Phi.This is achieved by a carefully curated pre-training dataset of 57 billion tokens, using a mix of automated workflows and manual human review. The selection of the dataset prioritizes content that is considered expository and "textbook-like" to aid the model in reasoning and logical deduction, culminating in its overall ability as a strong and versatile AI model. In terms of the model architecture, we employed a modified Mistral tokenizer, alongside a Llama-2 architecture for wider compatibility. For training, we adopted the methodologies used by StableLM, TinyLlama, and Huggingface Zephyr. 1.5-Pints demonstrates that by focusing on data quality over quantity in LLM training, we can significantly reduce training time and resources required. We believe this approach will not only make pre-training more accessible but also reduce our carbon footprint. Our findings and resources from this research are open-sourced, aiming to facilitate further advancements in the field. The 1.5-Pints model is available in two versions: 2K and 16K context windows.
WangchanBERTa: Pretraining transformer-based Thai Language Models
Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts.
Thinking Like an Annotator: Generation of Dataset Labeling Instructions
Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.
Correlation and Navigation in the Vocabulary Key Representation Space of Language Models
Language model (LM) decoding is based on the next-token prediction (NTP) probability distribution. For neural LMs (e.g., Transformer-based), NTP distribution is essentially a softmax-regularized dot product between an encoded input context (query) and fixed vocabulary representations (keys). In this paper, we study the effect of the key distribution on the NTP distribution, with a focus on whether the similarity between keys will trigger spurious correlations in NTP. Through knowledge-probing tasks, we show that in the NTP distribution, the few top-ranked tokens are typically accurate. However, the middle-ranked prediction is highly biased towards the tokens that are distributionally (not necessarily semantically) similar to these top ones. For instance, if "P" is predicted as the top-1 token, "A"-"Z" will all be ranked high in NTP, no matter whether they can lead to correct decoding results. This hurts the sampling diversity and makes the sampling of correct, long-tail results hopeless and noisy. We attempt to alleviate this issue via a novel in-context method that iteratively pushes the query representation away from explored regions. Specifically, we include the explored decoding results in the context and prompt the LM to generate something else, which encourages the LM to produce a query representation that has small dot products with explored keys. Experiments on knowledge-probing tasks show that our method leads to efficient navigation away from explored keys to correct new keys. We further extend our method to open-ended and chain-of-thought (for reasoning) generation. Experiment results show that ICN contributes to better generation diversity and improved self-consistency voting performance. Finally, we discuss potential training issues caused by the fixed key space together with the challenges and possible ways to address them in future research.
DECOR:Decomposition and Projection of Text Embeddings for Text-to-Image Customization
Text-to-image (T2I) models can effectively capture the content or style of reference images to perform high-quality customization. A representative technique for this is fine-tuning using low-rank adaptations (LoRA), which enables efficient model customization with reference images. However, fine-tuning with a limited number of reference images often leads to overfitting, resulting in issues such as prompt misalignment or content leakage. These issues prevent the model from accurately following the input prompt or generating undesired objects during inference. To address this problem, we examine the text embeddings that guide the diffusion model during inference. This study decomposes the text embedding matrix and conducts a component analysis to understand the embedding space geometry and identify the cause of overfitting. Based on this, we propose DECOR, which projects text embeddings onto a vector space orthogonal to undesired token vectors, thereby reducing the influence of unwanted semantics in the text embeddings. Experimental results demonstrate that DECOR outperforms state-of-the-art customization models and achieves Pareto frontier performance across text and visual alignment evaluation metrics. Furthermore, it generates images more faithful to the input prompts, showcasing its effectiveness in addressing overfitting and enhancing text-to-image customization.
How to Train Long-Context Language Models (Effectively)
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- Instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context tasks, and we evaluate models after SFT with instruction data as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.18B-Instruct on the majority of long-context tasks despite having seen only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
Long-CLIP: Unlocking the Long-Text Capability of CLIP
Contrastive Language-Image Pre-training (CLIP) has been the cornerstone for zero-shot classification, text-image retrieval, and text-image generation by aligning image and text modalities. Despite its widespread adoption, a significant limitation of CLIP lies in the inadequate length of text input. The length of the text token is restricted to 77, and an empirical study shows the actual effective length is even less than 20. This prevents CLIP from handling detailed descriptions, limiting its applications for image retrieval and text-to-image generation with extensive prerequisites. To this end, we propose Long-CLIP as a plug-and-play alternative to CLIP that supports long-text input, retains or even surpasses its zero-shot generalizability, and aligns the CLIP latent space, making it readily replace CLIP without any further adaptation in downstream frameworks. Nevertheless, achieving this goal is far from straightforward, as simplistic fine-tuning can result in a significant degradation of CLIP's performance. Moreover, substituting the text encoder with a language model supporting longer contexts necessitates pretraining with vast amounts of data, incurring significant expenses. Accordingly, Long-CLIP introduces an efficient fine-tuning solution on CLIP with two novel strategies designed to maintain the original capabilities, including (1) a knowledge-preserved stretching of positional embedding and (2) a primary component matching of CLIP features. With leveraging just one million extra long text-image pairs, Long-CLIP has shown the superiority to CLIP for about 20% in long caption text-image retrieval and 6% in traditional text-image retrieval tasks, e.g., COCO and Flickr30k. Furthermore, Long-CLIP offers enhanced capabilities for generating images from detailed text descriptions by replacing CLIP in a plug-and-play manner.
T-FREE: Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages. To remedy these issues, we propose T-FREE, which directly embeds words through sparse activation patterns over character triplets, and does not require a reference corpus. T-FREE inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-FREE shows significant improvements in cross-lingual transfer learning.
SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator
Large Language Models (LLMs) have exhibited exceptional performance across a spectrum of natural language processing tasks. However, their substantial sizes pose considerable challenges, particularly in computational demands and inference speed, due to their quadratic complexity. In this work, we have identified a key pattern: certain seemingly meaningless special tokens (i.e., separators) contribute disproportionately to attention scores compared to semantically meaningful tokens. This observation suggests that information of the segments between these separator tokens can be effectively condensed into the separator tokens themselves without significant information loss. Guided by this insight, we introduce SepLLM, a plug-and-play framework that accelerates inference by compressing these segments and eliminating redundant tokens. Additionally, we implement efficient kernels for training acceleration. Experimental results across training-free, training-from-scratch, and post-training settings demonstrate SepLLM's effectiveness. Notably, using the Llama-3-8B backbone, SepLLM achieves over 50% reduction in KV cache on the GSM8K-CoT benchmark while maintaining comparable performance. Furthermore, in streaming settings, SepLLM effectively processes sequences of up to 4 million tokens or more while maintaining consistent language modeling capabilities.
MaLLaM -- Malaysia Large Language Model
Addressing the gap in Large Language Model pretrained from scratch with Malaysian context, We trained models with 1.1 billion, 3 billion, and 5 billion parameters on a substantial 349GB dataset, equivalent to 90 billion tokens based on our pretrained Byte Pair Encoding (BPE) tokenizer for a single epoch. MaLLaM contributes to enhanced natural language understanding and generation tasks in the Malay language. Although trained on a smaller dataset of 90 billion tokens, our instruction-tuned MaLLaM models perform competitively. When compared to ChatGPT3.5 and Malaysian Mistral, MaLLaM's instruction-tuned models demonstrate notable proficiency, underscoring the effectiveness of our approach in capturing and understanding the nuances of the Malaysian language. MaLLaM models mark a significant contribution to the field, providing comprehensive language representations grounded in Malaysian context. This endeavor aims to pave the way for enhanced natural language understanding and generation tasks specific to the linguistic nuances present in Malaysia. We discuss the training methodology, dataset composition, and the potential impact of MaLLaM in advancing the capabilities of large language models within the context of the Malay language. All models released at https://huggingface.co/collections/mesolitica/mallam-6577b59d1e0b436ae75f930f
Cabrita: closing the gap for foreign languages
The strategy of training the model from scratch in a specific language or domain serves two essential purposes: i) enhancing performance in the particular linguistic or domain context, and ii) ensuring effective tokenization. The main limitation inherent to this approach lies in the associated cost, which can reach six to seven-digit dollar values, depending on the model size and the number of parameters involved. The main solution to overcome the cost challenge is to rely on available pre-trained models, which, despite recent advancements such as the LLaMA and LLaMA-2 models, still demonstrate inefficiency for certain specific domain problems or prove ineffective in scenarios involving conversational memory resources, given the large number of tokens required to represent text. To overcome this issue, we present a methodology named Cabrita, which, as our research demonstrates, successfully addresses the performance and efficient tokenization problem, all at an affordable cost. We believe that this methodology can be applied to any transformer-like architecture model. To validate the study, we conducted continuous pre-training exclusively using Portuguese text on a 3-billion-parameter model known as OpenLLaMA, resulting in a model named openCabrita 3B. The openCabrita 3B also features a new tokenizer that results in a significant reduction in the number of tokens required to represent the text. In our assessment, for few-shot learning tasks, we achieved similar results with this 3B model compared to a traditional continuous pre-training approach as well as to 7B models English pre-trained models.
Binding Language Models in Symbolic Languages
Though end-to-end neural approaches have recently been dominating NLP tasks in both performance and ease-of-use, they lack interpretability and robustness. We propose Binder, a training-free neural-symbolic framework that maps the task input to a program, which (1) allows binding a unified API of language model (LM) functionalities to a programming language (e.g., SQL, Python) to extend its grammar coverage and thus tackle more diverse questions, (2) adopts an LM as both the program parser and the underlying model called by the API during execution, and (3) requires only a few in-context exemplar annotations. Specifically, we employ GPT-3 Codex as the LM. In the parsing stage, with only a few in-context exemplars, Codex is able to identify the part of the task input that cannot be answerable by the original programming language, correctly generate API calls to prompt Codex to solve the unanswerable part, and identify where to place the API calls while being compatible with the original grammar. In the execution stage, Codex can perform versatile functionalities (e.g., commonsense QA, information extraction) given proper prompts in the API calls. Binder achieves state-of-the-art results on WikiTableQuestions and TabFact datasets, with explicit output programs that benefit human debugging. Note that previous best systems are all finetuned on tens of thousands of task-specific samples, while Binder only uses dozens of annotations as in-context exemplars without any training. Our code is available at https://github.com/HKUNLP/Binder .
IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact
Large language models (LLMs) excel in natural language processing but demand intensive computation. To mitigate this, various quantization methods have been explored, yet they compromise LLM performance. This paper unveils a previously overlooked type of outlier in LLMs. Such outliers are found to allocate most of the attention scores on initial tokens of input, termed as pivot tokens, which is crucial to the performance of quantized LLMs. Given that, we propose IntactKV to generate the KV cache of pivot tokens losslessly from the full-precision model. The approach is simple and easy to combine with existing quantization solutions. Besides, IntactKV can be calibrated as additional LLM parameters to boost the quantized LLMs further. Mathematical analysis also proves that IntactKV effectively reduces the upper bound of quantization error. Empirical results show that IntactKV brings consistent improvement and achieves lossless weight-only INT4 quantization on various downstream tasks, leading to the new state-of-the-art for LLM quantization.
LettuceDetect: A Hallucination Detection Framework for RAG Applications
Retrieval Augmented Generation (RAG) systems remain vulnerable to hallucinated answers despite incorporating external knowledge sources. We present LettuceDetect a framework that addresses two critical limitations in existing hallucination detection methods: (1) the context window constraints of traditional encoder-based methods, and (2) the computational inefficiency of LLM based approaches. Building on ModernBERT's extended context capabilities (up to 8k tokens) and trained on the RAGTruth benchmark dataset, our approach outperforms all previous encoder-based models and most prompt-based models, while being approximately 30 times smaller than the best models. LettuceDetect is a token-classification model that processes context-question-answer triples, allowing for the identification of unsupported claims at the token level. Evaluations on the RAGTruth corpus demonstrate an F1 score of 79.22% for example-level detection, which is a 14.8% improvement over Luna, the previous state-of-the-art encoder-based architecture. Additionally, the system can process 30 to 60 examples per second on a single GPU, making it more practical for real-world RAG applications.
Distilling Causal Effect from Miscellaneous Other-Class for Continual Named Entity Recognition
Continual Learning for Named Entity Recognition (CL-NER) aims to learn a growing number of entity types over time from a stream of data. However, simply learning Other-Class in the same way as new entity types amplifies the catastrophic forgetting and leads to a substantial performance drop. The main cause behind this is that Other-Class samples usually contain old entity types, and the old knowledge in these Other-Class samples is not preserved properly. Thanks to the causal inference, we identify that the forgetting is caused by the missing causal effect from the old data. To this end, we propose a unified causal framework to retrieve the causality from both new entity types and Other-Class. Furthermore, we apply curriculum learning to mitigate the impact of label noise and introduce a self-adaptive weight for balancing the causal effects between new entity types and Other-Class. Experimental results on three benchmark datasets show that our method outperforms the state-of-the-art method by a large margin. Moreover, our method can be combined with the existing state-of-the-art methods to improve the performance in CL-NER
Are Large-scale Soft Labels Necessary for Large-scale Dataset Distillation?
In ImageNet-condensation, the storage for auxiliary soft labels exceeds that of the condensed dataset by over 30 times. However, are large-scale soft labels necessary for large-scale dataset distillation? In this paper, we first discover that the high within-class similarity in condensed datasets necessitates the use of large-scale soft labels. This high within-class similarity can be attributed to the fact that previous methods use samples from different classes to construct a single batch for batch normalization (BN) matching. To reduce the within-class similarity, we introduce class-wise supervision during the image synthesizing process by batching the samples within classes, instead of across classes. As a result, we can increase within-class diversity and reduce the size of required soft labels. A key benefit of improved image diversity is that soft label compression can be achieved through simple random pruning, eliminating the need for complex rule-based strategies. Experiments validate our discoveries. For example, when condensing ImageNet-1K to 200 images per class, our approach compresses the required soft labels from 113 GB to 2.8 GB (40x compression) with a 2.6% performance gain. Code is available at: https://github.com/he-y/soft-label-pruning-for-dataset-distillation
EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance
As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. For the compression strategy, we design an adaptive and unified Evict-then-Merge framework that accounts for the sparsity and redundancy of KV tokens across different heads. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task.
Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs
Large language models can memorize and repeat their training data, causing privacy and copyright risks. To mitigate memorization, we introduce a subtle modification to the next-token training objective that we call the goldfish loss. During training, a randomly sampled subset of tokens are excluded from the loss computation. These dropped tokens are not memorized by the model, which prevents verbatim reproduction of a complete chain of tokens from the training set. We run extensive experiments training billion-scale Llama-2 models, both pre-trained and trained from scratch, and demonstrate significant reductions in extractable memorization with little to no impact on downstream benchmarks.
CodeBERTScore: Evaluating Code Generation with Pretrained Models of Code
Since the rise of neural models of code that can generate long expressions and statements rather than a single next-token, one of the major problems has been reliably evaluating their generated output. In this paper, we propose CodeBERTScore: an automatic evaluation metric for code generation, which builds on BERTScore (Zhang et al., 2020). Instead of measuring exact token matching as BLEU, CodeBERTScore computes a soft similarity score between each token in the generated code and in the reference code, using the contextual encodings of large pretrained models. Further, instead of encoding only the generated tokens as in BERTScore, CodeBERTScore also encodes the programmatic context surrounding the generated code. We perform an extensive evaluation of CodeBERTScore across four programming languages. We find that CodeBERTScore achieves a higher correlation with human preference and with functional correctness than all existing metrics. That is, generated code that receives a higher score by CodeBERTScore is more likely to be preferred by humans, as well as to function correctly when executed. Finally, while CodeBERTScore can be used with a multilingual CodeBERT as its base model, we release five language-specific pretrained models to use with our publicly available code at https://github.com/neulab/code-bert-score . Our language-specific models have been downloaded more than 25,000 times from the Huggingface Hub.
Squeezed Attention: Accelerating Long Context Length LLM Inference
Emerging Large Language Model (LLM) applications require long input prompts to perform complex downstream tasks like document analysis and code generation. For these long context length applications, the length of the input prompt poses a significant challenge in terms of inference efficiency since the inference costs increase linearly with sequence length. However, for many of these applications, much of the context in the prompt is fixed across different user inputs, thereby providing the opportunity to perform offline optimizations to process user inputs quickly, as they are received. In this work, we propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed. We first leverage K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value. During inference, we compare query tokens from the user input with the centroids to predict which of the keys from the fixed context are semantically relevant and need to be loaded during inference. We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs. We also extend our method to use a hierarchical centroid lookup to identify important keys, which can reduce the complexity of attention from linear to logarithmic with respect to the context length. We implement optimized Triton kernels for centroid comparison and sparse FlashAttention with important keys, achieving more than 4x speedups during both the prefill and generation phases for long-context inference. Furthermore, we have extensively evaluated our method on various long-context benchmarks including LongBench, where it achieves a 3x reduction in KV cache budget without accuracy loss and up to an 8x reduction with <0.5 point accuracy gap for various models.
Pause-Tuning for Long-Context Comprehension: A Lightweight Approach to LLM Attention Recalibration
LLMs have demonstrated remarkable proficiency in understanding tasks but continue to struggle with long-context comprehension, particularly with content located in the middle of extensive inputs. This limitation, known as the Lost-in-the-Middle (LITM) problem, hinders models from fully processing and utilizing information across lengthy contexts. To address this issue, we introduce pause-tuning, a technique that redistributes attention to enhance comprehension of long-context inputs. Our approach involves fine-tuning language models on datasets with artificially inserted pause tokens, which serve to segment the input into smaller, more manageable parts. We evaluate pause-tuning against alternative approaches using the Needle-in-a-Haystack benchmark, where models must retrieve information embedded within contexts of up to 128K tokens. Experimental results demonstrate significant performance gains, with the LLaMA 3.2 3B Instruct model and the LLaMA 3.1 8B Instruct model improving by 10.61% and 3.57% respectively on average, suggesting that pause-tuning successfully enhances attention redistribution and improves long-context retention. The code and data are available at https://anonymous.4open.science/r/LITM-PauseTokens-7357.
Scope is all you need: Transforming LLMs for HPC Code
With easier access to powerful compute resources, there is a growing trend in the field of AI for software development to develop larger and larger language models (LLMs) to address a variety of programming tasks. Even LLMs applied to tasks from the high-performance computing (HPC) domain are huge in size (e.g., billions of parameters) and demand expensive compute resources for training. We found this design choice confusing - why do we need large LLMs trained on natural languages and programming languages unrelated to HPC for HPC-specific tasks? In this line of work, we aim to question design choices made by existing LLMs by developing smaller LLMs for specific domains - we call them domain-specific LLMs. Specifically, we start off with HPC as a domain and propose a novel tokenizer named Tokompiler, designed specifically for preprocessing code in HPC and compilation-centric tasks. Tokompiler leverages knowledge of language primitives to generate language-oriented tokens, providing a context-aware understanding of code structure while avoiding human semantics attributed to code structures completely. We applied Tokompiler to pre-train two state-of-the-art models, SPT-Code and Polycoder, for a Fortran code corpus mined from GitHub. We evaluate the performance of these models against the conventional LLMs. Results demonstrate that Tokompiler significantly enhances code completion accuracy and semantic understanding compared to traditional tokenizers in normalized-perplexity tests, down to ~1 perplexity score. This research opens avenues for further advancements in domain-specific LLMs, catering to the unique demands of HPC and compilation tasks.
CURE: Code-Aware Neural Machine Translation for Automatic Program Repair
Automatic program repair (APR) is crucial to improve software reliability. Recently, neural machine translation (NMT) techniques have been used to fix software bugs automatically. While promising, these approaches have two major limitations. Their search space often does not contain the correct fix, and their search strategy ignores software knowledge such as strict code syntax. Due to these limitations, existing NMT-based techniques underperform the best template-based approaches. We propose CURE, a new NMT-based APR technique with three major novelties. First, CURE pre-trains a programming language (PL) model on a large software codebase to learn developer-like source code before the APR task. Second, CURE designs a new code-aware search strategy that finds more correct fixes by focusing on compilable patches and patches that are close in length to the buggy code. Finally, CURE uses a subword tokenization technique to generate a smaller search space that contains more correct fixes. Our evaluation on two widely-used benchmarks shows that CURE correctly fixes 57 Defects4J bugs and 26 QuixBugs bugs, outperforming all existing APR techniques on both benchmarks.
Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models
While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving reasoning over quantities, especially arithmetics. This has particular relevance in scientific datasets where combinations of text and numerical data are abundant. One fundamental limitation is the nature of the CE loss, which assumes a nominal (categorical) scale and thus cannot convey proximity between generated number tokens. As a remedy, we here present two versions of a number token loss. The first is based on an L_p loss between the ground truth token value and the weighted sum of the predicted class probabilities. The second loss minimizes the Wasserstein-1 distance between the distribution of the predicted output probabilities and the ground truth distribution. These regression-like losses can easily be added to any language model and extend the CE objective during training. We compare the proposed schemes on a mathematics dataset against existing tokenization, encoding, and decoding schemes for improving number representation in language models. Our results reveal a significant improvement in numerical accuracy when equipping a standard T5 model with the proposed loss schemes.
Compressing KV Cache for Long-Context LLM Inference with Inter-Layer Attention Similarity
The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computational complexity. Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation. In this paper, we propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding them.We address two challenges: 1) investigating the distribution of important tokens in the context, discovering recent tokens are more important than distant tokens in context, and 2) optimizing resources for distant tokens by sharing attention scores across layers. The experiments show that our method saves 35% KV cache without compromising the performance.
Video Editing for Video Retrieval
Though pre-training vision-language models have demonstrated significant benefits in boosting video-text retrieval performance from large-scale web videos, fine-tuning still plays a critical role with manually annotated clips with start and end times, which requires considerable human effort. To address this issue, we explore an alternative cheaper source of annotations, single timestamps, for video-text retrieval. We initialise clips from timestamps in a heuristic way to warm up a retrieval model. Then a video clip editing method is proposed to refine the initial rough boundaries to improve retrieval performance. A student-teacher network is introduced for video clip editing. The teacher model is employed to edit the clips in the training set whereas the student model trains on the edited clips. The teacher weights are updated from the student's after the student's performance increases. Our method is model agnostic and applicable to any retrieval models. We conduct experiments based on three state-of-the-art retrieval models, COOT, VideoCLIP and CLIP4Clip. Experiments conducted on three video retrieval datasets, YouCook2, DiDeMo and ActivityNet-Captions show that our edited clips consistently improve retrieval performance over initial clips across all the three retrieval models.
Sub-Character Tokenization for Chinese Pretrained Language Models
Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at https://github.com/thunlp/SubCharTokenization to facilitate future work.
H_2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models
Large Language Models (LLMs), despite their recent impressive accomplishments, are notably cost-prohibitive to deploy, particularly for applications involving long-content generation, such as dialogue systems and story writing. Often, a large amount of transient state information, referred to as the KV cache, is stored in GPU memory in addition to model parameters, scaling linearly with the sequence length and batch size. In this paper, we introduce a novel approach for implementing the KV cache which significantly reduces its memory footprint. Our approach is based on the noteworthy observation that a small portion of tokens contributes most of the value when computing attention scores. We call these tokens Heavy Hitters (H_2). Through a comprehensive investigation, we find that (i) the emergence of H_2 is natural and strongly correlates with the frequent co-occurrence of tokens in the text, and (ii) removing them results in significant performance degradation. Based on these insights, we propose Heavy Hitter Oracle (H_2O), a KV cache eviction policy that dynamically retains a balance of recent and H_2 tokens. We formulate the KV cache eviction as a dynamic submodular problem and prove (under mild assumptions) a theoretical guarantee for our novel eviction algorithm which could help guide future work. We validate the accuracy of our algorithm with OPT, LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of H_2O with 20% heavy hitters improves the throughput over three leading inference systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by up to 29times, 29times, and 3times on OPT-6.7B and OPT-30B. With the same batch size, H2O can reduce the latency by up to 1.9times. The code is available at https://github.com/FMInference/H2O.
More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression
As large language models (LLMs) process increasing context windows, the memory usage of KV cache has become a critical bottleneck during inference. The mainstream KV compression methods, including KV pruning and KV quantization, primarily focus on either token or precision dimension and seldom explore the efficiency of their combination. In this paper, we comprehensively investigate the token-precision trade-off in KV cache compression. Experiments demonstrate that storing more tokens in the KV cache with lower precision, i.e., quantized pruning, can significantly enhance the long-context performance of LLMs. Furthermore, in-depth analysis regarding token-precision trade-off from a series of key aspects exhibit that, quantized pruning achieves substantial improvements in retrieval-related tasks and consistently performs well across varying input lengths. Moreover, quantized pruning demonstrates notable stability across different KV pruning methods, quantization strategies, and model scales. These findings provide valuable insights into the token-precision trade-off in KV cache compression. We plan to release our code in the near future.
The MERIT Dataset: Modelling and Efficiently Rendering Interpretable Transcripts
This paper introduces the MERIT Dataset, a multimodal (text + image + layout) fully labeled dataset within the context of school reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a valuable resource for training models in demanding Visually-rich Document Understanding (VrDU) tasks. By its nature (student grade reports), the MERIT Dataset can potentially include biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models (LLMs). The paper outlines the dataset's generation pipeline and highlights its main features in the textual, visual, layout, and bias domains. To demonstrate the dataset's utility, we present a benchmark with token classification models, showing that the dataset poses a significant challenge even for SOTA models and that these would greatly benefit from including samples from the MERIT Dataset in their pretraining phase.
DANCER: Entity Description Augmented Named Entity Corrector for Automatic Speech Recognition
End-to-end automatic speech recognition (E2E ASR) systems often suffer from mistranscription of domain-specific phrases, such as named entities, sometimes leading to catastrophic failures in downstream tasks. A family of fast and lightweight named entity correction (NEC) models for ASR have recently been proposed, which normally build on phonetic-level edit distance algorithms and have shown impressive NEC performance. However, as the named entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated; for example, homophone ambiguities increase substantially. In view of this, we proposed a novel Description Augmented Named entity CorrEctoR (dubbed DANCER), which leverages entity descriptions to provide additional information to facilitate mitigation of phonetic confusion for NEC on ASR transcription. To this end, an efficient entity description augmented masked language model (EDA-MLM) comprised of a dense retrieval model is introduced, enabling MLM to adapt swiftly to domain-specific entities for the NEC task. A series of experiments conducted on the AISHELL-1 and Homophone datasets confirm the effectiveness of our modeling approach. DANCER outperforms a strong baseline, the phonetic edit-distance-based NEC model (PED-NEC), by a character error rate (CER) reduction of about 7% relatively on AISHELL-1 for named entities. More notably, when tested on Homophone that contain named entities of high phonetic confusion, DANCER offers a more pronounced CER reduction of 46% relatively over PED-NEC for named entities.
How Should We Extract Discrete Audio Tokens from Self-Supervised Models?
Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications.
AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute Decomposition-Aggregation
Open-vocabulary semantic segmentation is a challenging task that requires segmenting novel object categories at inference time. Recent studies have explored vision-language pre-training to handle this task, but suffer from unrealistic assumptions in practical scenarios, i.e., low-quality textual category names. For example, this paradigm assumes that new textual categories will be accurately and completely provided, and exist in lexicons during pre-training. However, exceptions often happen when encountering ambiguity for brief or incomplete names, new words that are not present in the pre-trained lexicons, and difficult-to-describe categories for users. To address these issues, this work proposes a novel attribute decomposition-aggregation framework, AttrSeg, inspired by human cognition in understanding new concepts. Specifically, in the decomposition stage, we decouple class names into diverse attribute descriptions to complement semantic contexts from multiple perspectives. Two attribute construction strategies are designed: using large language models for common categories, and involving manually labeling for human-invented categories. In the aggregation stage, we group diverse attributes into an integrated global description, to form a discriminative classifier that distinguishes the target object from others. One hierarchical aggregation architecture is further proposed to achieve multi-level aggregations, leveraging the meticulously designed clustering module. The final results are obtained by computing the similarity between aggregated attributes and images embeddings. To evaluate the effectiveness, we annotate three types of datasets with attribute descriptions, and conduct extensive experiments and ablation studies. The results show the superior performance of attribute decomposition-aggregation.
Language Adaptation on a Tight Academic Compute Budget: Tokenizer Swapping Works and Pure bfloat16 Is Enough
We investigate continued pretraining of LLMs for language adaptation on a tight academic budget: a setting in which only a few GPUs can be used in parallel, for a heavily constrained duration. We focus on adapting Mistral-7B to German or Arabic and evaluate several techniques to improve efficiency and effectiveness in this setting. Our German models adapted on this tight compute budget underperform compared to the base Mistral-7B, while our Arabic models outperform several baselines, showing that for sufficiently well-represented languages, continued pretraining for specialization is not always helpful. Our main findings focus on training precision and tokenizer swapping. Our results show that pure bfloat16 training is a viable alternative to mixed-precision training, while being much faster when only using a few GPUs. Swapping the tokenizer for a specialized one yields more efficient tokenization and is competitive with the original tokenizer, which already contains some German tokens, but did not significantly increase performance for German. Code and model weights are available at on GitHub.
Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens
Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
Revisiting Knowledge Distillation for Autoregressive Language Models
Knowledge distillation (KD) is a common approach to compress a teacher model to reduce its inference cost and memory footprint, by training a smaller student model. However, in the context of autoregressive language models (LMs), we empirically find that larger teacher LMs might dramatically result in a poorer student. In response to this problem, we conduct a series of analyses and reveal that different tokens have different teaching modes, neglecting which will lead to performance degradation. Motivated by this, we propose a simple yet effective adaptive teaching approach (ATKD) to improve the KD. The core of ATKD is to reduce rote learning and make teaching more diverse and flexible. Extensive experiments on 8 LM tasks show that, with the help of ATKD, various baseline KD methods can achieve consistent and significant performance gains (up to +3.04% average score) across all model types and sizes. More encouragingly, ATKD can improve the student model generalization effectively.
HashSet -- A Dataset For Hashtag Segmentation
Hashtag segmentation is the task of breaking a hashtag into its constituent tokens. Hashtags often encode the essence of user-generated posts, along with information like topic and sentiment, which are useful in downstream tasks. Hashtags prioritize brevity and are written in unique ways -- transliterating and mixing languages, spelling variations, creative named entities. Benchmark datasets used for the hashtag segmentation task -- STAN, BOUN -- are small in size and extracted from a single set of tweets. However, datasets should reflect the variations in writing styles of hashtags and also account for domain and language specificity, failing which the results will misrepresent model performance. We argue that model performance should be assessed on a wider variety of hashtags, and datasets should be carefully curated. To this end, we propose HashSet, a dataset comprising of: a) 1.9k manually annotated dataset; b) 3.3M loosely supervised dataset. HashSet dataset is sampled from a different set of tweets when compared to existing datasets and provides an alternate distribution of hashtags to build and validate hashtag segmentation models. We show that the performance of SOTA models for Hashtag Segmentation drops substantially on proposed dataset, indicating that the proposed dataset provides an alternate set of hashtags to train and assess models.
LILA-BOTI : Leveraging Isolated Letter Accumulations By Ordering Teacher Insights for Bangla Handwriting Recognition
Word-level handwritten optical character recognition (OCR) remains a challenge for morphologically rich languages like Bangla. The complexity arises from the existence of a large number of alphabets, the presence of several diacritic forms, and the appearance of complex conjuncts. The difficulty is exacerbated by the fact that some graphemes occur infrequently but remain indispensable, so addressing the class imbalance is required for satisfactory results. This paper addresses this issue by introducing two knowledge distillation methods: Leveraging Isolated Letter Accumulations By Ordering Teacher Insights (LILA-BOTI) and Super Teacher LILA-BOTI. In both cases, a Convolutional Recurrent Neural Network (CRNN) student model is trained with the dark knowledge gained from a printed isolated character recognition teacher model. We conducted inter-dataset testing on BN-HTRd and BanglaWriting as our evaluation protocol, thus setting up a challenging problem where the results would better reflect the performance on unseen data. Our evaluations achieved up to a 3.5% increase in the F1-Macro score for the minor classes and up to 4.5% increase in our overall word recognition rate when compared with the base model (No KD) and conventional KD.
Efficient Streaming Language Models with Attention Sinks
Deploying Large Language Models (LLMs) in streaming applications such as multi-round dialogue, where long interactions are expected, is urgently needed but poses two major challenges. Firstly, during the decoding stage, caching previous tokens' Key and Value states (KV) consumes extensive memory. Secondly, popular LLMs cannot generalize to longer texts than the training sequence length. Window attention, where only the most recent KVs are cached, is a natural approach -- but we show that it fails when the text length surpasses the cache size. We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens will largely recover the performance of window attention. In this paper, we first demonstrate that the emergence of attention sink is due to the strong attention scores towards initial tokens as a ``sink'' even if they are not semantically important. Based on the above analysis, we introduce StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence lengths without any fine-tuning. We show that StreamingLLM can enable Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language modeling with up to 4 million tokens and more. In addition, we discover that adding a placeholder token as a dedicated attention sink during pre-training can further improve streaming deployment. In streaming settings, StreamingLLM outperforms the sliding window recomputation baseline by up to 22.2x speedup. Code and datasets are provided at https://github.com/mit-han-lab/streaming-llm.
Scaling Behavior for Large Language Models regarding Numeral Systems: An Example using Pythia
Though Large Language Models (LLMs) have shown remarkable abilities in mathematics reasoning, they are still struggling with performing numeric operations accurately, such as addition and multiplication. Numbers can be tokenized into tokens in various ways by different LLMs and affect the numeric operations performance. Currently, there are two representatives: 1) Tokenize into 1-digit, and 2) Tokenize into 1sim 3 digit. The difference is roughly equivalent to using different numeral systems (namely base 10 or base 10^{3}). In light of this, we study the scaling behavior of different numeral systems in the context of transformer-based large language models. We empirically show that a base 10 system is consistently more data-efficient than a base 10^{2} or 10^{3} system across training data scale, model sizes under from-scratch training settings, while different number systems have very similar fine-tuning performances. We attribute this to higher token frequencies of a base 10 system. Additionally, we reveal extrapolation behavior patterns on addition and multiplication. We identify that base 100 and base 1000 systems struggle on token-level discernment and token-level operations. We also sheds light on the mechanism learnt by the models.
ReAGent: Towards A Model-agnostic Feature Attribution Method for Generative Language Models
Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.
STAB: Speech Tokenizer Assessment Benchmark
Representing speech as discrete tokens provides a framework for transforming speech into a format that closely resembles text, thus enabling the use of speech as an input to the widely successful large language models (LLMs). Currently, while several speech tokenizers have been proposed, there is ambiguity regarding the properties that are desired from a tokenizer for specific downstream tasks and its overall generalizability. Evaluating the performance of tokenizers across different downstream tasks is a computationally intensive effort that poses challenges for scalability. To circumvent this requirement, we present STAB (Speech Tokenizer Assessment Benchmark), a systematic evaluation framework designed to assess speech tokenizers comprehensively and shed light on their inherent characteristics. This framework provides a deeper understanding of the underlying mechanisms of speech tokenization, thereby offering a valuable resource for expediting the advancement of future tokenizer models and enabling comparative analysis using a standardized benchmark. We evaluate the STAB metrics and correlate this with downstream task performance across a range of speech tasks and tokenizer choices.
ABC Easy as 123: A Blind Counter for Exemplar-Free Multi-Class Class-agnostic Counting
Class-agnostic counting methods enumerate objects of an arbitrary class, providing tremendous utility in many fields. Prior works have limited usefulness as they require either a set of examples of the type to be counted or that the query image contains only a single type of object. A significant factor in these shortcomings is the lack of a dataset to properly address counting in settings with more than one kind of object present. To address these issues, we propose the first Multi-class, Class-Agnostic Counting dataset (MCAC) and A Blind Counter (ABC123), a method that can count multiple types of objects simultaneously without using examples of type during training or inference. ABC123 introduces a new paradigm where instead of requiring exemplars to guide the enumeration, examples are found after the counting stage to help a user understand the generated outputs. We show that ABC123 outperforms contemporary methods on MCAC without needing human in-the-loop annotations. We also show that this performance transfers to FSC-147, the standard class-agnostic counting dataset. MCAC is available at MCAC.active.vision and ABC123 is available at ABC123.active.vision.
BPE Gets Picky: Efficient Vocabulary Refinement During Tokenizer Training
Language models can largely benefit from efficient tokenization. However, they still mostly utilize the classical BPE algorithm, a simple and reliable method. This has been shown to cause such issues as under-trained tokens and sub-optimal compression that may affect the downstream performance. We introduce Picky BPE, a modified BPE algorithm that carries out vocabulary refinement during tokenizer training. Our method improves vocabulary efficiency, eliminates under-trained tokens, and does not compromise text compression. Our experiments show that our method does not reduce the downstream performance, and in several cases improves it.
Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents
Text embedding models have emerged as powerful tools for transforming sentences into fixed-sized feature vectors that encapsulate semantic information. While these models are essential for tasks like information retrieval, semantic clustering, and text re-ranking, most existing open-source models, especially those built on architectures like BERT, struggle to represent lengthy documents and often resort to truncation. One common approach to mitigate this challenge involves splitting documents into smaller paragraphs for embedding. However, this strategy results in a much larger set of vectors, consequently leading to increased memory consumption and computationally intensive vector searches with elevated latency. To address these challenges, we introduce Jina Embeddings 2, an open-source text embedding model capable of accommodating up to 8192 tokens. This model is designed to transcend the conventional 512-token limit and adeptly process long documents. Jina Embeddings 2 not only achieves state-of-the-art performance on a range of embedding-related tasks in the MTEB benchmark but also matches the performance of OpenAI's proprietary ada-002 model. Additionally, our experiments indicate that an extended context can enhance performance in tasks such as NarrativeQA.
ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
To reduce memory costs in long-context inference with Large Language Models (LLMs), many recent works focus on compressing the key-value (KV) cache of different tokens. However, we identify that the previous KV cache compression methods measure token importance individually, neglecting the dependency between different tokens in the real-world language characterics. In light of this, we introduce ChunkKV, grouping the tokens in a chunk as a basic compressing unit, and retaining the most informative semantic chunks while discarding the less important ones. Furthermore, observing that ChunkKV exhibits higher similarity in the preserved indices across different layers, we propose layer-wise index reuse to further reduce computational overhead. We evaluated ChunkKV on cutting-edge long-context benchmarks including LongBench and Needle-In-A-HayStack, as well as the GSM8K and JailbreakV in-context learning benchmark. Our experiments with instruction tuning and multi-step reasoning (O1 and R1) LLMs, achieve up to 10\% performance improvement under aggressive compression ratios compared to existing methods.
DNABERT-2: Efficient Foundation Model and Benchmark For Multi-Species Genome
Decoding the linguistic intricacies of the genome is a crucial problem in biology, and pre-trained foundational models such as DNABERT and Nucleotide Transformer have made significant strides in this area. Existing works have largely hinged on k-mer, fixed-length permutations of A, T, C, and G, as the token of the genome language due to its simplicity. However, we argue that the computation and sample inefficiencies introduced by k-mer tokenization are primary obstacles in developing large genome foundational models. We provide conceptual and empirical insights into genome tokenization, building on which we propose to replace k-mer tokenization with Byte Pair Encoding (BPE), a statistics-based data compression algorithm that constructs tokens by iteratively merging the most frequent co-occurring genome segment in the corpus. We demonstrate that BPE not only overcomes the limitations of k-mer tokenization but also benefits from the computational efficiency of non-overlapping tokenization. Based on these insights, we introduce DNABERT-2, a refined genome foundation model that adapts an efficient tokenizer and employs multiple strategies to overcome input length constraints, reduce time and memory expenditure, and enhance model capability. Furthermore, we identify the absence of a comprehensive and standardized benchmark for genome understanding as another significant impediment to fair comparative analysis. In response, we propose the Genome Understanding Evaluation (GUE), a comprehensive multi-species genome classification dataset that amalgamates 28 distinct datasets across 7 tasks, with input lengths ranging from 70 to 1000. Through comprehensive experiments on the GUE benchmark, we demonstrate that DNABERT-2 achieves comparable performance to the state-of-the-art model with 21 times fewer parameters and approximately 56 times less GPU time in pre-training.
Scaling Granite Code Models to 128K Context
This paper introduces long-context Granite code models that support effective context windows of up to 128K tokens. Our solution for scaling context length of Granite 3B/8B code models from 2K/4K to 128K consists of a light-weight continual pretraining by gradually increasing its RoPE base frequency with repository-level file packing and length-upsampled long-context data. Additionally, we also release instruction-tuned models with long-context support which are derived by further finetuning the long context base models on a mix of permissively licensed short and long-context instruction-response pairs. While comparing to the original short-context Granite code models, our long-context models achieve significant improvements on long-context tasks without any noticeable performance degradation on regular code completion benchmarks (e.g., HumanEval). We release all our long-context Granite code models under an Apache 2.0 license for both research and commercial use.
Integrating Multi-scale Contextualized Information for Byte-based Neural Machine Translation
Subword tokenization is a common method for vocabulary building in Neural Machine Translation (NMT) models. However, increasingly complex tasks have revealed its disadvantages. First, a vocabulary cannot be modified once it is learned, making it hard to adapt to new words. Second, in multilingual translation, the imbalance in data volumes across different languages spreads to the vocabulary, exacerbating translations involving low-resource languages. While byte-based tokenization addresses these issues, byte-based models struggle with the low information density inherent in UTF-8 byte sequences. Previous works enhance token semantics through local contextualization but fail to select an appropriate contextualizing scope based on the input. Consequently, we propose the Multi-Scale Contextualization (MSC) method, which learns contextualized information of varying scales across different hidden state dimensions. It then leverages the attention module to dynamically integrate the multi-scale contextualized information. Experiments show that MSC significantly outperforms subword-based and other byte-based methods in both multilingual and out-of-domain scenarios. Code can be found in https://github.com/ictnlp/Multiscale-Contextualization.
A Practical Approach to Novel Class Discovery in Tabular Data
The problem of Novel Class Discovery (NCD) consists in extracting knowledge from a labeled set of known classes to accurately partition an unlabeled set of novel classes. While NCD has recently received a lot of attention from the community, it is often solved on computer vision problems and under unrealistic conditions. In particular, the number of novel classes is usually assumed to be known in advance, and their labels are sometimes used to tune hyperparameters. Methods that rely on these assumptions are not applicable in real-world scenarios. In this work, we focus on solving NCD in tabular data when no prior knowledge of the novel classes is available. To this end, we propose to tune the hyperparameters of NCD methods by adapting the k-fold cross-validation process and hiding some of the known classes in each fold. Since we have found that methods with too many hyperparameters are likely to overfit these hidden classes, we define a simple deep NCD model. This method is composed of only the essential elements necessary for the NCD problem and performs impressively well under realistic conditions. Furthermore, we find that the latent space of this method can be used to reliably estimate the number of novel classes. Additionally, we adapt two unsupervised clustering algorithms (k-means and Spectral Clustering) to leverage the knowledge of the known classes. Extensive experiments are conducted on 7 tabular datasets and demonstrate the effectiveness of the proposed method and hyperparameter tuning process, and show that the NCD problem can be solved without relying on knowledge from the novel classes.
Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis
In this work, we propose "global style tokens" (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable "labels" they generate can be used to control synthesis in novel ways, such as varying speed and speaking style - independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis.
POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training
Large-scale pre-trained language models, such as BERT and GPT-2, have achieved excellent performance in language representation learning and free-form text generation. However, these models cannot be directly employed to generate text under specified lexical constraints. To address this challenge, we present POINTER (PrOgressive INsertion-based TransformER), a simple yet novel insertion-based approach for hard-constrained text generation. The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner. This procedure is recursively applied until a sequence is completed. The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable. We pre-train our model with the proposed progressive insertion-based objective on a 12GB Wikipedia dataset, and fine-tune it on downstream hard-constrained generation tasks. Non-autoregressive decoding yields an empirically logarithmic time complexity during inference time. Experimental results on both News and Yelp datasets demonstrate that POINTER achieves state-of-the-art performance on constrained text generation. We released the pre-trained models and the source code to facilitate future research (https://github.com/dreasysnail/POINTER).
Learned Token Pruning for Transformers
Deploying transformer models in practice is challenging due to their inference cost, which scales quadratically with input sequence length. To address this, we present a novel Learned Token Pruning (LTP) method which adaptively removes unimportant tokens as an input sequence passes through transformer layers. In particular, LTP prunes tokens with an attention score below a threshold value which is learned for each layer during training. Our threshold-based method allows the length of the pruned sequence to vary adaptively based on the input sequence, and avoids algorithmically expensive operations such as top-k token selection. We extensively test the performance of LTP on GLUE tasks and show that our method outperforms the prior state-of-the-art token pruning methods by up to ~2.5% higher accuracy with the same amount of FLOPs. In particular, LTP achieves up to 2.1x FLOPs reduction with less than 1% accuracy drop, which results in up to 1.9x and 2.0x throughput improvement on Intel Haswell CPUs and NVIDIA V100 GPUs, respectively. Furthermore, we demonstrate that LTP is more robust than prior methods to variations on input sentence lengths. Our code has been developed in PyTorch and has been open-sourced.
Universal Adversarial Triggers Are Not Universal
Recent work has developed optimization procedures to find token sequences, called adversarial triggers, which can elicit unsafe responses from aligned language models. These triggers are believed to be universally transferable, i.e., a trigger optimized on one model can jailbreak other models. In this paper, we concretely show that such adversarial triggers are not universal. We extensively investigate trigger transfer amongst 13 open models and observe inconsistent transfer. Our experiments further reveal a significant difference in robustness to adversarial triggers between models Aligned by Preference Optimization (APO) and models Aligned by Fine-Tuning (AFT). We find that APO models are extremely hard to jailbreak even when the trigger is optimized directly on the model. On the other hand, while AFT models may appear safe on the surface, exhibiting refusals to a range of unsafe instructions, we show that they are highly susceptible to adversarial triggers. Lastly, we observe that most triggers optimized on AFT models also generalize to new unsafe instructions from five diverse domains, further emphasizing their vulnerability. Overall, our work highlights the need for more comprehensive safety evaluations for aligned language models.
Char-RNN and Active Learning for Hashtag Segmentation
We explore the abilities of character recurrent neural network (char-RNN) for hashtag segmentation. Our approach to the task is the following: we generate synthetic training dataset according to frequent n-grams that satisfy predefined morpho-syntactic patterns to avoid any manual annotation. The active learning strategy limits the training dataset and selects informative training subset. The approach does not require any language-specific settings and is compared for two languages, which differ in inflection degree.
Enhancing Visual Continual Learning with Language-Guided Supervision
Continual learning (CL) aims to empower models to learn new tasks without forgetting previously acquired knowledge. Most prior works concentrate on the techniques of architectures, replay data, regularization, \etc. However, the category name of each class is largely neglected. Existing methods commonly utilize the one-hot labels and randomly initialize the classifier head. We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks. In this paper, we revisit the role of the classifier head within the CL paradigm and replace the classifier with semantic knowledge from pretrained language models (PLMs). Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals during training. Such targets fully consider the semantic correlation between all classes across tasks. Empirical studies show that our approach mitigates forgetting by alleviating representation drifting and facilitating knowledge transfer across tasks. The proposed method is simple to implement and can seamlessly be plugged into existing methods with negligible adjustments. Extensive experiments based on eleven mainstream baselines demonstrate the effectiveness and generalizability of our approach to various protocols. For example, under the class-incremental learning setting on ImageNet-100, our method significantly improves the Top-1 accuracy by 3.2\% to 6.1\% while reducing the forgetting rate by 2.6\% to 13.1\%.
FiNER: Financial Numeric Entity Recognition for XBRL Tagging
Publicly traded companies are required to submit periodic reports with eXtensive Business Reporting Language (XBRL) word-level tags. Manually tagging the reports is tedious and costly. We, therefore, introduce XBRL tagging as a new entity extraction task for the financial domain and release FiNER-139, a dataset of 1.1M sentences with gold XBRL tags. Unlike typical entity extraction datasets, FiNER-139 uses a much larger label set of 139 entity types. Most annotated tokens are numeric, with the correct tag per token depending mostly on context, rather than the token itself. We show that subword fragmentation of numeric expressions harms BERT's performance, allowing word-level BILSTMs to perform better. To improve BERT's performance, we propose two simple and effective solutions that replace numeric expressions with pseudo-tokens reflecting original token shapes and numeric magnitudes. We also experiment with FIN-BERT, an existing BERT model for the financial domain, and release our own BERT (SEC-BERT), pre-trained on financial filings, which performs best. Through data and error analysis, we finally identify possible limitations to inspire future work on XBRL tagging.
MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity Recognition
We present MultiCoNER, a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation. We applied two NER models on our dataset: a baseline XLM-RoBERTa model, and a state-of-the-art GEMNET model that leverages gazetteers. The baseline achieves moderate performance (macro-F1=54%), highlighting the difficulty of our data. GEMNET, which uses gazetteers, improvement significantly (average improvement of macro-F1=+30%). MultiCoNER poses challenges even for large pre-trained language models, and we believe that it can help further research in building robust NER systems. MultiCoNER is publicly available at https://registry.opendata.aws/multiconer/ and we hope that this resource will help advance research in various aspects of NER.
CLaM-TTS: Improving Neural Codec Language Model for Zero-Shot Text-to-Speech
With the emergence of neural audio codecs, which encode multiple streams of discrete tokens from audio, large language models have recently gained attention as a promising approach for zero-shot Text-to-Speech (TTS) synthesis. Despite the ongoing rush towards scaling paradigms, audio tokenization ironically amplifies the scalability challenge, stemming from its long sequence length and the complexity of modelling the multiple sequences. To mitigate these issues, we present CLaM-TTS that employs a probabilistic residual vector quantization to (1) achieve superior compression in the token length, and (2) allow a language model to generate multiple tokens at once, thereby eliminating the need for cascaded modeling to handle the number of token streams. Our experimental results demonstrate that CLaM-TTS is better than or comparable to state-of-the-art neural codec-based TTS models regarding naturalness, intelligibility, speaker similarity, and inference speed. In addition, we examine the impact of the pretraining extent of the language models and their text tokenization strategies on performances.
Multi-Word Tokenization for Sequence Compression
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
The Fair Language Model Paradox
Large Language Models (LLMs) are widely deployed in real-world applications, yet little is known about their training dynamics at the token level. Evaluation typically relies on aggregated training loss, measured at the batch level, which overlooks subtle per-token biases arising from (i) varying token-level dynamics and (ii) structural biases introduced by hyperparameters. While weight decay is commonly used to stabilize training, we reveal that it silently introduces performance biases detectable only at the token level. In fact, we empirically show across different dataset sizes, model architectures and sizes ranging from 270M to 3B parameters that as weight decay increases, low-frequency tokens are disproportionately depreciated. This is particularly concerning, as these neglected low-frequency tokens represent the vast majority of the token distribution in most languages, calling for novel regularization techniques that ensure fairness across all available tokens.
Evaluating the Impact of Source Code Parsers on ML4SE Models
As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599.