Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeKnowledge Mining with Scene Text for Fine-Grained Recognition
Recently, the semantics of scene text has been proven to be essential in fine-grained image classification. However, the existing methods mainly exploit the literal meaning of scene text for fine-grained recognition, which might be irrelevant when it is not significantly related to objects/scenes. We propose an end-to-end trainable network that mines implicit contextual knowledge behind scene text image and enhance the semantics and correlation to fine-tune the image representation. Unlike the existing methods, our model integrates three modalities: visual feature extraction, text semantics extraction, and correlating background knowledge to fine-grained image classification. Specifically, we employ KnowBert to retrieve relevant knowledge for semantic representation and combine it with image features for fine-grained classification. Experiments on two benchmark datasets, Con-Text, and Drink Bottle, show that our method outperforms the state-of-the-art by 3.72\% mAP and 5.39\% mAP, respectively. To further validate the effectiveness of the proposed method, we create a new dataset on crowd activity recognition for the evaluation. The source code and new dataset of this work are available at https://github.com/lanfeng4659/KnowledgeMiningWithSceneText.
RECKONING: Reasoning through Dynamic Knowledge Encoding
Recent studies on transformer-based language models show that they can answer questions by reasoning over knowledge provided as part of the context (i.e., in-context reasoning). However, since the available knowledge is often not filtered for a particular question, in-context reasoning can be sensitive to distractor facts, additional content that is irrelevant to a question but that may be relevant for a different question (i.e., not necessarily random noise). In these situations, the model fails to distinguish the knowledge that is necessary to answer the question, leading to spurious reasoning and degraded performance. This reasoning failure contrasts with the model's apparent ability to distinguish its contextual knowledge from all the knowledge it has memorized during pre-training. Following this observation, we propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters before presenting it with a question. Our method, RECKONING, is a bi-level learning algorithm that teaches language models to reason by updating their parametric knowledge through back-propagation, allowing them to then answer questions using the updated parameters. During training, the inner loop rapidly adapts a copy of the model weights to encode contextual knowledge into its parameters. In the outer loop, the model learns to use the updated weights to reproduce and answer reasoning questions about the memorized knowledge. Our experiments on two multi-hop reasoning datasets show that RECKONING's performance improves over the in-context reasoning baseline (by up to 4.5%). We also find that compared to in-context reasoning, RECKONING generalizes better to longer reasoning chains unseen during training, is more robust to distractors in the context, and is more computationally efficient when multiple questions are asked about the same knowledge.
Establishing Knowledge Preference in Language Models
Language models are known to encode a great amount of factual knowledge through pretraining. However, such knowledge might be insufficient to cater to user requests, requiring the model to integrate external knowledge sources and adhere to user-provided specifications. When answering questions about ongoing events, the model should use recent news articles to update its response; when asked to provide recommendations, the model should prioritize user specifications over retrieved product reviews; when some facts are edited in the model, the updated facts should override all prior knowledge learned by the model even if they are conflicting. In all of the cases above, the model faces a decision between its own parametric knowledge, (retrieved) contextual knowledge, and user instruction knowledge. In this paper, we (1) unify such settings into the problem of knowledge preference and define a three-level preference hierarchy over these knowledge sources; (2) compile a collection of existing datasets IfQA, MQuAKE, and MRQA covering a combination of settings (with/without user specifications, with/without context documents) to systematically evaluate how well models obey the intended knowledge preference; and (3) propose a dataset synthesis method that composes diverse question-answer pairs with user assumptions and related context to directly fine-tune LMs for instilling the hierarchy of knowledge. We demonstrate that a 7B model, fine-tuned on only a few thousand examples automatically generated by our proposed method, effectively achieves superior performance (more than 18% improvement across all evaluation benchmarks) in adhering to the desired knowledge preference hierarchy.
FinDKG: Dynamic Knowledge Graphs with Large Language Models for Detecting Global Trends in Financial Markets
Dynamic knowledge graphs (DKGs) are popular structures to express different types of connections between objects over time. They can also serve as an efficient mathematical tool to represent information extracted from complex unstructured data sources, such as text or images. Within financial applications, DKGs could be used to detect trends for strategic thematic investing, based on information obtained from financial news articles. In this work, we explore the properties of large language models (LLMs) as dynamic knowledge graph generators, proposing a novel open-source fine-tuned LLM for this purpose, called the Integrated Contextual Knowledge Graph Generator (ICKG). We use ICKG to produce a novel open-source DKG from a corpus of financial news articles, called FinDKG, and we propose an attention-based GNN architecture for analysing it, called KGTransformer. We test the performance of the proposed model on benchmark datasets and FinDKG, demonstrating superior performance on link prediction tasks. Additionally, we evaluate the performance of the KGTransformer on FinDKG for thematic investing, showing it can outperform existing thematic ETFs.
ConflictBank: A Benchmark for Evaluating the Influence of Knowledge Conflicts in LLM
Large language models (LLMs) have achieved impressive advancements across numerous disciplines, yet the critical issue of knowledge conflicts, a major source of hallucinations, has rarely been studied. Only a few research explored the conflicts between the inherent knowledge of LLMs and the retrieved contextual knowledge. However, a thorough assessment of knowledge conflict in LLMs is still missing. Motivated by this research gap, we present ConflictBank, the first comprehensive benchmark developed to systematically evaluate knowledge conflicts from three aspects: (i) conflicts encountered in retrieved knowledge, (ii) conflicts within the models' encoded knowledge, and (iii) the interplay between these conflict forms. Our investigation delves into four model families and twelve LLM instances, meticulously analyzing conflicts stemming from misinformation, temporal discrepancies, and semantic divergences. Based on our proposed novel construction framework, we create 7,453,853 claim-evidence pairs and 553,117 QA pairs. We present numerous findings on model scale, conflict causes, and conflict types. We hope our ConflictBank benchmark will help the community better understand model behavior in conflicts and develop more reliable LLMs.
Analysing the Residual Stream of Language Models Under Knowledge Conflicts
Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context. Such conflicts can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. In this work, we investigate whether LLMs can identify knowledge conflicts and whether it is possible to know which source of knowledge the model will rely on by analysing the residual stream of the LLM. Through probing tasks, we find that LLMs can internally register the signal of knowledge conflict in the residual stream, which can be accurately detected by probing the intermediate model activations. This allows us to detect conflicts within the residual stream before generating the answers without modifying the input or model parameters. Moreover, we find that the residual stream shows significantly different patterns when the model relies on contextual knowledge versus parametric knowledge to resolve conflicts. This pattern can be employed to estimate the behaviour of LLMs when conflict happens and prevent unexpected answers before producing the answers. Our analysis offers insights into how LLMs internally manage knowledge conflicts and provides a foundation for developing methods to control the knowledge selection processes.
Probing Language Models on Their Knowledge Source
Large Language Models (LLMs) often encounter conflicts between their learned, internal (parametric knowledge, PK) and external knowledge provided during inference (contextual knowledge, CK). Understanding how LLMs models prioritize one knowledge source over the other remains a challenge. In this paper, we propose a novel probing framework to explore the mechanisms governing the selection between PK and CK in LLMs. Using controlled prompts designed to contradict the model's PK, we demonstrate that specific model activations are indicative of the knowledge source employed. We evaluate this framework on various LLMs of different sizes and demonstrate that mid-layer activations, particularly those related to relations in the input, are crucial in predicting knowledge source selection, paving the way for more reliable models capable of handling knowledge conflicts effectively.
IMAGINATOR: Pre-Trained Image+Text Joint Embeddings using Word-Level Grounding of Images
Word embeddings, i.e., semantically meaningful vector representation of words, are largely influenced by the distributional hypothesis "You shall know a word by the company it keeps" (Harris, 1954), whereas modern prediction-based neural network embeddings rely on design choices and hyperparameter optimization. Word embeddings like Word2Vec, GloVe etc. well capture the contextuality and real-world analogies but contemporary convolution-based image embeddings such as VGGNet, AlexNet, etc. do not capture contextual knowledge. The popular king-queen analogy does not hold true for most commonly used vision embeddings. In this paper, we introduce a pre-trained joint embedding (JE), named IMAGINATOR, trained on 21K distinct image objects level from 1M image+text pairs. JE is a way to encode multimodal data into a vector space where the text modality serves as the ground-ing key, which the complementary modality (in this case, the image) is anchored with. IMAGINATOR encapsulates three individual representations: (i) object-object co-location, (ii) word-object co-location, and (iii) word-object correlation. These three ways capture complementary aspects of the two modalities which are further combined to obtain the final JEs. Generated JEs are intrinsically evaluated to assess how well they capture the contextuality and real-world analogies. We also evaluate pre-trained IMAGINATOR JEs on three downstream tasks: (i) image captioning, (ii) Image2Tweet, and (iii) text-based image retrieval. IMAGINATOR establishes a new standard on the aforementioned down-stream tasks by outperforming the current SoTA on all the selected tasks. IMAGINATOR will be made publicly available. The codes are available at https://github.com/varunakk/IMAGINATOR
With Greater Text Comes Greater Necessity: Inference-Time Training Helps Long Text Generation
Long text generation, such as novel writing and discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, we embeds this information directly into a temporary Lora module. In the process of long text generation, this module is progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long text, as indicated by a 13.2% decrease in perplexity (PPL) on a subset of PG19, and a 29.3% decrease in PPL along with a 113.2% increase in BLEU score on a subset of GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. For example, we can ensure a moderate improvement in generation quality (a decrease of 3.8% in PPL) while enabling a 51.5% memory usage reduction and a 60.0% decrease in latency for inference.
Adaptive Contrastive Decoding in Retrieval-Augmented Generation for Handling Noisy Contexts
When using large language models (LLMs) in knowledge-intensive tasks, such as open-domain question answering, external context can bridge the gap between external knowledge and the LLMs' parametric knowledge. Recent research has been developed to amplify contextual knowledge over the parametric knowledge of LLMs with contrastive decoding approaches. While these approaches could yield truthful responses when relevant context is provided, they are prone to vulnerabilities when faced with noisy contexts. We extend the scope of previous studies to encompass noisy contexts and propose adaptive contrastive decoding (ACD) to leverage contextual influence effectively. ACD demonstrates improvements in open-domain question answering tasks compared to baselines, especially in robustness by remaining undistracted by noisy contexts in retrieval-augmented generation.
iReason: Multimodal Commonsense Reasoning using Videos and Natural Language with Interpretability
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.
Robust and Scalable Model Editing for Large Language Models
Large language models (LLMs) can make predictions using parametric knowledge--knowledge encoded in the model weights--or contextual knowledge--knowledge presented in the context. In many scenarios, a desirable behavior is that LLMs give precedence to contextual knowledge when it conflicts with the parametric knowledge, and fall back to using their parametric knowledge when the context is irrelevant. This enables updating and correcting the model's knowledge by in-context editing instead of retraining. Previous works have shown that LLMs are inclined to ignore contextual knowledge and fail to reliably fall back to parametric knowledge when presented with irrelevant context. In this work, we discover that, with proper prompting methods, instruction-finetuned LLMs can be highly controllable by contextual knowledge and robust to irrelevant context. Utilizing this feature, we propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing. To better evaluate the robustness of model editors, we collect a new dataset, that contains irrelevant questions that are more challenging than the ones in existing datasets. Empirical results show that our method outperforms current state-of-the-art methods by a large margin. Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs (and vice versa). The source code can be found at https://github.com/thunlp/EREN.
Does the Generator Mind its Contexts? An Analysis of Generative Model Faithfulness under Context Transfer
The present study introduces the knowledge-augmented generator, which is specifically designed to produce information that remains grounded in contextual knowledge, regardless of alterations in the context. Previous research has predominantly focused on examining hallucinations stemming from static input, such as in the domains of summarization or machine translation. However, our investigation delves into the faithfulness of generative question answering in the presence of dynamic knowledge. Our objective is to explore the existence of hallucinations arising from parametric memory when contextual knowledge undergoes changes, while also analyzing the underlying causes for their occurrence. In order to efficiently address this issue, we propose a straightforward yet effective measure for detecting such hallucinations. Intriguingly, our investigation uncovers that all models exhibit a tendency to generate previous answers as hallucinations. To gain deeper insights into the underlying causes of this phenomenon, we conduct a series of experiments that verify the critical role played by context in hallucination, both during training and testing, from various perspectives.
HallE-Switch: Rethinking and Controlling Object Existence Hallucinations in Large Vision Language Models for Detailed Caption
Current large vision-language models (LVLMs) achieve remarkable progress, yet there remains significant uncertainty regarding their ability to accurately apprehend visual details, that is, in performing detailed captioning. To address this, we introduce CCEval, a GPT-4 assisted evaluation method tailored for detailed captioning. Interestingly, while LVLMs demonstrate minimal object existence hallucination in existing VQA benchmarks, our proposed evaluation reveals continued susceptibility to such hallucinations. In this paper, we make the first attempt to investigate and attribute such hallucinations, including image resolution, the language decoder size, and instruction data amount, quality, granularity. Our findings underscore the unwarranted inference when the language description includes details at a finer object granularity than what the vision module can ground or verify, thus inducing hallucination. To control such hallucinations, we further attribute the reliability of captioning to contextual knowledge (involving only contextually grounded objects) and parametric knowledge (containing inferred objects by the model). Thus, we introduce HallE-Switch, a controllable LVLM in terms of Hallucination in object Existence. HallE-Switch can condition the captioning to shift between (i) exclusively depicting contextual knowledge for grounded objects and (ii) blending it with parametric knowledge to imagine inferred objects. Our method reduces hallucination by 44% compared to LLaVA_{7B} and maintains the same object coverage.
SPARK: Multi-Vision Sensor Perception and Reasoning Benchmark for Large-scale Vision-Language Models
Large-scale Vision-Language Models (LVLMs) have significantly advanced with text-aligned vision inputs. They have made remarkable progress in computer vision tasks by aligning text modality with vision inputs. There are also endeavors to incorporate multi-vision sensors beyond RGB, including thermal, depth, and medical X-ray images. However, we observe that current LVLMs view images taken from multi-vision sensors as if they were in the same RGB domain without considering the physical characteristics of multi-vision sensors. They fail to convey the fundamental multi-vision sensor information from the dataset and the corresponding contextual knowledge properly. Consequently, alignment between the information from the actual physical environment and the text is not achieved correctly, making it difficult to answer complex sensor-related questions that consider the physical environment. In this paper, we aim to establish a multi-vision Sensor Perception And Reasoning benchmarK called SPARK that can reduce the fundamental multi-vision sensor information gap between images and multi-vision sensors. We generated 6,248 vision-language test samples automatically to investigate multi-vision sensory perception and multi-vision sensory reasoning on physical sensor knowledge proficiency across different formats, covering different types of sensor-related questions. We utilized these samples to assess ten leading LVLMs. The results showed that most models displayed deficiencies in multi-vision sensory reasoning to varying extents. Codes and data are available at https://github.com/top-yun/SPARK
When to Speak, When to Abstain: Contrastive Decoding with Abstention
Large Language Models (LLMs) demonstrate exceptional performance across diverse tasks by leveraging both pre-trained knowledge (i.e., parametric knowledge) and external knowledge (i.e., contextual knowledge). While substantial efforts have been made to leverage both forms of knowledge, scenarios in which the model lacks any relevant knowledge remain underexplored. Such limitations can result in issues like hallucination, causing reduced reliability and potential risks in high-stakes applications. To address such limitations, this paper extends the task scope to encompass cases where the user's request cannot be fulfilled due to the lack of relevant knowledge. To this end, we introduce Contrastive Decoding with Abstention (CDA), a training-free decoding method that empowers LLMs to generate responses when relevant knowledge is available and to abstain otherwise. CDA evaluates the relevance of each knowledge for a given query, adaptively determining which knowledge to prioritize or which to completely ignore. Extensive experiments with four LLMs on three question-answering datasets demonstrate that CDA can effectively perform accurate generation and abstention simultaneously. These findings highlight CDA's potential to broaden the applicability of LLMs, enhancing reliability and preserving user trust.
G-SciEdBERT: A Contextualized LLM for Science Assessment Tasks in German
The advancement of natural language processing has paved the way for automated scoring systems in various languages, such as German (e.g., German BERT [G-BERT]). Automatically scoring written responses to science questions in German is a complex task and challenging for standard G-BERT as they lack contextual knowledge in the science domain and may be unaligned with student writing styles. This paper presents a contextualized German Science Education BERT (G-SciEdBERT), an innovative large language model tailored for scoring German-written responses to science tasks and beyond. Using G-BERT, we pre-trained G-SciEdBERT on a corpus of 30K German written science responses with 3M tokens on the Programme for International Student Assessment (PISA) 2018. We fine-tuned G-SciEdBERT on an additional 20K student-written responses with 2M tokens and examined the scoring accuracy. We then compared its scoring performance with G-BERT. Our findings revealed a substantial improvement in scoring accuracy with G-SciEdBERT, demonstrating a 10.2% increase of quadratic weighted Kappa compared to G-BERT (mean difference = 0.1026, SD = 0.069). These insights underline the significance of specialized language models like G-SciEdBERT, which is trained to enhance the accuracy of contextualized automated scoring, offering a substantial contribution to the field of AI in education.
Do great minds think alike? Investigating Human-AI Complementarity in Question Answering with CAIMIRA
Recent advancements of large language models (LLMs) have led to claims of AI surpassing humans in natural language processing (NLP) tasks such as textual understanding and reasoning. This work investigates these assertions by introducing CAIMIRA, a novel framework rooted in item response theory (IRT) that enables quantitative assessment and comparison of problem-solving abilities of question-answering (QA) agents: humans and AI systems. Through analysis of over 300,000 responses from ~70 AI systems and 155 humans across thousands of quiz questions, CAIMIRA uncovers distinct proficiency patterns in knowledge domains and reasoning skills. Humans outperform AI systems in knowledge-grounded abductive and conceptual reasoning, while state-of-the-art LLMs like GPT-4 and LLaMA show superior performance on targeted information retrieval and fact-based reasoning, particularly when information gaps are well-defined and addressable through pattern matching or data retrieval. These findings highlight the need for future QA tasks to focus on questions that challenge not only higher-order reasoning and scientific thinking, but also demand nuanced linguistic interpretation and cross-contextual knowledge application, helping advance AI developments that better emulate or complement human cognitive abilities in real-world problem-solving.
Controllable Context Sensitivity and the Knob Behind It
When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.
Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation
Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.
Leveraging the Domain Adaptation of Retrieval Augmented Generation Models for Question Answering and Reducing Hallucination
While ongoing advancements in Large Language Models have demonstrated remarkable success across various NLP tasks, Retrieval Augmented Generation Model stands out to be highly effective on downstream applications like Question Answering. Recently, RAG-end2end model further optimized the architecture and achieved notable performance improvements on domain adaptation. However, the effectiveness of these RAG-based architectures remains relatively unexplored when fine-tuned on specialized domains such as customer service for building a reliable conversational AI system. Furthermore, a critical challenge persists in reducing the occurrence of hallucinations while maintaining high domain-specific accuracy. In this paper, we investigated the performance of diverse RAG and RAG-like architectures through domain adaptation and evaluated their ability to generate accurate and relevant response grounded in the contextual knowledge base. To facilitate the evaluation of the models, we constructed a novel dataset HotelConvQA, sourced from wide range of hotel-related conversations and fine-tuned all the models on our domain specific dataset. We also addressed a critical research gap on determining the impact of domain adaptation on reducing hallucinations across different RAG architectures, an aspect that was not properly measured in prior work. Our evaluation shows positive results in all metrics by employing domain adaptation, demonstrating strong performance on QA tasks and providing insights into their efficacy in reducing hallucinations. Our findings clearly indicate that domain adaptation not only enhances the models' performance on QA tasks but also significantly reduces hallucination across all evaluated RAG architectures.
Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs) by incorporating extensive knowledge retrieved from external sources. However, such approach encounters some challenges: Firstly, the original queries may not be suitable for precise retrieval, resulting in erroneous contextual knowledge; Secondly, the language model can easily generate inconsistent answer with external references due to their knowledge boundary limitation. To address these issues, we propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency. Specifically, we integrate the verification module into the RAG, engaging in scoring, judgment, and rewriting. To correct external retrieval errors, CoV-RAG retrieves new knowledge using a revised query. To correct internal generation errors, we unify QA and verification tasks with a Chain-of-Thought (CoT) reasoning during training. Our comprehensive experiments across various LLMs demonstrate the effectiveness and adaptability compared with other strong baselines. Especially, our CoV-RAG can significantly surpass the state-of-the-art baselines using different LLM backbones.
Tell Me What You Don't Know: Enhancing Refusal Capabilities of Role-Playing Agents via Representation Space Analysis and Editing
Role-Playing Agents (RPAs) have shown remarkable performance in various applications, yet they often struggle to recognize and appropriately respond to hard queries that conflict with their role-play knowledge. To investigate RPAs' performance when faced with different types of conflicting requests, we develop an evaluation benchmark that includes contextual knowledge conflicting requests, parametric knowledge conflicting requests, and non-conflicting requests to assess RPAs' ability to identify conflicts and refuse to answer appropriately without over-refusing. Through extensive evaluation, we find that most RPAs behave significant performance gaps toward different conflict requests. To elucidate the reasons, we conduct an in-depth representation-level analysis of RPAs under various conflict scenarios. Our findings reveal the existence of rejection regions and direct response regions within the model's forwarding representation, and thus influence the RPA's final response behavior. Therefore, we introduce a lightweight representation editing approach that conveniently shifts conflicting requests to the rejection region, thereby enhancing the model's refusal accuracy. The experimental results validate the effectiveness of our editing method, improving RPAs' refusal ability of conflicting requests while maintaining their general role-playing capabilities.
Conv-CoA: Improving Open-domain Question Answering in Large Language Models via Conversational Chain-of-Action
We present a Conversational Chain-of-Action (Conv-CoA) framework for Open-domain Conversational Question Answering (OCQA). Compared with literature, Conv-CoA addresses three major challenges: (i) unfaithful hallucination that is inconsistent with real-time or domain facts, (ii) weak reasoning performance in conversational scenarios, and (iii) unsatisfying performance in conversational information retrieval. Our key contribution is a dynamic reasoning-retrieval mechanism that extracts the intent of the question and decomposes it into a reasoning chain to be solved via systematic prompting, pre-designed actions, updating the Contextual Knowledge Set (CKS), and a novel Hopfield-based retriever. Methodologically, we propose a resource-efficiency Hopfield retriever to enhance the efficiency and accuracy of conversational information retrieval within our actions. Additionally, we propose a conversational-multi-reference faith score (Conv-MRFS) to verify and resolve conflicts between retrieved knowledge and answers in conversations. Empirically, we conduct comparisons between our framework and 23 state-of-the-art methods across five different research directions and two public benchmarks. These comparisons demonstrate that our Conv-CoA outperforms other methods in both the accuracy and efficiency dimensions.
Distributional semantic modeling: a revised technique to train term/word vector space models applying the ontology-related approach
We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings) - term vector space models as a result, inspired by the recent ontology-related approach (using different types of contextual knowledge such as syntactic knowledge, terminological knowledge, semantic knowledge, etc.) to the identification of terms (term extraction) and relations between them (relation extraction) called semantic pre-processing technology - SPT. Our method relies on automatic term extraction from the natural language texts and subsequent formation of the problem-oriented or application-oriented (also deeply annotated) text corpora where the fundamental entity is the term (includes non-compositional and compositional terms). This gives us an opportunity to changeover from distributed word representations (or word embeddings) to distributed term representations (or term embeddings). This transition will allow to generate more accurate semantic maps of different subject domains (also, of relations between input terms - it is useful to explore clusters and oppositions, or to test your hypotheses about them). The semantic map can be represented as a graph using Vec2graph - a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs. The Vec2graph library coupled with term embeddings will not only improve accuracy in solving standard NLP tasks, but also update the conventional concept of automated ontology development. The main practical result of our work is the development kit (set of toolkits represented as web service APIs and web application), which provides all necessary routines for the basic linguistic pre-processing and the semantic pre-processing of the natural language texts in Ukrainian for future training of term vector space models.
CLIPScore: A Reference-free Evaluation Metric for Image Captioning
Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans. This is in contrast to the reference-free manner in which humans assess caption quality. In this paper, we report the surprising empirical finding that CLIP (Radford et al., 2021), a cross-modal model pretrained on 400M image+caption pairs from the web, can be used for robust automatic evaluation of image captioning without the need for references. Experiments spanning several corpora demonstrate that our new reference-free metric, CLIPScore, achieves the highest correlation with human judgements, outperforming existing reference-based metrics like CIDEr and SPICE. Information gain experiments demonstrate that CLIPScore, with its tight focus on image-text compatibility, is complementary to existing reference-based metrics that emphasize text-text similarities. Thus, we also present a reference-augmented version, RefCLIPScore, which achieves even higher correlation. Beyond literal description tasks, several case studies reveal domains where CLIPScore performs well (clip-art images, alt-text rating), but also where it is relatively weaker in comparison to reference-based metrics, e.g., news captions that require richer contextual knowledge.
BioCoder: A Benchmark for Bioinformatics Code Generation with Contextual Pragmatic Knowledge
Pre-trained language models like ChatGPT have significantly improved code generation. As these models scale up, there is an increasing need for the output to handle more intricate tasks. Moreover, in bioinformatics, generating functional programs poses additional notable challenges due to the amount of domain knowledge, the need for complicated data operations, and intricate functional dependencies between the operations. Here, we present BioCoder, a benchmark developed to evaluate existing pre-trained models in generating bioinformatics code. In relation to function-code generation, BioCoder covers potential package dependencies, class declarations, and global variables. It incorporates 1026 functions and 1243 methods in Python and Java from GitHub and 253 examples from the Rosalind Project. BioCoder incorporates a fuzz-testing framework for evaluation, and we have applied it to evaluate many models including InCoder, CodeGen, CodeGen2, SantaCoder, StarCoder, StarCoder+, InstructCodeT5+, and ChatGPT. Our detailed analysis of these models emphasizes the importance of domain knowledge, pragmatic code generation, and contextual understanding. Our dataset, benchmark, Docker images, and scripts required for testing are all available at https://github.com/gersteinlab/biocoder.
User-Aware Prefix-Tuning is a Good Learner for Personalized Image Captioning
Image captioning bridges the gap between vision and language by automatically generating natural language descriptions for images. Traditional image captioning methods often overlook the preferences and characteristics of users. Personalized image captioning solves this problem by incorporating user prior knowledge into the model, such as writing styles and preferred vocabularies. Most existing methods emphasize the user context fusion process by memory networks or transformers. However, these methods ignore the distinct domains of each dataset. Therefore, they need to update the entire caption model parameters when meeting new samples, which is time-consuming and calculation-intensive. To address this challenge, we propose a novel personalized image captioning framework that leverages user context to consider personality factors. Additionally, our framework utilizes the prefix-tuning paradigm to extract knowledge from a frozen large language model, reducing the gap between different language domains. Specifically, we employ CLIP to extract the visual features of an image and align the semantic space using a query-guided mapping network. By incorporating the transformer layer, we merge the visual features with the user's contextual prior knowledge to generate informative prefixes. Moreover, we employ GPT-2 as the frozen large language model. With a small number of parameters to be trained, our model performs efficiently and effectively. Our model outperforms existing baseline models on Instagram and YFCC100M datasets across five evaluation metrics, demonstrating its superiority, including twofold improvements in metrics such as BLEU-4 and CIDEr.
Knowledge Enhanced Contextual Word Representations
Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert's runtime is comparable to BERT's and it scales to large KBs.
AdaCAD: Adaptively Decoding to Balance Conflicts between Contextual and Parametric Knowledge
Knowledge conflict arises from discrepancies between information in the context of a large language model (LLM) and the knowledge stored in its parameters. This can hurt performance when using standard decoding techniques, which tend to ignore the context. Existing test-time contrastive methods seek to address this by comparing the LLM's output distribution with and without the context and adjust the model according to the contrast between them. However, we find that these methods frequently misjudge the degree of conflict and struggle to handle instances that vary in their amount of conflict, with static methods over-adjusting when conflict is absent. We propose a fine-grained, instance-level approach called AdaCAD, which dynamically infers the weight of adjustment based on the degree of conflict, as measured by the Jensen-Shannon divergence between distributions representing contextual and parametric knowledge. Our experiments across four models on six diverse question-answering (QA) datasets and three summarization tasks demonstrate that our training-free adaptive method consistently outperforms other decoding methods on QA, with average accuracy gains of 14.21% (absolute) over a static contrastive baseline, and improves the factuality of summaries by 5.59 (AlignScore). Furthermore, our analysis shows that while decoding with contrastive baselines hurts performance when conflict is absent, AdaCAD mitigates these losses, making it more applicable to real-world datasets in which some examples have conflict and others do not.
Knowledge Conflicts for LLMs: A Survey
This survey provides an in-depth analysis of knowledge conflicts for large language models (LLMs), highlighting the complex challenges they encounter when blending contextual and parametric knowledge. Our focus is on three categories of knowledge conflicts: context-memory, inter-context, and intra-memory conflict. These conflicts can significantly impact the trustworthiness and performance of LLMs, especially in real-world applications where noise and misinformation are common. By categorizing these conflicts, exploring the causes, examining the behaviors of LLMs under such conflicts, and reviewing available solutions, this survey aims to shed light on strategies for improving the robustness of LLMs, thereby serving as a valuable resource for advancing research in this evolving area.
Joint Speech Translation and Named Entity Recognition
Modern automatic translation systems aim at place the human at the center by providing contextual support and knowledge. In this context, a critical task is enriching the output with information regarding the mentioned entities, which is currently achieved processing the generated translation with named entity recognition (NER) and entity linking systems. In light of the recent promising results shown by direct speech translation (ST) models and the known weaknesses of cascades (error propagation and additional latency), in this paper we propose multitask models that jointly perform ST and NER, and compare them with a cascade baseline. The experimental results show that our models significantly outperform the cascade on the NER task (by 0.4-1.0 F1), without degradation in terms of translation quality, and with the same computational efficiency of a plain direct ST model.
Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation
Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings.
SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context Misinformation Detection
Misinformation is a prevalent societal issue due to its potential high risks. Out-of-context (OOC) misinformation, where authentic images are repurposed with false text, is one of the easiest and most effective ways to mislead audiences. Current methods focus on assessing image-text consistency but lack convincing explanations for their judgments, which is essential for debunking misinformation. While Multimodal Large Language Models (MLLMs) have rich knowledge and innate capability for visual reasoning and explanation generation, they still lack sophistication in understanding and discovering the subtle crossmodal differences. In this paper, we introduce SNIFFER, a novel multimodal large language model specifically engineered for OOC misinformation detection and explanation. SNIFFER employs two-stage instruction tuning on InstructBLIP. The first stage refines the model's concept alignment of generic objects with news-domain entities and the second stage leverages language-only GPT-4 generated OOC-specific instruction data to fine-tune the model's discriminatory powers. Enhanced by external tools and retrieval, SNIFFER not only detects inconsistencies between text and image but also utilizes external knowledge for contextual verification. Our experiments show that SNIFFER surpasses the original MLLM by over 40% and outperforms state-of-the-art methods in detection accuracy. SNIFFER also provides accurate and persuasive explanations as validated by quantitative and human evaluations.
Contextual Mixture of Experts: Integrating Knowledge into Predictive Modeling
This work proposes a new data-driven model devised to integrate process knowledge into its structure to increase the human-machine synergy in the process industry. The proposed Contextual Mixture of Experts (cMoE) explicitly uses process knowledge along the model learning stage to mold the historical data to represent operators' context related to the process through possibility distributions. This model was evaluated in two real case studies for quality prediction, including a sulfur recovery unit and a polymerization process. The contextual mixture of experts was employed to represent different contexts in both experiments. The results indicate that integrating process knowledge has increased predictive performance while improving interpretability by providing insights into the variables affecting the process's different regimes.
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus
Contextual word embedding models, such as BioBERT and Bio_ClinicalBERT, have achieved state-of-the-art results in biomedical natural language processing tasks by focusing their pre-training process on domain-specific corpora. However, such models do not take into consideration expert domain knowledge. In this work, we introduced UmlsBERT, a contextual embedding model that integrates domain knowledge during the pre-training process via a novel knowledge augmentation strategy. More specifically, the augmentation on UmlsBERT with the Unified Medical Language System (UMLS) Metathesaurus was performed in two ways: i) connecting words that have the same underlying `concept' in UMLS, and ii) leveraging semantic group knowledge in UMLS to create clinically meaningful input embeddings. By applying these two strategies, UmlsBERT can encode clinical domain knowledge into word embeddings and outperform existing domain-specific models on common named-entity recognition (NER) and clinical natural language inference clinical NLP tasks.
Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion
Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful.
Sentence Embedding Models for Ancient Greek Using Multilingual Knowledge Distillation
Contextual language models have been trained on Classical languages, including Ancient Greek and Latin, for tasks such as lemmatization, morphological tagging, part of speech tagging, authorship attribution, and detection of scribal errors. However, high-quality sentence embedding models for these historical languages are significantly more difficult to achieve due to the lack of training data. In this work, we use a multilingual knowledge distillation approach to train BERT models to produce sentence embeddings for Ancient Greek text. The state-of-the-art sentence embedding approaches for high-resource languages use massive datasets, but our distillation approach allows our Ancient Greek models to inherit the properties of these models while using a relatively small amount of translated sentence data. We build a parallel sentence dataset using a sentence-embedding alignment method to align Ancient Greek documents with English translations, and use this dataset to train our models. We evaluate our models on translation search, semantic similarity, and semantic retrieval tasks and investigate translation bias. We make our training and evaluation datasets freely available at https://github.com/kevinkrahn/ancient-greek-datasets .
From Internal Conflict to Contextual Adaptation of Language Models
Knowledge-intensive language understanding tasks require Language Models (LMs) to integrate relevant context, mitigating their inherent weaknesses, such as incomplete or outdated knowledge. Nevertheless, studies indicate that LMs often ignore the provided context as it can conflict with the pre-existing LM's memory learned during pre-training. Moreover, conflicting knowledge can already be present in the LM's parameters, termed intra-memory conflict. Existing works have studied the two types of knowledge conflicts only in isolation. We conjecture that the (degree of) intra-memory conflicts can in turn affect LM's handling of context-memory conflicts. To study this, we introduce the DYNAMICQA dataset, which includes facts with a temporal dynamic nature where a fact can change with a varying time frequency and disputable dynamic facts, which can change depending on the viewpoint. DYNAMICQA is the first to include real-world knowledge conflicts and provide context to study the link between the different types of knowledge conflicts. With the proposed dataset, we assess the use of uncertainty for measuring the intra-memory conflict and introduce a novel Coherent Persuasion (CP) score to evaluate the context's ability to sway LM's semantic output. Our extensive experiments reveal that static facts, which are unlikely to change, are more easily updated with additional context, relative to temporal and disputable facts.
CorefDiffs: Co-referential and Differential Knowledge Flow in Document Grounded Conversations
Knowledge-grounded dialog systems need to incorporate smooth transitions among knowledge selected for generating responses, to ensure that dialog flows naturally. For document-grounded dialog systems, the inter- and intra-document knowledge relations can be used to model such conversational flows. We develop a novel Multi-Document Co-Referential Graph (Coref-MDG) to effectively capture the inter-document relationships based on commonsense and similarity and the intra-document co-referential structures of knowledge segments within the grounding documents. We propose CorefDiffs, a Co-referential and Differential flow management method, to linearize the static Coref-MDG into conversational sequence logic. CorefDiffs performs knowledge selection by accounting for contextual graph structures and the knowledge difference sequences. CorefDiffs significantly outperforms the state-of-the-art by 9.5\%, 7.4\%, and 8.2\% on three public benchmarks. This demonstrates that the effective modeling of co-reference and knowledge difference for dialog flows are critical for transitions in document-grounded conversation
COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
To combat COVID-19, both clinicians and scientists need to digest vast amounts of relevant biomedical knowledge in scientific literature to understand the disease mechanism and related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities and their visual chemical structures, relations, and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence.
SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
Localized Gaussian Splatting Editing with Contextual Awareness
Recent text-guided generation of individual 3D object has achieved great success using diffusion priors. However, these methods are not suitable for object insertion and replacement tasks as they do not consider the background, leading to illumination mismatches within the environment. To bridge the gap, we introduce an illumination-aware 3D scene editing pipeline for 3D Gaussian Splatting (3DGS) representation. Our key observation is that inpainting by the state-of-the-art conditional 2D diffusion model is consistent with background in lighting. To leverage the prior knowledge from the well-trained diffusion models for 3D object generation, our approach employs a coarse-to-fine objection optimization pipeline with inpainted views. In the first coarse step, we achieve image-to-3D lifting given an ideal inpainted view. The process employs 3D-aware diffusion prior from a view-conditioned diffusion model, which preserves illumination present in the conditioning image. To acquire an ideal inpainted image, we introduce an Anchor View Proposal (AVP) algorithm to find a single view that best represents the scene illumination in target region. In the second Texture Enhancement step, we introduce a novel Depth-guided Inpainting Score Distillation Sampling (DI-SDS), which enhances geometry and texture details with the inpainting diffusion prior, beyond the scope of the 3D-aware diffusion prior knowledge in the first coarse step. DI-SDS not only provides fine-grained texture enhancement, but also urges optimization to respect scene lighting. Our approach efficiently achieves local editing with global illumination consistency without explicitly modeling light transport. We demonstrate robustness of our method by evaluating editing in real scenes containing explicit highlight and shadows, and compare against the state-of-the-art text-to-3D editing methods.
Efficient Rate Optimal Regret for Adversarial Contextual MDPs Using Online Function Approximation
We present the OMG-CMDP! algorithm for regret minimization in adversarial Contextual MDPs. The algorithm operates under the minimal assumptions of realizable function class and access to online least squares and log loss regression oracles. Our algorithm is efficient (assuming efficient online regression oracles), simple and robust to approximation errors. It enjoys an O(H^{2.5} T|S||A| ( mathcal{R(O) + H log(delta^{-1}) )}) regret guarantee, with T being the number of episodes, S the state space, A the action space, H the horizon and R(O) = R(O_{sq}^F) + R(O_{log}^P) is the sum of the regression oracles' regret, used to approximate the context-dependent rewards and dynamics, respectively. To the best of our knowledge, our algorithm is the first efficient rate optimal regret minimization algorithm for adversarial CMDPs that operates under the minimal standard assumption of online function approximation.
Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling algorithm using special classes of sparsity-inducing priors (e.g., spike-and-slab) to model the unknown parameter and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high-dimensional and sparse contextual bandits. For faster computation, we use variational inference instead of Markov Chain Monte Carlo (MCMC) to approximate the posterior distribution. Extensive simulations demonstrate the improved performance of our proposed algorithm over existing ones.
Knowledge Graph Augmented Network Towards Multiview Representation Learning for Aspect-based Sentiment Analysis
Aspect-based sentiment analysis (ABSA) is a fine-grained task of sentiment analysis. To better comprehend long complicated sentences and obtain accurate aspect-specific information, linguistic and commonsense knowledge are generally required in this task. However, most current methods employ complicated and inefficient approaches to incorporate external knowledge, e.g., directly searching the graph nodes. Additionally, the complementarity between external knowledge and linguistic information has not been thoroughly studied. To this end, we propose a knowledge graph augmented network KGAN, which aims to effectively incorporate external knowledge with explicitly syntactic and contextual information. In particular, KGAN captures the sentiment feature representations from multiple different perspectives, i.e., context-, syntax- and knowledge-based. First, KGAN learns the contextual and syntactic representations in parallel to fully extract the semantic features. Then, KGAN integrates the knowledge graphs into the embedding space, based on which the aspect-specific knowledge representations are further obtained via an attention mechanism. Last, we propose a hierarchical fusion module to complement these multi-view representations in a local-to-global manner. Extensive experiments on five popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN. Notably, with the help of the pretrained model of RoBERTa, KGAN achieves a new record of state-of-the-art performance among all datasets.
Knowledge Graph Enhanced Event Extraction in Financial Documents
Event extraction is a classic task in natural language processing with wide use in handling large amount of yet rapidly growing financial, legal, medical, and government documents which often contain multiple events with their elements scattered and mixed across the documents, making the problem much more difficult. Though the underlying relations between event elements to be extracted provide helpful contextual information, they are somehow overlooked in prior studies. We showcase the enhancement to this task brought by utilizing the knowledge graph that captures entity relations and their attributes. We propose a first event extraction framework that embeds a knowledge graph through a Graph Neural Network and integrates the embedding with regular features, all at document-level. Specifically, for extracting events from Chinese financial announcements, our method outperforms the state-of-the-art method by 5.3% in F1-score.
Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
For an explanation of a deep learning model to be effective, it must provide both insight into a model and suggest a corresponding action in order to achieve some objective. Too often, the litany of proposed explainable deep learning methods stop at the first step, providing practitioners with insight into a model, but no way to act on it. In this paper, we propose contextual decomposition explanation penalization (CDEP), a method which enables practitioners to leverage existing explanation methods in order to increase the predictive accuracy of deep learning models. In particular, when shown that a model has incorrectly assigned importance to some features, CDEP enables practitioners to correct these errors by directly regularizing the provided explanations. Using explanations provided by contextual decomposition (CD) (Murdoch et al., 2018), we demonstrate the ability of our method to increase performance on an array of toy and real datasets.
Deeper Text Understanding for IR with Contextual Neural Language Modeling
Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited.
Engineering Design Knowledge Graphs from Patented Artefact Descriptions for Retrieval-Augmented Generation in the Design Process
Despite significant popularity, Large-language Models (LLMs) require explicit, contextual facts to support domain-specific knowledge-intensive tasks in the design process. The applications built using LLMs should hence adopt Retrieval-Augmented Generation (RAG) to better suit the design process. In this article, we present a data-driven method to identify explicit facts from patent documents that provide standard descriptions of over 8 million artefacts. In our method, we train roBERTa Transformer-based sequence classification models using our dataset of 44,227 sentences and facts. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities so that explicit facts of the form head entity :: relationship :: tail entity are identified. In the benchmark approaches for constructing facts, we use linear classifiers and Graph Neural Networks (GNNs) both incorporating BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base of around 3 million facts. Upon retrieving the facts representing generalisable domain knowledge and the knowledge of specific subsystems and issues, we demonstrate how these facts contextualise LLMs for generating text that is more relevant to the design process.
KnowPO: Knowledge-aware Preference Optimization for Controllable Knowledge Selection in Retrieval-Augmented Language Models
By integrating external knowledge, Retrieval-Augmented Generation (RAG) has become an effective strategy for mitigating the hallucination problems that large language models (LLMs) encounter when dealing with knowledge-intensive tasks. However, in the process of integrating external non-parametric supporting evidence with internal parametric knowledge, inevitable knowledge conflicts may arise, leading to confusion in the model's responses. To enhance the knowledge selection of LLMs in various contexts, some research has focused on refining their behavior patterns through instruction-tuning. Nonetheless, due to the absence of explicit negative signals and comparative objectives, models fine-tuned in this manner may still exhibit undesirable behaviors such as contextual ignorance and contextual overinclusion. To this end, we propose a Knowledge-aware Preference Optimization strategy, dubbed KnowPO, aimed at achieving adaptive knowledge selection based on contextual relevance in real retrieval scenarios. Concretely, we proposed a general paradigm for constructing knowledge conflict datasets, which comprehensively cover various error types and learn how to avoid these negative signals through preference optimization methods. Simultaneously, we proposed a rewriting strategy and data ratio optimization strategy to address preference imbalances. Experimental results show that KnowPO outperforms previous methods for handling knowledge conflicts by over 37\%, while also exhibiting robust generalization across various out-of-distribution datasets.
Knowledge distillation to effectively attain both region-of-interest and global semantics from an image where multiple objects appear
Models based on convolutional neural networks (CNN) and transformers have steadily been improved. They also have been applied in various computer vision downstream tasks. However, in object detection tasks, accurately localizing and classifying almost infinite categories of foods in images remains challenging. To address these problems, we first segmented the food as the region-of-interest (ROI) by using the segment-anything model (SAM) and masked the rest of the region except ROI as black pixels. This process simplified the problems into a single classification for which annotation and training were much simpler than object detection. The images in which only the ROI was preserved were fed as inputs to fine-tune various off-the-shelf models that encoded their own inductive biases. Among them, Data-efficient image Transformers (DeiTs) had the best classification performance. Nonetheless, when foods' shapes and textures were similar, the contextual features of the ROI-only images were not enough for accurate classification. Therefore, we introduced a novel type of combined architecture, RveRNet, which consisted of ROI, extra-ROI, and integration modules that allowed it to account for both the ROI's and global contexts. The RveRNet's F1 score was 10% better than other individual models when classifying ambiguous food images. If the RveRNet's modules were DeiT with the knowledge distillation from the CNN, performed the best. We investigated how architectures can be made robust against input noise caused by permutation and translocation. The results indicated that there was a trade-off between how much the CNN teacher's knowledge could be distilled to DeiT and DeiT's innate strength. Code is publicly available at: https://github.com/Seonwhee-Genome/RveRNet.
KAM-CoT: Knowledge Augmented Multimodal Chain-of-Thoughts Reasoning
Large Language Models (LLMs) have demonstrated impressive performance in natural language processing tasks by leveraging chain of thought (CoT) that enables step-by-step thinking. Extending LLMs with multimodal capabilities is the recent interest, but incurs computational cost and requires substantial hardware resources. To address these challenges, we propose KAM-CoT a framework that integrates CoT reasoning, Knowledge Graphs (KGs), and multiple modalities for a comprehensive understanding of multimodal tasks. KAM-CoT adopts a two-stage training process with KG grounding to generate effective rationales and answers. By incorporating external knowledge from KGs during reasoning, the model gains a deeper contextual understanding reducing hallucinations and enhancing the quality of answers. This knowledge-augmented CoT reasoning empowers the model to handle questions requiring external context, providing more informed answers. Experimental findings show KAM-CoT outperforms the state-of-the-art methods. On the ScienceQA dataset, we achieve an average accuracy of 93.87%, surpassing GPT-3.5 (75.17%) by 18% and GPT-4 (83.99%) by 10%. Remarkably, KAM-CoT achieves these results with only 280M trainable parameters at a time, demonstrating its cost-efficiency and effectiveness.
Enhancing Speaker Diarization with Large Language Models: A Contextual Beam Search Approach
Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues.
Knowledge Distillation via Token-level Relationship Graph
Knowledge distillation is a powerful technique for transferring knowledge from a pre-trained teacher model to a student model. However, the true potential of knowledge transfer has not been fully explored. Existing approaches primarily focus on distilling individual information or instance-level relationships, overlooking the valuable information embedded in token-level relationships, which may be particularly affected by the long-tail effects. To address the above limitations, we propose a novel method called Knowledge Distillation with Token-level Relationship Graph (TRG) that leverages the token-wise relational knowledge to enhance the performance of knowledge distillation. By employing TRG, the student model can effectively emulate higher-level semantic information from the teacher model, resulting in improved distillation results. To further enhance the learning process, we introduce a token-wise contextual loss called contextual loss, which encourages the student model to capture the inner-instance semantic contextual of the teacher model. We conduct experiments to evaluate the effectiveness of the proposed method against several state-of-the-art approaches. Empirical results demonstrate the superiority of TRG across various visual classification tasks, including those involving imbalanced data. Our method consistently outperforms the existing baselines, establishing a new state-of-the-art performance in the field of knowledge distillation.
Entity-Based Knowledge Conflicts in Question Answering
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.
Contextual Text Embeddings for Twi
Transformer-based language models have been changing the modern Natural Language Processing (NLP) landscape for high-resource languages such as English, Chinese, Russian, etc. However, this technology does not yet exist for any Ghanaian language. In this paper, we introduce the first of such models for Twi or Akan, the most widely spoken Ghanaian language. The specific contribution of this research work is the development of several pretrained transformer language models for the Akuapem and Asante dialects of Twi, paving the way for advances in application areas such as Named Entity Recognition (NER), Neural Machine Translation (NMT), Sentiment Analysis (SA) and Part-of-Speech (POS) tagging. Specifically, we introduce four different flavours of ABENA -- A BERT model Now in Akan that is fine-tuned on a set of Akan corpora, and BAKO - BERT with Akan Knowledge only, which is trained from scratch. We open-source the model through the Hugging Face model hub and demonstrate its use via a simple sentiment classification example.
Difference-aware Knowledge Selection for Knowledge-grounded Conversation Generation
In a multi-turn knowledge-grounded dialog, the difference between the knowledge selected at different turns usually provides potential clues to knowledge selection, which has been largely neglected in previous research. In this paper, we propose a difference-aware knowledge selection method. It first computes the difference between the candidate knowledge sentences provided at the current turn and those chosen in the previous turns. Then, the differential information is fused with or disentangled from the contextual information to facilitate final knowledge selection. Automatic, human observational, and interactive evaluation shows that our method is able to select knowledge more accurately and generate more informative responses, significantly outperforming the state-of-the-art baselines. The codes are available at https://github.com/chujiezheng/DiffKS.
AutoKG: Constructing Virtual Knowledge Graphs from Unstructured Documents for Question Answering
Knowledge graphs (KGs) have the advantage of providing fine-grained detail for question-answering systems. Unfortunately, building a reliable KG is time-consuming and expensive as it requires human intervention. To overcome this issue, we propose a novel framework to automatically construct a KG from unstructured documents that does not require external alignment. We first extract surface-form knowledge tuples from unstructured documents and encode them with contextual information. Entities with similar context semantics are then linked through internal alignment to form a graph structure. This allows us to extract the desired information from multiple documents by traversing the generated KG without a manual process. We examine its performance in retrieval based QA systems by reformulating the WikiMovies and MetaQA datasets into a tuple-level retrieval task. The experimental results show that our method outperforms traditional retrieval methods by a large margin.
VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language Models
Recent approaches in domain-specific named entity recognition (NER), such as biomedical NER, have shown remarkable advances. However, they still lack of faithfulness, producing erroneous predictions. We assume that knowledge of entities can be useful in verifying the correctness of the predictions. Despite the usefulness of knowledge, resolving such errors with knowledge is nontrivial, since the knowledge itself does not directly indicate the ground-truth label. To this end, we propose VerifiNER, a post-hoc verification framework that identifies errors from existing NER methods using knowledge and revises them into more faithful predictions. Our framework leverages the reasoning abilities of large language models to adequately ground on knowledge and the contextual information in the verification process. We validate effectiveness of VerifiNER through extensive experiments on biomedical datasets. The results suggest that VerifiNER can successfully verify errors from existing models as a model-agnostic approach. Further analyses on out-of-domain and low-resource settings show the usefulness of VerifiNER on real-world applications.
PIP-KAG: Mitigating Knowledge Conflicts in Knowledge-Augmented Generation via Parametric Pruning
Knowledge-Augmented Generation (KAG) has shown great promise in updating the internal memory of Large Language Models (LLMs) by integrating external knowledge. However, KAG inevitably faces knowledge conflicts when the internal memory contradicts external information. Current approaches to mitigating these conflicts mainly focus on improving external knowledge utilization. However, these methods have shown only limited effectiveness in mitigating the knowledge conflict problem, as internal knowledge continues to influence the generation process of LLMs. In this paper, we propose a ParametrIc Pruning-based Knowledge-Augmented Generation (PIP-KAG) approach, which prunes internal knowledge of LLMs and incorporates a plug-and-play adaptation module to help LLMs better leverage external sources. Additionally, we construct the CoConflictQA benchmark based on the hallucination of LLMs to better evaluate contextual faithfulness during answering questions. Experimental results on CoConflictQA demonstrate that PIP-KAG significantly reduces knowledge conflicts and improves context fidelity. Notably, PIP-KAG reduces LLM's parameters by 13%, enhancing parameter efficiency in LLMs within the KAG framework. All codes are available at https://github.com/OpenBMB/PIP-KAG.
Breaking Focus: Contextual Distraction Curse in Large Language Models
Recent advances in Large Language Models (LLMs) have revolutionized generative systems, achieving excellent performance across diverse domains. Although these models perform well in controlled environments, their real-world applications frequently encounter inputs containing both essential and irrelevant details. Our investigation has revealed a critical vulnerability in LLMs, which we term Contextual Distraction Vulnerability (CDV). This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context. To systematically investigate this vulnerability, we propose an efficient tree-based search methodology to automatically generate CDV examples. Our approach successfully generates CDV examples across four datasets, causing an average performance degradation of approximately 45% in state-of-the-art LLMs. To address this critical issue, we explore various mitigation strategies and find that post-targeted training approaches can effectively enhance model robustness against contextual distractions. Our findings highlight the fundamental nature of CDV as an ability-level challenge rather than a knowledge-level issue since models demonstrate the necessary knowledge by answering correctly in the absence of distractions. This calls the community's attention to address CDV during model development to ensure reliability. The code is available at https://github.com/wyf23187/LLM_CDV.
Sirius: Contextual Sparsity with Correction for Efficient LLMs
With the blossom of large language models (LLMs), inference efficiency becomes increasingly important. Various approximation methods are proposed to reduce the cost at inference time. Contextual Sparsity (CS) is appealing for its training-free nature and its ability to reach a higher compression ratio seemingly without quality degradation. However, after a comprehensive evaluation of contextual sparsity methods on various complex generation tasks, we find that although CS succeeds in prompt-understanding tasks, CS significantly degrades the model performance for reasoning, deduction, and knowledge-based tasks. Despite the gap in end-to-end accuracy, we observed that sparse models often share general problem-solving logic and require only a few token corrections to recover the original model performance. This paper introduces Sirius, an efficient correction mechanism, which significantly recovers CS models quality on reasoning tasks while maintaining its efficiency gain. Sirius is evaluated on 6 models with 8 difficult generation tasks in reasoning, math, and coding and shows consistent effectiveness and efficiency. Also, we carefully develop a system implementation for Sirius and show that Sirius achieves roughly 20% reduction in latency for 8B model on-chip and 35% reduction for 70B model offloading. We open-source our implementation of Sirius at https://github.com/Infini-AI-Lab/Sirius.git.
BPKD: Boundary Privileged Knowledge Distillation For Semantic Segmentation
Current knowledge distillation approaches in semantic segmentation tend to adopt a holistic approach that treats all spatial locations equally. However, for dense prediction, students' predictions on edge regions are highly uncertain due to contextual information leakage, requiring higher spatial sensitivity knowledge than the body regions. To address this challenge, this paper proposes a novel approach called boundary-privileged knowledge distillation (BPKD). BPKD distills the knowledge of the teacher model's body and edges separately to the compact student model. Specifically, we employ two distinct loss functions: (i) edge loss, which aims to distinguish between ambiguous classes at the pixel level in edge regions; (ii) body loss, which utilizes shape constraints and selectively attends to the inner-semantic regions. Our experiments demonstrate that the proposed BPKD method provides extensive refinements and aggregation for edge and body regions. Additionally, the method achieves state-of-the-art distillation performance for semantic segmentation on three popular benchmark datasets, highlighting its effectiveness and generalization ability. BPKD shows consistent improvements across a diverse array of lightweight segmentation structures, including both CNNs and transformers, underscoring its architecture-agnostic adaptability. The code is available at https://github.com/AkideLiu/BPKD.
Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction
Integrating structured knowledge from tabular formats poses significant challenges within natural language processing (NLP), mainly when dealing with complex, semi-structured tables like those found in the FeTaQA dataset. These tables require advanced methods to interpret and generate meaningful responses accurately. Traditional approaches, such as SQL and SPARQL, often fail to fully capture the semantics of such data, especially in the presence of irregular table structures like web tables. This paper addresses these challenges by proposing a novel approach that extracts triples straightforward from tabular data and integrates it with a retrieval-augmented generation (RAG) model to enhance the accuracy, coherence, and contextual richness of responses generated by a fine-tuned GPT-3.5-turbo-0125 model. Our approach significantly outperforms existing baselines on the FeTaQA dataset, particularly excelling in Sacre-BLEU and ROUGE metrics. It effectively generates contextually accurate and detailed long-form answers from tables, showcasing its strength in complex data interpretation.
Fine-Tuning Medical Language Models for Enhanced Long-Contextual Understanding and Domain Expertise
Large Language Models (LLMs) have been widely applied in various professional fields. By fine-tuning the models using domain specific question and answer datasets, the professional domain knowledge and Q\&A abilities of these models have significantly improved, for example, medical professional LLMs that use fine-tuning of doctor-patient Q\&A data exhibit extraordinary disease diagnostic abilities. However, we observed that despite improvements in specific domain knowledge, the performance of medical LLM in long-context understanding has significantly declined, especially compared to general language models with similar parameters. The purpose of this study is to investigate the phenomenon of reduced performance in understanding long-context in medical LLM. We designed a series of experiments to conduct open-book professional knowledge exams on all models to evaluate their ability to read long-context. By adjusting the proportion and quantity of general data and medical data in the process of fine-tuning, we can determine the best data composition to optimize the professional model and achieve a balance between long-context performance and specific domain knowledge.
IRCAN: Mitigating Knowledge Conflicts in LLM Generation via Identifying and Reweighting Context-Aware Neurons
It is widely acknowledged that large language models (LLMs) encode a vast reservoir of knowledge after being trained on mass data. Recent studies disclose knowledge conflicts in LLM generation, wherein outdated or incorrect parametric knowledge (i.e., encoded knowledge) contradicts new knowledge provided in the context. To mitigate such knowledge conflicts, we propose a novel framework, IRCAN (Identifying and Reweighting Context-Aware Neurons) to capitalize on neurons that are crucial in processing contextual cues. Specifically, IRCAN first identifies neurons that significantly contribute to context processing, utilizing a context-aware attribution score derived from integrated gradients. Subsequently, the identified context-aware neurons are strengthened via reweighting. In doing so, we steer LLMs to generate context-sensitive outputs with respect to the new knowledge provided in the context. Extensive experiments conducted across a variety of models and tasks demonstrate that IRCAN not only achieves remarkable improvements in handling knowledge conflicts but also offers a scalable, plug-andplay solution that can be integrated seamlessly with existing models.
Knowledge-Rich Self-Supervision for Biomedical Entity Linking
Entity linking faces significant challenges such as prolific variations and prevalent ambiguities, especially in high-value domains with myriad entities. Standard classification approaches suffer from the annotation bottleneck and cannot effectively handle unseen entities. Zero-shot entity linking has emerged as a promising direction for generalizing to new entities, but it still requires example gold entity mentions during training and canonical descriptions for all entities, both of which are rarely available outside of Wikipedia. In this paper, we explore Knowledge-RIch Self-Supervision (tt KRISS) for biomedical entity linking, by leveraging readily available domain knowledge. In training, it generates self-supervised mention examples on unlabeled text using a domain ontology and trains a contextual encoder using contrastive learning. For inference, it samples self-supervised mentions as prototypes for each entity and conducts linking by mapping the test mention to the most similar prototype. Our approach can easily incorporate entity descriptions and gold mention labels if available. We conducted extensive experiments on seven standard datasets spanning biomedical literature and clinical notes. Without using any labeled information, our method produces tt KRISSBERT, a universal entity linker for four million UMLS entities that attains new state of the art, outperforming prior self-supervised methods by as much as 20 absolute points in accuracy.
In-Context Editing: Learning Knowledge from Self-Induced Distributions
The existing fine-tuning paradigm for language models is brittle in knowledge editing scenarios, where the model must incorporate new information without extensive retraining. This brittleness often results in overfitting, reduced performance, and unnatural language generation. To address this, we propose Consistent In-Context Editing (ICE), a novel approach that leverages the model's in-context learning capability to tune toward a contextual distribution rather than a one-hot target. ICE introduces a straightforward optimization framework that includes both a target and a procedure, enhancing the robustness and effectiveness of gradient-based tuning methods. We provide analytical insights into ICE across four critical aspects of knowledge editing: accuracy, locality, generalization, and linguistic quality, showing its advantages. Experimental results across four datasets confirm the effectiveness of ICE and demonstrate its potential for continual editing, ensuring that updated information is incorporated while preserving the integrity of the model.
A Survey on Knowledge Distillation of Large Language Models
This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.
Complex Logical Reasoning over Knowledge Graphs using Large Language Models
Reasoning over knowledge graphs (KGs) is a challenging task that requires a deep understanding of the complex relationships between entities and the underlying logic of their relations. Current approaches rely on learning geometries to embed entities in vector space for logical query operations, but they suffer from subpar performance on complex queries and dataset-specific representations. In this paper, we propose a novel decoupled approach, Language-guided Abstract Reasoning over Knowledge graphs (LARK), that formulates complex KG reasoning as a combination of contextual KG search and logical query reasoning, to leverage the strengths of graph extraction algorithms and large language models (LLM), respectively. Our experiments demonstrate that the proposed approach outperforms state-of-the-art KG reasoning methods on standard benchmark datasets across several logical query constructs, with significant performance gain for queries of higher complexity. Furthermore, we show that the performance of our approach improves proportionally to the increase in size of the underlying LLM, enabling the integration of the latest advancements in LLMs for logical reasoning over KGs. Our work presents a new direction for addressing the challenges of complex KG reasoning and paves the way for future research in this area.
CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model
The integration of Retrieval-Augmented Generation (RAG) with Multimodal Large Language Models (MLLMs) has revolutionized information retrieval and expanded the practical applications of AI. However, current systems struggle in accurately interpreting user intent, employing diverse retrieval strategies, and effectively filtering unintended or inappropriate responses, limiting their effectiveness. This paper introduces Contextual Understanding and Enhanced Search with MLLM (CUE-M), a novel multimodal search framework that addresses these challenges through a multi-stage pipeline comprising image context enrichment, intent refinement, contextual query generation, external API integration, and relevance-based filtering. CUE-M incorporates a robust filtering pipeline combining image-based, text-based, and multimodal classifiers, dynamically adapting to instance- and category-specific concern defined by organizational policies. Evaluations on a multimodal Q&A dataset and a public safety benchmark demonstrate that CUE-M outperforms baselines in accuracy, knowledge integration, and safety, advancing the capabilities of multimodal retrieval systems.
BanglaAutoKG: Automatic Bangla Knowledge Graph Construction with Semantic Neural Graph Filtering
Knowledge Graphs (KGs) have proven essential in information processing and reasoning applications because they link related entities and give context-rich information, supporting efficient information retrieval and knowledge discovery; presenting information flow in a very effective manner. Despite being widely used globally, Bangla is relatively underrepresented in KGs due to a lack of comprehensive datasets, encoders, NER (named entity recognition) models, POS (part-of-speech) taggers, and lemmatizers, hindering efficient information processing and reasoning applications in the language. Addressing the KG scarcity in Bengali, we propose BanglaAutoKG, a pioneering framework that is able to automatically construct Bengali KGs from any Bangla text. We utilize multilingual LLMs to understand various languages and correlate entities and relations universally. By employing a translation dictionary to identify English equivalents and extracting word features from pre-trained BERT models, we construct the foundational KG. To reduce noise and align word embeddings with our goal, we employ graph-based polynomial filters. Lastly, we implement a GNN-based semantic filter, which elevates contextual understanding and trims unnecessary edges, culminating in the formation of the definitive KG. Empirical findings and case studies demonstrate the universal effectiveness of our model, capable of autonomously constructing semantically enriched KGs from any text.
EVEDIT: Event-based Knowledge Editing with Deductive Editing Boundaries
The dynamic nature of real-world information necessitates efficient knowledge editing (KE) in large language models (LLMs) for knowledge updating. However, current KE approaches, which typically operate on (subject, relation, object) triples, ignore the contextual information and the relation among different knowledge. Such editing methods could thus encounter an uncertain editing boundary, leaving a lot of relevant knowledge in ambiguity: Queries that could be answered pre-edit cannot be reliably answered afterward. In this work, we analyze this issue by introducing a theoretical framework for KE that highlights an overlooked set of knowledge that remains unchanged and aids in knowledge deduction during editing, which we name as the deduction anchor. We further address this issue by proposing a novel task of event-based knowledge editing that pairs facts with event descriptions. This task manifests not only a closer simulation of real-world editing scenarios but also a more logically sound setting, implicitly defining the deduction anchor to address the issue of indeterminate editing boundaries. We empirically demonstrate the superiority of event-based editing over the existing setting on resolving uncertainty in edited models, and curate a new benchmark dataset EvEdit derived from the CounterFact dataset. Moreover, while we observe that the event-based setting is significantly challenging for existing approaches, we propose a novel approach Self-Edit that showcases stronger performance, achieving 55.6% consistency improvement while maintaining the naturalness of generation.
Bayes Conditional Distribution Estimation for Knowledge Distillation Based on Conditional Mutual Information
It is believed that in knowledge distillation (KD), the role of the teacher is to provide an estimate for the unknown Bayes conditional probability distribution (BCPD) to be used in the student training process. Conventionally, this estimate is obtained by training the teacher using maximum log-likelihood (MLL) method. To improve this estimate for KD, in this paper we introduce the concept of conditional mutual information (CMI) into the estimation of BCPD and propose a novel estimator called the maximum CMI (MCMI) method. Specifically, in MCMI estimation, both the log-likelihood and CMI of the teacher are simultaneously maximized when the teacher is trained. Through Eigen-CAM, it is further shown that maximizing the teacher's CMI value allows the teacher to capture more contextual information in an image cluster. Via conducting a thorough set of experiments, we show that by employing a teacher trained via MCMI estimation rather than one trained via MLL estimation in various state-of-the-art KD frameworks, the student's classification accuracy consistently increases, with the gain of up to 3.32\%. This suggests that the teacher's BCPD estimate provided by MCMI method is more accurate than that provided by MLL method. In addition, we show that such improvements in the student's accuracy are more drastic in zero-shot and few-shot settings. Notably, the student's accuracy increases with the gain of up to 5.72\% when 5\% of the training samples are available to the student (few-shot), and increases from 0\% to as high as 84\% for an omitted class (zero-shot). The code is available at https://github.com/iclr2024mcmi/ICLRMCMI.
ALCUNA: Large Language Models Meet New Knowledge
With the rapid development of NLP, large-scale language models (LLMs) excel in various tasks across multiple domains now. However, existing benchmarks may not adequately measure these models' capabilities, especially when faced with new knowledge. In this paper, we address the lack of benchmarks to evaluate LLMs' ability to handle new knowledge, an important and challenging aspect in the rapidly evolving world. We propose an approach called KnowGen that generates new knowledge by altering existing entity attributes and relationships, resulting in artificial entities that are distinct from real-world entities. With KnowGen, we introduce a benchmark named ALCUNA to assess LLMs' abilities in knowledge understanding, differentiation, and association. We benchmark several LLMs, reveals that their performance in face of new knowledge is not satisfactory, particularly in reasoning between new and internal knowledge. We also explore the impact of entity similarity on the model's understanding of entity knowledge and the influence of contextual entities. We appeal to the need for caution when using LLMs in new scenarios or with new knowledge, and hope that our benchmarks can help drive the development of LLMs in face of new knowledge.
Augmenting LLMs with Knowledge: A survey on hallucination prevention
Large pre-trained language models have demonstrated their proficiency in storing factual knowledge within their parameters and achieving remarkable results when fine-tuned for downstream natural language processing tasks. Nonetheless, their capacity to access and manipulate knowledge with precision remains constrained, resulting in performance disparities on knowledge-intensive tasks when compared to task-specific architectures. Additionally, the challenges of providing provenance for model decisions and maintaining up-to-date world knowledge persist as open research frontiers. To address these limitations, the integration of pre-trained models with differentiable access mechanisms to explicit non-parametric memory emerges as a promising solution. This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources, including external knowledge bases and search engines. While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules to augment their contextual processing capabilities, departing from the conventional language modeling paradigm. Through an exploration of current advancements in augmenting large language models with knowledge, this work concludes that this emerging research direction holds the potential to address prevalent issues in traditional LMs, such as hallucinations, un-grounded responses, and scalability challenges.
Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting
Large language models (LLMs) demonstrate remarkable medical expertise, but data privacy concerns impede their direct use in healthcare environments. Although offering improved data privacy protection, domain-specific small language models (SLMs) often underperform LLMs, emphasizing the need for methods that reduce this performance gap while alleviating privacy concerns. In this paper, we present a simple yet effective method that harnesses LLMs' medical proficiency to boost SLM performance in medical tasks under privacy-restricted scenarios. Specifically, we mitigate patient privacy issues by extracting keywords from medical data and prompting the LLM to generate a medical knowledge-intensive context by simulating clinicians' thought processes. This context serves as additional input for SLMs, augmenting their decision-making capabilities. Our method significantly enhances performance in both few-shot and full training settings across three medical knowledge-intensive tasks, achieving up to a 22.57% increase in absolute accuracy compared to SLM fine-tuning without context, and sets new state-of-the-art results in two medical tasks within privacy-restricted scenarios. Further out-of-domain testing and experiments in two general domain datasets showcase its generalizability and broad applicability.
Knowledge-enhanced Agents for Interactive Text Games
Communication via natural language is a crucial aspect of intelligence, and it requires computational models to learn and reason about world concepts, with varying levels of supervision. While there has been significant progress made on fully-supervised non-interactive tasks, such as question-answering and procedural text understanding, much of the community has turned to various sequential interactive tasks, as in semi-Markov text-based games, which have revealed limitations of existing approaches in terms of coherence, contextual awareness, and their ability to learn effectively from the environment. In this paper, we propose a framework for enabling improved functional grounding of agents in text-based games. Specifically, we consider two forms of domain knowledge that we inject into learning-based agents: memory of previous correct actions and affordances of relevant objects in the environment. Our framework supports three representative model classes: `pure' reinforcement learning (RL) agents, RL agents enhanced with knowledge graphs, and agents equipped with language models. Furthermore, we devise multiple injection strategies for the above domain knowledge types and agent architectures, including injection via knowledge graphs and augmentation of the existing input encoding strategies. We perform all experiments on the ScienceWorld text-based game environment, to illustrate the performance of various model configurations in challenging science-related instruction-following tasks. Our findings provide crucial insights on the development of effective natural language processing systems for interactive contexts.
WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks
The ability of large language models (LLMs) to mimic human-like intelligence has led to a surge in LLM-based autonomous agents. Though recent LLMs seem capable of planning and reasoning given user instructions, their effectiveness in applying these capabilities for autonomous task solving remains underexplored. This is especially true in enterprise settings, where automated agents hold the promise of a high impact. To fill this gap, we propose WorkArena++, a novel benchmark consisting of 682 tasks corresponding to realistic workflows routinely performed by knowledge workers. WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents. Our empirical studies across state-of-the-art LLMs and vision-language models (VLMs), as well as human workers, reveal several challenges for such models to serve as useful assistants in the workplace. In addition to the benchmark, we provide a mechanism to effortlessly generate thousands of ground-truth observation/action traces, which can be used for fine-tuning existing models. Overall, we expect this work to serve as a useful resource to help the community progress toward capable autonomous agents. The benchmark can be found at https://github.com/ServiceNow/WorkArena/tree/workarena-plus-plus.
Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context
In the continuously advancing AI landscape, crafting context-rich and meaningful responses via Large Language Models (LLMs) is essential. Researchers are becoming more aware of the challenges that LLMs with fewer parameters encounter when trying to provide suitable answers to open-ended questions. To address these hurdles, the integration of cutting-edge strategies, augmentation of rich external domain knowledge to LLMs, offers significant improvements. This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement, honing the proficiency of LLMs, especially in domain specific community question answering platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on various LLMs with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions. Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases. This advancement highlights the importance of pairing context rich data retrieval with LLMs, offering a renewed approach to knowledge sourcing and generation in AI systems. We also show that, due to rich contextual data retrieval, the crucial entities, along with the generated answer, remain factually coherent with the gold answer.
A Benchmark to Understand the Role of Knowledge Graphs on Large Language Model's Accuracy for Question Answering on Enterprise SQL Databases
Enterprise applications of Large Language Models (LLMs) hold promise for question answering on enterprise SQL databases. However, the extent to which LLMs can accurately respond to enterprise questions in such databases remains unclear, given the absence of suitable Text-to-SQL benchmarks tailored to enterprise settings. Additionally, the potential of Knowledge Graphs (KGs) to enhance LLM-based question answering by providing business context is not well understood. This study aims to evaluate the accuracy of LLM-powered question answering systems in the context of enterprise questions and SQL databases, while also exploring the role of knowledge graphs in improving accuracy. To achieve this, we introduce a benchmark comprising an enterprise SQL schema in the insurance domain, a range of enterprise queries encompassing reporting to metrics, and a contextual layer incorporating an ontology and mappings that define a knowledge graph. Our primary finding reveals that question answering using GPT-4, with zero-shot prompts directly on SQL databases, achieves an accuracy of 16%. Notably, this accuracy increases to 54% when questions are posed over a Knowledge Graph representation of the enterprise SQL database. Therefore, investing in Knowledge Graph provides higher accuracy for LLM powered question answering systems.
HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models
Large Language Models (LLMs) trained on massive corpora demonstrate impressive capabilities in a wide range of tasks. While there are ongoing efforts to adapt these models to languages beyond English, the attention given to their evaluation methodologies remains limited. Current multilingual benchmarks often rely on back translations or re-implementations of English tests, limiting their capacity to capture unique cultural and linguistic nuances. To bridge this gap for the Korean language, we introduce HAE-RAE Bench, a dataset curated to challenge models lacking Korean cultural and contextual depth. The dataset encompasses six downstream tasks across four domains: vocabulary, history, general knowledge, and reading comprehension. Contrary to traditional evaluation suites focused on token or sequence classification and specific mathematical or logical reasoning, HAE-RAE Bench emphasizes a model's aptitude for recalling Korean-specific knowledge and cultural contexts. Comparative analysis with prior Korean benchmarks indicates that the HAE-RAE Bench presents a greater challenge to non-native models, by disturbing abilities and knowledge learned from English being transferred.
QUENCH: Measuring the gap between Indic and Non-Indic Contextual General Reasoning in LLMs
The rise of large language models (LLMs) has created a need for advanced benchmarking systems beyond traditional setups. To this end, we introduce QUENCH, a novel text-based English Quizzing Benchmark manually curated and transcribed from YouTube quiz videos. QUENCH possesses masked entities and rationales for the LLMs to predict via generation. At the intersection of geographical context and common sense reasoning, QUENCH helps assess world knowledge and deduction capabilities of LLMs via a zero-shot, open-domain quizzing setup. We perform an extensive evaluation on 7 LLMs and 4 metrics, investigating the influence of model size, prompting style, geographical context, and gold-labeled rationale generation. The benchmarking concludes with an error analysis to which the LLMs are prone.
Fast Streaming Transducer ASR Prototyping via Knowledge Distillation with Whisper
The training of automatic speech recognition (ASR) with little to no supervised data remains an open question. In this work, we demonstrate that streaming Transformer-Transducer (TT) models can be trained from scratch in consumer and accessible GPUs in their entirety with pseudo-labeled (PL) speech from foundational speech models (FSM). This allows training a robust ASR model just in one stage and does not require large data and computational budget compared to the two-step scenario with pre-training and fine-tuning. We perform a comprehensive ablation on different aspects of PL-based streaming TT models such as the impact of (1) shallow fusion of n-gram LMs, (2) contextual biasing with named entities, (3) chunk-wise decoding for low-latency streaming applications, and (4) TT overall performance as the function of the FSM size. Our results demonstrate that TT can be trained from scratch without supervised data, even with very noisy PLs. We validate the proposed framework on 6 languages from CommonVoice and propose multiple heuristics to filter out hallucinated PLs.
Using External Off-Policy Speech-To-Text Mappings in Contextual End-To-End Automated Speech Recognition
Despite improvements to the generalization performance of automated speech recognition (ASR) models, specializing ASR models for downstream tasks remains a challenging task, primarily due to reduced data availability (necessitating increased data collection), and rapidly shifting data distributions (requiring more frequent model fine-tuning). In this work, we investigate the potential of leveraging external knowledge, particularly through off-policy key-value stores generated with text-to-speech methods, to allow for flexible post-training adaptation to new data distributions. In our approach, audio embeddings captured from text-to-speech, along with semantic text embeddings, are used to bias ASR via an approximate k-nearest-neighbor (KNN) based attentive fusion step. Our experiments on LibiriSpeech and in-house voice assistant/search datasets show that the proposed approach can reduce domain adaptation time by up to 1K GPU-hours while providing up to 3% WER improvement compared to a fine-tuning baseline, suggesting a promising approach for adapting production ASR systems in challenging zero and few-shot scenarios.
Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning
Conversational recommender systems (CRS) aim to proactively elicit user preference and recommend high-quality items through natural language conversations. Typically, a CRS consists of a recommendation module to predict preferred items for users and a conversation module to generate appropriate responses. To develop an effective CRS, it is essential to seamlessly integrate the two modules. Existing works either design semantic alignment strategies, or share knowledge resources and representations between the two modules. However, these approaches still rely on different architectures or techniques to develop the two modules, making it difficult for effective module integration. To address this problem, we propose a unified CRS model named UniCRS based on knowledge-enhanced prompt learning. Our approach unifies the recommendation and conversation subtasks into the prompt learning paradigm, and utilizes knowledge-enhanced prompts based on a fixed pre-trained language model (PLM) to fulfill both subtasks in a unified approach. In the prompt design, we include fused knowledge representations, task-specific soft tokens, and the dialogue context, which can provide sufficient contextual information to adapt the PLM for the CRS task. Besides, for the recommendation subtask, we also incorporate the generated response template as an important part of the prompt, to enhance the information interaction between the two subtasks. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach.
BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language Associations
Recent advancements in biological research leverage the integration of molecules, proteins, and natural language to enhance drug discovery. However, current models exhibit several limitations, such as the generation of invalid molecular SMILES, underutilization of contextual information, and equal treatment of structured and unstructured knowledge. To address these issues, we propose BioT5, a comprehensive pre-training framework that enriches cross-modal integration in biology with chemical knowledge and natural language associations. BioT5 utilizes SELFIES for 100% robust molecular representations and extracts knowledge from the surrounding context of bio-entities in unstructured biological literature. Furthermore, BioT5 distinguishes between structured and unstructured knowledge, leading to more effective utilization of information. After fine-tuning, BioT5 shows superior performance across a wide range of tasks, demonstrating its strong capability of capturing underlying relations and properties of bio-entities. Our code is available at https://github.com/QizhiPei/BioT5{Github}.
MLLM Is a Strong Reranker: Advancing Multimodal Retrieval-augmented Generation via Knowledge-enhanced Reranking and Noise-injected Training
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in processing and generating content across multiple data modalities, including text, images, audio, and video. However, a significant drawback of MLLMs is their reliance on static training data, leading to outdated information and limited contextual awareness. This static nature hampers their ability to provide accurate, up-to-date responses, particularly in dynamic or rapidly evolving contexts. Integrating Multimodal Retrieval-augmented Generation (Multimodal RAG) offers a promising solution, but the system would inevitably encounter the multi-granularity noisy correspondence (MNC) problem, which involves two types of noise: coarse-grained (query-caption) and fine-grained (query-image). This noise hinders accurate retrieval and generation. In this work, we propose RagLLaVA, a novel framework with knowledge-enhanced reranking and noise-injected training, to address these limitations. We instruction-tune the MLLM with a simple yet effective instruction template to induce its ranking ability and serve it as a reranker to precisely filter the top-k retrieved images. For generation, we inject visual noise during training at the data and token levels to enhance the generator's robustness. Extensive experiments are conducted on the subsets of two datasets that require retrieving and reasoning over images to answer a given query. Our results demonstrate the superiority of RagLLaVA in retrieving accurately and generating robustly. Code and models are available at https://github.com/IDEA-FinAI/RagLLaVA.
On the Interplay Between Misspecification and Sub-optimality Gap in Linear Contextual Bandits
We study linear contextual bandits in the misspecified setting, where the expected reward function can be approximated by a linear function class up to a bounded misspecification level zeta>0. We propose an algorithm based on a novel data selection scheme, which only selects the contextual vectors with large uncertainty for online regression. We show that, when the misspecification level zeta is dominated by tilde O (Delta / d) with Delta being the minimal sub-optimality gap and d being the dimension of the contextual vectors, our algorithm enjoys the same gap-dependent regret bound tilde O (d^2/Delta) as in the well-specified setting up to logarithmic factors. In addition, we show that an existing algorithm SupLinUCB (Chu et al., 2011) can also achieve a gap-dependent constant regret bound without the knowledge of sub-optimality gap Delta. Together with a lower bound adapted from Lattimore et al. (2020), our result suggests an interplay between misspecification level and the sub-optimality gap: (1) the linear contextual bandit model is efficiently learnable when zeta leq tilde O(Delta / d); and (2) it is not efficiently learnable when zeta geq tilde Omega({Delta} / {d}). Experiments on both synthetic and real-world datasets corroborate our theoretical results.
Beyond I.I.D.: Three Levels of Generalization for Question Answering on Knowledge Bases
Existing studies on question answering on knowledge bases (KBQA) mainly operate with the standard i.i.d assumption, i.e., training distribution over questions is the same as the test distribution. However, i.i.d may be neither reasonably achievable nor desirable on large-scale KBs because 1) true user distribution is hard to capture and 2) randomly sample training examples from the enormous space would be highly data-inefficient. Instead, we suggest that KBQA models should have three levels of built-in generalization: i.i.d, compositional, and zero-shot. To facilitate the development of KBQA models with stronger generalization, we construct and release a new large-scale, high-quality dataset with 64,331 questions, GrailQA, and provide evaluation settings for all three levels of generalization. In addition, we propose a novel BERT-based KBQA model. The combination of our dataset and model enables us to thoroughly examine and demonstrate, for the first time, the key role of pre-trained contextual embeddings like BERT in the generalization of KBQA.
RA-DIT: Retrieval-Augmented Dual Instruction Tuning
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores, but are challenging to build. Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance. We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option by retrofitting any LLM with retrieval capabilities. Our approach operates in two distinct fine-tuning steps: (1) one updates a pre-trained LM to better use retrieved information, while (2) the other updates the retriever to return more relevant results, as preferred by the LM. By fine-tuning over tasks that require both knowledge utilization and contextual awareness, we demonstrate that each stage yields significant performance improvements, and using both leads to additional gains. Our best model, RA-DIT 65B, achieves state-of-the-art performance across a range of knowledge-intensive zero- and few-shot learning benchmarks, significantly outperforming existing in-context RALM approaches by up to +8.9% in 0-shot setting and +1.4% in 5-shot setting on average.
Metaphors in Pre-Trained Language Models: Probing and Generalization Across Datasets and Languages
Human languages are full of metaphorical expressions. Metaphors help people understand the world by connecting new concepts and domains to more familiar ones. Large pre-trained language models (PLMs) are therefore assumed to encode metaphorical knowledge useful for NLP systems. In this paper, we investigate this hypothesis for PLMs, by probing metaphoricity information in their encodings, and by measuring the cross-lingual and cross-dataset generalization of this information. We present studies in multiple metaphor detection datasets and in four languages (i.e., English, Spanish, Russian, and Farsi). Our extensive experiments suggest that contextual representations in PLMs do encode metaphorical knowledge, and mostly in their middle layers. The knowledge is transferable between languages and datasets, especially when the annotation is consistent across training and testing sets. Our findings give helpful insights for both cognitive and NLP scientists.
Generate rather than Retrieve: Large Language Models are Strong Context Generators
Knowledge-intensive tasks, such as open-domain question answering (QA), require access to a large amount of world or domain knowledge. A common approach for knowledge-intensive tasks is to employ a retrieve-then-read pipeline that first retrieves a handful of relevant contextual documents from an external corpus such as Wikipedia and then predicts an answer conditioned on the retrieved documents. In this paper, we present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators. We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer. Furthermore, we propose a novel clustering-based prompting method that selects distinct prompts, resulting in the generated documents that cover different perspectives, leading to better recall over acceptable answers. We conduct extensive experiments on three different knowledge-intensive tasks, including open-domain QA, fact checking, and dialogue system. Notably, GenRead achieves 71.6 and 54.4 exact match scores on TriviaQA and WebQ, significantly outperforming the state-of-the-art retrieve-then-read pipeline DPR-FiD by +4.0 and +3.9, without retrieving any documents from any external knowledge source. Lastly, we demonstrate the model performance can be further improved by combining retrieval and generation. Our code and generated documents can be found at https://github.com/wyu97/GenRead.
Personalized Graph-Based Retrieval for Large Language Models
As large language models (LLMs) evolve, their ability to deliver personalized and context-aware responses offers transformative potential for improving user experiences. Existing personalization approaches, however, often rely solely on user history to augment the prompt, limiting their effectiveness in generating tailored outputs, especially in cold-start scenarios with sparse data. To address these limitations, we propose Personalized Graph-based Retrieval-Augmented Generation (PGraphRAG), a framework that leverages user-centric knowledge graphs to enrich personalization. By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraphRAG enhances contextual understanding and output quality. We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable. Experimental results show that PGraphRAG significantly outperforms state-of-the-art personalization methods across diverse tasks, demonstrating the unique advantages of graph-based retrieval for personalization.
AI-native Memory 2.0: Second Me
Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.
CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept
Large Language Models (LLMs) offer extensive knowledge across various domains, but they may inadvertently memorize sensitive, unauthorized, or malicious data, such as personal information in the medical and financial sectors. Machine unlearning methods aim to remove specific information from models after training to address this. However, current approaches require additional model training or struggle to effectively erase particular data points and their associated context due to LLMs' complex, dense, and continuous nature. In this study, we propose a novel amortized unlearning approach using codebook features and Sparse Autoencoders (SAEs). By leveraging a bottleneck to decompose the activation space and regulate information flow, our method efficiently unlearns targeted information while preserving the model's performance on unrelated data. To the best of our knowledge, this is the first work that successfully enables unlearning specific topics with contextual relevance in an LLM, marking a significant step towards real-world applications of machine unlearning.
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting
Recent progress has shown that large-scale pre-training using contrastive image-text pairs can be a promising alternative for high-quality visual representation learning from natural language supervision. Benefiting from a broader source of supervision, this new paradigm exhibits impressive transferability to downstream classification tasks and datasets. However, the problem of transferring the knowledge learned from image-text pairs to more complex dense prediction tasks has barely been visited. In this work, we present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP. Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models. By further using the contextual information from the image to prompt the language model, we are able to facilitate our model to better exploit the pre-trained knowledge. Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones including both CLIP models and ImageNet pre-trained models. Extensive experiments demonstrate the superior performance of our methods on semantic segmentation, object detection, and instance segmentation tasks. Code is available at https://github.com/raoyongming/DenseCLIP
Developer Experiences with a Contextualized AI Coding Assistant: Usability, Expectations, and Outcomes
In the rapidly advancing field of artificial intelligence, software development has emerged as a key area of innovation. Despite the plethora of general-purpose AI assistants available, their effectiveness diminishes in complex, domain-specific scenarios. Noting this limitation, both the academic community and industry players are relying on contextualized coding AI assistants. These assistants surpass general-purpose AI tools by integrating proprietary, domain-specific knowledge, offering precise and relevant solutions. Our study focuses on the initial experiences of 62 participants who used a contextualized coding AI assistant -- named StackSpot AI -- in a controlled setting. According to the participants, the assistants' use resulted in significant time savings, easier access to documentation, and the generation of accurate codes for internal APIs. However, challenges associated with the knowledge sources necessary to make the coding assistant access more contextual information as well as variable responses and limitations in handling complex codes were observed. The study's findings, detailing both the benefits and challenges of contextualized AI assistants, underscore their potential to revolutionize software development practices, while also highlighting areas for further refinement.
Analyzing Syntactic Generalization Capacity of Pre-trained Language Models on Japanese Honorific Conversion
Using Japanese honorifics is challenging because it requires not only knowledge of the grammatical rules but also contextual information, such as social relationships. It remains unclear whether pre-trained large language models (LLMs) can flexibly handle Japanese honorifics like humans. To analyze this, we introduce an honorific conversion task that considers social relationships among people mentioned in a conversation. We construct a Japanese honorifics dataset from problem templates of various sentence structures to investigate the syntactic generalization capacity of GPT-3, one of the leading LLMs, on this task under two settings: fine-tuning and prompt learning. Our results showed that the fine-tuned GPT-3 performed better in a context-aware honorific conversion task than the prompt-based one. The fine-tuned model demonstrated overall syntactic generalizability towards compound honorific sentences, except when tested with the data involving direct speech.
Minds versus Machines: Rethinking Entailment Verification with Language Models
Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets.
To Revise or Not to Revise: Learning to Detect Improvable Claims for Argumentative Writing Support
Optimizing the phrasing of argumentative text is crucial in higher education and professional development. However, assessing whether and how the different claims in a text should be revised is a hard task, especially for novice writers. In this work, we explore the main challenges to identifying argumentative claims in need of specific revisions. By learning from collaborative editing behaviors in online debates, we seek to capture implicit revision patterns in order to develop approaches aimed at guiding writers in how to further improve their arguments. We systematically compare the ability of common word embedding models to capture the differences between different versions of the same text, and we analyze their impact on various types of writing issues. To deal with the noisy nature of revision-based corpora, we propose a new sampling strategy based on revision distance. Opposed to approaches from prior work, such sampling can be done without employing additional annotations and judgments. Moreover, we provide evidence that using contextual information and domain knowledge can further improve prediction results. How useful a certain type of context is, depends on the issue the claim is suffering from, though.
CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images
The visual examination of tissue biopsy sections is fundamental for cancer diagnosis, with pathologists analyzing sections at multiple magnifications to discern tumor cells and their subtypes. However, existing attention-based multiple instance learning (MIL) models, used for analyzing Whole Slide Images (WSIs) in cancer diagnostics, often overlook the contextual information of tumor and neighboring tiles, leading to misclassifications. To address this, we propose the Context-Aware Multiple Instance Learning (CAMIL) architecture. CAMIL incorporates neighbor-constrained attention to consider dependencies among tiles within a WSI and integrates contextual constraints as prior knowledge into the MIL model. We evaluated CAMIL on subtyping non-small cell lung cancer (TCGA-NSCLC) and detecting lymph node (CAMELYON16) metastasis, achieving test AUCs of 0.959\% and 0.975\%, respectively, outperforming other state-of-the-art methods. Additionally, CAMIL enhances model interpretability by identifying regions of high diagnostic value.
Hypernetworks for Zero-shot Transfer in Reinforcement Learning
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
HERMES: A Unified Self-Driving World Model for Simultaneous 3D Scene Understanding and Generation
Driving World Models (DWMs) have become essential for autonomous driving by enabling future scene prediction. However, existing DWMs are limited to scene generation and fail to incorporate scene understanding, which involves interpreting and reasoning about the driving environment. In this paper, we present a unified Driving World Model named HERMES. We seamlessly integrate 3D scene understanding and future scene evolution (generation) through a unified framework in driving scenarios. Specifically, HERMES leverages a Bird's-Eye View (BEV) representation to consolidate multi-view spatial information while preserving geometric relationships and interactions. We also introduce world queries, which incorporate world knowledge into BEV features via causal attention in the Large Language Model (LLM), enabling contextual enrichment for understanding and generation tasks. We conduct comprehensive studies on nuScenes and OmniDrive-nuScenes datasets to validate the effectiveness of our method. HERMES achieves state-of-the-art performance, reducing generation error by 32.4% and improving understanding metrics such as CIDEr by 8.0%. The model and code will be publicly released at https://github.com/LMD0311/HERMES.
Towards Comprehensive Detection of Chinese Harmful Memes
This paper has been accepted in the NeurIPS 2024 D & B Track. Harmful memes have proliferated on the Chinese Internet, while research on detecting Chinese harmful memes significantly lags behind due to the absence of reliable datasets and effective detectors. To this end, we focus on the comprehensive detection of Chinese harmful memes. We construct ToxiCN MM, the first Chinese harmful meme dataset, which consists of 12,000 samples with fine-grained annotations for various meme types. Additionally, we propose a baseline detector, Multimodal Knowledge Enhancement (MKE), incorporating contextual information of meme content generated by the LLM to enhance the understanding of Chinese memes. During the evaluation phase, we conduct extensive quantitative experiments and qualitative analyses on multiple baselines, including LLMs and our MKE. The experimental results indicate that detecting Chinese harmful memes is challenging for existing models while demonstrating the effectiveness of MKE. The resources for this paper are available at https://github.com/DUT-lujunyu/ToxiCN_MM.
Large Language Models to Enhance Bayesian Optimization
Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance remains a delicate process. In this light, we present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within BO. At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can improve model-based BO. Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate LLAMBO's efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.
HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models
Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs.
Efficient and Scalable Fine-Tune of Language Models for Genome Understanding
Although DNA foundation models have advanced the understanding of genomes, they still face significant challenges in the limited scale and diversity of genomic data. This limitation starkly contrasts with the success of natural language foundation models, which thrive on substantially larger scales. Furthermore, genome understanding involves numerous downstream genome annotation tasks with inherent data heterogeneity, thereby necessitating more efficient and robust fine-tuning methods tailored for genomics. Here, we present Lingo: Language prefix fIne-tuning for GenOmes. Unlike DNA foundation models, Lingo strategically leverages natural language foundation models' contextual cues, recalibrating their linguistic knowledge to genomic sequences. Lingo further accommodates numerous, heterogeneous downstream fine-tune tasks by an adaptive rank sampling method that prunes and stochastically reintroduces pruned singular vectors within small computational budgets. Adaptive rank sampling outperformed existing fine-tuning methods on all benchmarked 14 genome understanding tasks, while requiring fewer than 2\% of trainable parameters as genomic-specific adapters. Impressively, applying these adapters on natural language foundation models matched or even exceeded the performance of DNA foundation models. Lingo presents a new paradigm of efficient and scalable genome understanding via genomic-specific adapters on language models.
TinyLLM: Learning a Small Student from Multiple Large Language Models
Transferring the reasoning capability from stronger large language models (LLMs) to smaller ones has been quite appealing, as smaller LLMs are more flexible to deploy with less expense. Among the existing solutions, knowledge distillation stands out due to its outstanding efficiency and generalization. However, existing methods suffer from several drawbacks, including limited knowledge diversity and the lack of rich contextual information. To solve the problems and facilitate the learning of compact language models, we propose TinyLLM, a novel knowledge distillation paradigm to learn a small student LLM from multiple large teacher LLMs. In particular, we encourage the student LLM to not only generate the correct answers but also understand the rationales behind these answers. Given that different LLMs possess diverse reasoning skills, we guide the student model to assimilate knowledge from various teacher LLMs. We further introduce an in-context example generator and a teacher-forcing Chain-of-Thought strategy to ensure that the rationales are accurate and grounded in contextually appropriate scenarios. Extensive experiments on six datasets across two reasoning tasks demonstrate the superiority of our method. Results show that TinyLLM can outperform large teacher LLMs significantly, despite having a considerably smaller model size.
Professional Network Matters: Connections Empower Person-Job Fit
Online recruitment platforms typically employ Person-Job Fit models in the core service that automatically match suitable job seekers with appropriate job positions. While existing works leverage historical or contextual information, they often disregard a crucial aspect: job seekers' social relationships in professional networks. This paper emphasizes the importance of incorporating professional networks into the Person-Job Fit model. Our innovative approach consists of two stages: (1) defining a Workplace Heterogeneous Information Network (WHIN) to capture heterogeneous knowledge, including professional connections and pre-training representations of various entities using a heterogeneous graph neural network; (2) designing a Contextual Social Attention Graph Neural Network (CSAGNN) that supplements users' missing information with professional connections' contextual information. We introduce a job-specific attention mechanism in CSAGNN to handle noisy professional networks, leveraging pre-trained entity representations from WHIN. We demonstrate the effectiveness of our approach through experimental evaluations conducted across three real-world recruitment datasets from LinkedIn, showing superior performance compared to baseline models.
Pre-training Contextualized World Models with In-the-wild Videos for Reinforcement Learning
Unsupervised pre-training methods utilizing large and diverse datasets have achieved tremendous success across a range of domains. Recent work has investigated such unsupervised pre-training methods for model-based reinforcement learning (MBRL) but is limited to domain-specific or simulated data. In this paper, we study the problem of pre-training world models with abundant in-the-wild videos for efficient learning of downstream visual control tasks. However, in-the-wild videos are complicated with various contextual factors, such as intricate backgrounds and textured appearance, which precludes a world model from extracting shared world knowledge to generalize better. To tackle this issue, we introduce Contextualized World Models (ContextWM) that explicitly model both the context and dynamics to overcome the complexity and diversity of in-the-wild videos and facilitate knowledge transfer between distinct scenes. Specifically, a contextualized extension of the latent dynamics model is elaborately realized by incorporating a context encoder to retain contextual information and empower the image decoder, which allows the latent dynamics model to concentrate on essential temporal variations. Our experiments show that in-the-wild video pre-training equipped with ContextWM can significantly improve the sample-efficiency of MBRL in various domains, including robotic manipulation, locomotion, and autonomous driving.
Large Language Models for Next Point-of-Interest Recommendation
The next Point of Interest (POI) recommendation task is to predict users' immediate next POI visit given their historical data. Location-Based Social Network (LBSN) data, which is often used for the next POI recommendation task, comes with challenges. One frequently disregarded challenge is how to effectively use the abundant contextual information present in LBSN data. Previous methods are limited by their numerical nature and fail to address this challenge. In this paper, we propose a framework that uses pretrained Large Language Models (LLMs) to tackle this challenge. Our framework allows us to preserve heterogeneous LBSN data in its original format, hence avoiding the loss of contextual information. Furthermore, our framework is capable of comprehending the inherent meaning of contextual information due to the inclusion of commonsense knowledge. In experiments, we test our framework on three real-world LBSN datasets. Our results show that the proposed framework outperforms the state-of-the-art models in all three datasets. Our analysis demonstrates the effectiveness of the proposed framework in using contextual information as well as alleviating the commonly encountered cold-start and short trajectory problems.
iPerceive: Applying Common-Sense Reasoning to Multi-Modal Dense Video Captioning and Video Question Answering
Most prior art in visual understanding relies solely on analyzing the "what" (e.g., event recognition) and "where" (e.g., event localization), which in some cases, fails to describe correct contextual relationships between events or leads to incorrect underlying visual attention. Part of what defines us as human and fundamentally different from machines is our instinct to seek causality behind any association, say an event Y that happened as a direct result of event X. To this end, we propose iPerceive, a framework capable of understanding the "why" between events in a video by building a common-sense knowledge base using contextual cues to infer causal relationships between objects in the video. We demonstrate the effectiveness of our technique using the dense video captioning (DVC) and video question answering (VideoQA) tasks. Furthermore, while most prior work in DVC and VideoQA relies solely on visual information, other modalities such as audio and speech are vital for a human observer's perception of an environment. We formulate DVC and VideoQA tasks as machine translation problems that utilize multiple modalities. By evaluating the performance of iPerceive DVC and iPerceive VideoQA on the ActivityNet Captions and TVQA datasets respectively, we show that our approach furthers the state-of-the-art. Code and samples are available at: iperceive.amanchadha.com.
GPT-4V(ision) as A Social Media Analysis Engine
Recent research has offered insights into the extraordinary capabilities of Large Multimodal Models (LMMs) in various general vision and language tasks. There is growing interest in how LMMs perform in more specialized domains. Social media content, inherently multimodal, blends text, images, videos, and sometimes audio. Understanding social multimedia content remains a challenging problem for contemporary machine learning frameworks. In this paper, we explore GPT-4V(ision)'s capabilities for social multimedia analysis. We select five representative tasks, including sentiment analysis, hate speech detection, fake news identification, demographic inference, and political ideology detection, to evaluate GPT-4V. Our investigation begins with a preliminary quantitative analysis for each task using existing benchmark datasets, followed by a careful review of the results and a selection of qualitative samples that illustrate GPT-4V's potential in understanding multimodal social media content. GPT-4V demonstrates remarkable efficacy in these tasks, showcasing strengths such as joint understanding of image-text pairs, contextual and cultural awareness, and extensive commonsense knowledge. Despite the overall impressive capacity of GPT-4V in the social media domain, there remain notable challenges. GPT-4V struggles with tasks involving multilingual social multimedia comprehension and has difficulties in generalizing to the latest trends in social media. Additionally, it exhibits a tendency to generate erroneous information in the context of evolving celebrity and politician knowledge, reflecting the known hallucination problem. The insights gleaned from our findings underscore a promising future for LMMs in enhancing our comprehension of social media content and its users through the analysis of multimodal information.
Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning
Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD.
VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy to address the issue of generating factually incorrect outputs in foundation models by retrieving external knowledge relevant to queries and incorporating it into their generation process. However, existing RAG approaches have primarily focused on textual information, with some recent advancements beginning to consider images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing events, processes, and contextual details more effectively than any other modality. While a few recent studies explore the integration of videos in the response generation process, they either predefine query-associated videos without retrieving them according to queries, or convert videos into the textual descriptions without harnessing their multimodal richness. To tackle these, we introduce VideoRAG, a novel framework that not only dynamically retrieves relevant videos based on their relevance with queries but also utilizes both visual and textual information of videos in the output generation. Further, to operationalize this, our method revolves around the recent advance of Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and seamless integration of the retrieved videos jointly with queries. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines.
PaperRobot: Incremental Draft Generation of Scientific Ideas
We present a PaperRobot who performs as an automatic research assistant by (1) conducting deep understanding of a large collection of human-written papers in a target domain and constructing comprehensive background knowledge graphs (KGs); (2) creating new ideas by predicting links from the background KGs, by combining graph attention and contextual text attention; (3) incrementally writing some key elements of a new paper based on memory-attention networks: from the input title along with predicted related entities to generate a paper abstract, from the abstract to generate conclusion and future work, and finally from future work to generate a title for a follow-on paper. Turing Tests, where a biomedical domain expert is asked to compare a system output and a human-authored string, show PaperRobot generated abstracts, conclusion and future work sections, and new titles are chosen over human-written ones up to 30%, 24% and 12% of the time, respectively.
Interactive Natural Language Processing
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
WildVision: Evaluating Vision-Language Models in the Wild with Human Preferences
Recent breakthroughs in vision-language models (VLMs) emphasize the necessity of benchmarking human preferences in real-world multimodal interactions. To address this gap, we launched WildVision-Arena (WV-Arena), an online platform that collects human preferences to evaluate VLMs. We curated WV-Bench by selecting 500 high-quality samples from 8,000 user submissions in WV-Arena. WV-Bench uses GPT-4 as the judge to compare each VLM with Claude-3-Sonnet, achieving a Spearman correlation of 0.94 with the WV-Arena Elo. This significantly outperforms other benchmarks like MMVet, MMMU, and MMStar. Our comprehensive analysis of 20K real-world interactions reveals important insights into the failure cases of top-performing VLMs. For example, we find that although GPT-4V surpasses many other models like Reka-Flash, Opus, and Yi-VL-Plus in simple visual recognition and reasoning tasks, it still faces challenges with subtle contextual cues, spatial reasoning, visual imagination, and expert domain knowledge. Additionally, current VLMs exhibit issues with hallucinations and safety when intentionally provoked. We are releasing our chat and feedback data to further advance research in the field of VLMs.
Internet-Augmented Dialogue Generation
The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent. We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs
Multimodal LLMs are the natural evolution of LLMs, and enlarge their capabilities so as to work beyond the pure textual modality. As research is being carried out to design novel architectures and vision-and-language adapters, in this paper we concentrate on endowing such models with the capability of answering questions that require external knowledge. Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents, which is accessed through a hierarchical retrieval pipeline. Relevant passages, using this approach, are retrieved from the external knowledge source and employed as additional context for the LLM, augmenting the effectiveness and precision of generated dialogues. We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.
Learning to Filter Context for Retrieval-Augmented Generation
On-the-fly retrieval of relevant knowledge has proven an essential element of reliable systems for tasks such as open-domain question answering and fact verification. However, because retrieval systems are not perfect, generation models are required to generate outputs given partially or entirely irrelevant passages. This can cause over- or under-reliance on context, and result in problems in the generated output such as hallucinations. To alleviate these problems, we propose FILCO, a method that improves the quality of the context provided to the generator by (1) identifying useful context based on lexical and information-theoretic approaches, and (2) training context filtering models that can filter retrieved contexts at test time. We experiment on six knowledge-intensive tasks with FLAN-T5 and LLaMa2, and demonstrate that our method outperforms existing approaches on extractive question answering (QA), complex multi-hop and long-form QA, fact verification, and dialog generation tasks. FILCO effectively improves the quality of context, whether or not it supports the canonical output.
How Large Language Models Encode Context Knowledge? A Layer-Wise Probing Study
Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ mathcal V-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.
Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP
Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
Long Context vs. RAG for LLMs: An Evaluation and Revisits
Extending context windows (i.e., Long Context, LC) and using retrievers to selectively access relevant information (i.e., Retrieval-Augmented Generation, RAG) are the two main strategies to enable LLMs to incorporate extremely long external contexts. This paper revisits recent studies on this topic, highlighting their key insights and discrepancies. We then provide a more comprehensive evaluation by filtering out questions answerable without external context, identifying the most effective retrieval methods, and expanding the datasets. We show that LC generally outperforms RAG in question-answering benchmarks, especially for Wikipedia-based questions. Summarization-based retrieval performs comparably to LC, while chunk-based retrieval lags behind. However, RAG has advantages in dialogue-based and general question queries. These insights underscore the trade-offs between RAG and LC strategies, offering guidance for future optimization of LLMs with external knowledge sources. We also provide an in-depth discussion on this topic, highlighting the overlooked importance of context relevance in existing studies.
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
COPEN: Probing Conceptual Knowledge in Pre-trained Language Models
Conceptual knowledge is fundamental to human cognition and knowledge bases. However, existing knowledge probing works only focus on evaluating factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge. Since conceptual knowledge often appears as implicit commonsense behind texts, designing probes for conceptual knowledge is hard. Inspired by knowledge representation schemata, we comprehensively evaluate conceptual knowledge of PLMs by designing three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts, respectively. For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark. Extensive experiments on different sizes and types of PLMs show that existing PLMs systematically lack conceptual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing human-like cognition in PLMs. COPEN and our codes are publicly released at https://github.com/THU-KEG/COPEN.
KTRL+F: Knowledge-Augmented In-Document Search
We introduce a new problem KTRL+F, a knowledge-augmented in-document search task that necessitates real-time identification of all semantic targets within a document with the awareness of external sources through a single natural query. This task addresses following unique challenges for in-document search: 1) utilizing knowledge outside the document for extended use of additional information about targets to bridge the semantic gap between the query and the targets, and 2) balancing between real-time applicability with the performance. We analyze various baselines in KTRL+F and find there are limitations of existing models, such as hallucinations, low latency, or difficulties in leveraging external knowledge. Therefore we propose a Knowledge-Augmented Phrase Retrieval model that shows a promising balance between speed and performance by simply augmenting external knowledge embedding in phrase embedding. Additionally, we conduct a user study to verify whether solving KTRL+F can enhance search experience of users. It demonstrates that even with our simple model users can reduce the time for searching with less queries and reduced extra visits to other sources for collecting evidence. We encourage the research community to work on KTRL+F to enhance more efficient in-document information access.
MARRS: Multimodal Reference Resolution System
Successfully handling context is essential for any dialog understanding task. This context maybe be conversational (relying on previous user queries or system responses), visual (relying on what the user sees, for example, on their screen), or background (based on signals such as a ringing alarm or playing music). In this work, we present an overview of MARRS, or Multimodal Reference Resolution System, an on-device framework within a Natural Language Understanding system, responsible for handling conversational, visual and background context. In particular, we present different machine learning models to enable handing contextual queries; specifically, one to enable reference resolution, and one to handle context via query rewriting. We also describe how these models complement each other to form a unified, coherent, lightweight system that can understand context while preserving user privacy.
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
Towards Reliable Latent Knowledge Estimation in LLMs: In-Context Learning vs. Prompting Based Factual Knowledge Extraction
We propose an approach for estimating the latent knowledge embedded inside large language models (LLMs). We leverage the in-context learning (ICL) abilities of LLMs to estimate the extent to which an LLM knows the facts stored in a knowledge base. Our knowledge estimator avoids reliability concerns with previous prompting-based methods, is both conceptually simpler and easier to apply, and we demonstrate that it can surface more of the latent knowledge embedded in LLMs. We also investigate how different design choices affect the performance of ICL-based knowledge estimation. Using the proposed estimator, we perform a large-scale evaluation of the factual knowledge of a variety of open source LLMs, like OPT, Pythia, Llama(2), Mistral, Gemma, etc. over a large set of relations and facts from the Wikidata knowledge base. We observe differences in the factual knowledge between different model families and models of different sizes, that some relations are consistently better known than others but that models differ in the precise facts they know, and differences in the knowledge of base models and their finetuned counterparts.
MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities
For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.
Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval
When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion
Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.
The Short Text Matching Model Enhanced with Knowledge via Contrastive Learning
In recent years, short Text Matching tasks have been widely applied in the fields ofadvertising search and recommendation. The difficulty lies in the lack of semantic information and word ambiguity caused by the short length of the text. Previous works have introduced complement sentences or knowledge bases to provide additional feature information. However, these methods have not fully interacted between the original sentence and the complement sentence, and have not considered the noise issue that may arise from the introduction of external knowledge bases. Therefore, this paper proposes a short Text Matching model that combines contrastive learning and external knowledge. The model uses a generative model to generate corresponding complement sentences and uses the contrastive learning method to guide the model to obtain more semantically meaningful encoding of the original sentence. In addition, to avoid noise, we use keywords as the main semantics of the original sentence to retrieve corresponding knowledge words in the knowledge base, and construct a knowledge graph. The graph encoding model is used to integrate the knowledge base information into the model. Our designed model achieves state-of-the-art performance on two publicly available Chinese Text Matching datasets, demonstrating the effectiveness of our model.
Reasoning or Simply Next Token Prediction? A Benchmark for Stress-Testing Large Language Models
We propose MMLU-SR, a novel dataset designed to measure the true comprehension abilities of Large Language Models (LLMs) by challenging their performance in question-answering tasks with modified terms. We reasoned that an agent that ``truly'' understands a concept can still evaluate it when key terms are replaced by suitably defined alternate terms, and sought to differentiate such comprehension from mere text replacement. In our study, we modified standardized test questions by replacing a key term with a dummy word along with its definition. The key term could be in the context of questions, answers, or both questions and answers. Notwithstanding the high scores achieved by recent popular LLMs on the MMLU leaderboard, we found a substantial reduction in model performance after such replacement, suggesting poor comprehension. This new benchmark provides a rigorous benchmark for testing true model comprehension, and poses a challenge to the broader scientific community.
Se^2: Sequential Example Selection for In-Context Learning
The remarkable capability of large language models (LLMs) for in-context learning (ICL) needs to be activated by demonstration examples. Prior work has extensively explored the selection of examples for ICL, predominantly following the "select then organize" paradigm, such approaches often neglect the internal relationships between examples and exist an inconsistency between the training and inference. In this paper, we formulate the problem as a sequential selection problem and introduce Se^2, a sequential-aware method that leverages the LLM's feedback on varying context, aiding in capturing inter-relationships and sequential information among examples, significantly enriching the contextuality and relevance of ICL prompts. Meanwhile, we utilize beam search to seek and construct example sequences, enhancing both quality and diversity. Extensive experiments across 23 NLP tasks from 8 distinct categories illustrate that Se^2 markedly surpasses competitive baselines and achieves 42% relative improvement over random selection. Further in-depth analysis show the effectiveness of proposed strategies, highlighting Se^2's exceptional stability and adaptability across various scenarios. Our code will be released to facilitate future research.
Reasoning Over Paragraph Effects in Situations
A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%.
Re3val: Reinforced and Reranked Generative Retrieval
Generative retrieval models encode pointers to information in a corpus as an index within the model's parameters. These models serve as part of a larger pipeline, where retrieved information conditions generation for knowledge-intensive NLP tasks. However, we identify two limitations: the generative retrieval does not account for contextual information. Secondly, the retrieval can't be tuned for the downstream readers as decoding the page title is a non-differentiable operation. This paper introduces Re3val, trained with generative reranking and reinforcement learning using limited data. Re3val leverages context acquired via Dense Passage Retrieval to rerank the retrieved page titles and utilizes REINFORCE to maximize rewards generated by constrained decoding. Additionally, we generate questions from our pre-training dataset to mitigate epistemic uncertainty and bridge the domain gap between the pre-training and fine-tuning datasets. Subsequently, we extract and rerank contexts from the KILT database using the rerank page titles. Upon grounding the top five reranked contexts, Re3val demonstrates the Top 1 KILT scores compared to all other generative retrieval models across five KILT datasets.
Short Text Pre-training with Extended Token Classification for E-commerce Query Understanding
E-commerce query understanding is the process of inferring the shopping intent of customers by extracting semantic meaning from their search queries. The recent progress of pre-trained masked language models (MLM) in natural language processing is extremely attractive for developing effective query understanding models. Specifically, MLM learns contextual text embedding via recovering the masked tokens in the sentences. Such a pre-training process relies on the sufficient contextual information. It is, however, less effective for search queries, which are usually short text. When applying masking to short search queries, most contextual information is lost and the intent of the search queries may be changed. To mitigate the above issues for MLM pre-training on search queries, we propose a novel pre-training task specifically designed for short text, called Extended Token Classification (ETC). Instead of masking the input text, our approach extends the input by inserting tokens via a generator network, and trains a discriminator to identify which tokens are inserted in the extended input. We conduct experiments in an E-commerce store to demonstrate the effectiveness of ETC.
Improving Slot Filling by Utilizing Contextual Information
Slot Filling (SF) is one of the sub-tasks of Spoken Language Understanding (SLU) which aims to extract semantic constituents from a given natural language utterance. It is formulated as a sequence labeling task. Recently, it has been shown that contextual information is vital for this task. However, existing models employ contextual information in a restricted manner, e.g., using self-attention. Such methods fail to distinguish the effects of the context on the word representation and the word label. To address this issue, in this paper, we propose a novel method to incorporate the contextual information in two different levels, i.e., representation level and task-specific (i.e., label) level. Our extensive experiments on three benchmark datasets on SF show the effectiveness of our model leading to new state-of-the-art results on all three benchmark datasets for the task of SF.
Mindful-RAG: A Study of Points of Failure in Retrieval Augmented Generation
Large Language Models (LLMs) are proficient at generating coherent and contextually relevant text but face challenges when addressing knowledge-intensive queries in domain-specific and factual question-answering tasks. Retrieval-augmented generation (RAG) systems mitigate this by incorporating external knowledge sources, such as structured knowledge graphs (KGs). However, LLMs often struggle to produce accurate answers despite access to KG-extracted information containing necessary facts. Our study investigates this dilemma by analyzing error patterns in existing KG-based RAG methods and identifying eight critical failure points. We observed that these errors predominantly occur due to insufficient focus on discerning the question's intent and adequately gathering relevant context from the knowledge graph facts. Drawing on this analysis, we propose the Mindful-RAG approach, a framework designed for intent-based and contextually aligned knowledge retrieval. This method explicitly targets the identified failures and offers improvements in the correctness and relevance of responses provided by LLMs, representing a significant step forward from existing methods.
Do Dogs have Whiskers? A New Knowledge Base of hasPart Relations
We present a new knowledge-base of hasPart relationships, extracted from a large corpus of generic statements. Complementary to other resources available, it is the first which is all three of: accurate (90% precision), salient (covers relationships a person may mention), and has high coverage of common terms (approximated as within a 10 year old's vocabulary), as well as having several times more hasPart entries than in the popular ontologies ConceptNet and WordNet. In addition, it contains information about quantifiers, argument modifiers, and links the entities to appropriate concepts in Wikipedia and WordNet. The knowledge base is available at https://allenai.org/data/haspartkb
Improving Tool Retrieval by Leveraging Large Language Models for Query Generation
Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.
Knowledge-Aware Procedural Text Understanding with Multi-Stage Training
Procedural text describes dynamic state changes during a step-by-step natural process (e.g., photosynthesis). In this work, we focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process. Although recent approaches have achieved substantial progress, their results are far behind human performance. Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved, which require the incorporation of external knowledge bases. Previous works on external knowledge injection usually rely on noisy web mining tools and heuristic rules with limited applicable scenarios. In this paper, we propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge in this task. Specifically, we retrieve informative knowledge triples from ConceptNet and perform knowledge-aware reasoning while tracking the entities. Besides, we employ a multi-stage training schema which fine-tunes the BERT model over unlabeled data collected from Wikipedia before further fine-tuning it on the final model. Experimental results on two procedural text datasets, ProPara and Recipes, verify the effectiveness of the proposed methods, in which our model achieves state-of-the-art performance in comparison to various baselines.
In-context Interference in Chat-based Large Language Models
Large language models (LLMs) have had a huge impact on society due to their impressive capabilities and vast knowledge of the world. Various applications and tools have been created that allow users to interact with these models in a black-box scenario. However, one limitation of this scenario is that users cannot modify the internal knowledge of the model, and the only way to add or modify internal knowledge is by explicitly mentioning it to the model during the current interaction. This learning process is called in-context training, and it refers to training that is confined to the user's current session or context. In-context learning has significant applications, but also has limitations that are seldom studied. In this paper, we present a study that shows how the model can suffer from interference between information that continually flows in the context, causing it to forget previously learned knowledge, which can reduce the model's performance. Along with showing the problem, we propose an evaluation benchmark based on the bAbI dataset.
Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S
Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world.
Data Collection of Real-Life Knowledge Work in Context: The RLKWiC Dataset
Over the years, various approaches have been employed to enhance the productivity of knowledge workers, from addressing psychological well-being to the development of personal knowledge assistants. A significant challenge in this research area has been the absence of a comprehensive, publicly accessible dataset that mirrors real-world knowledge work. Although a handful of datasets exist, many are restricted in access or lack vital information dimensions, complicating meaningful comparison and benchmarking in the domain. This paper presents RLKWiC, a novel dataset of Real-Life Knowledge Work in Context, derived from monitoring the computer interactions of eight participants over a span of two months. As the first publicly available dataset offering a wealth of essential information dimensions (such as explicated contexts, textual contents, and semantics), RLKWiC seeks to address the research gap in the personal information management domain, providing valuable insights for modeling user behavior.
Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation
Large Language Models (LLMs) demonstrate remarkable capabilities, yet struggle with hallucination and outdated knowledge when tasked with complex knowledge reasoning, resulting in factually incorrect outputs. Previous studies have attempted to mitigate it by retrieving factual knowledge from large-scale knowledge graphs (KGs) to assist LLMs in logical reasoning and prediction of answers. However, this kind of approach often introduces noise and irrelevant data, especially in situations with extensive context from multiple knowledge aspects. In this way, LLM attention can be potentially mislead from question and relevant information. In our study, we introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework. This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings. The Amar framework comprises two key sub-components: 1) a self-alignment module that aligns commonalities among entities, relations, and subgraphs to enhance retrieved text, thereby reducing noise interference; 2) a relevance gating module that employs a soft gate to learn the relevance score between question and multi-aspect retrieved data, to determine which information should be used to enhance LLMs' output, or even filtered altogether. Our method has achieved state-of-the-art performance on two common datasets, WebQSP and CWQ, showing a 1.9\% improvement in accuracy over its best competitor and a 6.6\% improvement in logical form generation over a method that directly uses retrieved text as context prompts. These results demonstrate the effectiveness of Amar in improving the reasoning of LLMs.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Graph vs. Sequence: An Empirical Study on Knowledge Forms for Knowledge-Grounded Dialogue
Knowledge-grounded dialogue is a task of generating an informative response based on both the dialogue history and external knowledge source. In general, there are two forms of knowledge: manually annotated knowledge graphs and knowledge text from website. From various evaluation viewpoints, each type of knowledge has advantages and downsides. To further distinguish the principles and determinants from the intricate factors, we conduct a thorough experiment and study on the task to answer three essential questions. The questions involve the choice of appropriate knowledge form, the degree of mutual effects between knowledge and the model selection, and the few-shot performance of knowledge. Supported by statistical shreds of evidence, we offer conclusive solutions and sensible suggestions for directions and standards of future research.
Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering
Large language models (LLMs) have received significant attention by achieving remarkable performance across various tasks. However, their fixed context length poses challenges when processing long documents or maintaining extended conversations. This paper proposes a method called Selective Context that employs self-information to filter out less informative content, thereby enhancing the efficiency of the fixed context length. We demonstrate the effectiveness of our approach on tasks of summarisation and question answering across different data sources, including academic papers, news articles, and conversation transcripts.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
Beyond English-Only Reading Comprehension: Experiments in Zero-Shot Multilingual Transfer for Bulgarian
Recently, reading comprehension models achieved near-human performance on large-scale datasets such as SQuAD, CoQA, MS Macro, RACE, etc. This is largely due to the release of pre-trained contextualized representations such as BERT and ELMo, which can be fine-tuned for the target task. Despite those advances and the creation of more challenging datasets, most of the work is still done for English. Here, we study the effectiveness of multilingual BERT fine-tuned on large-scale English datasets for reading comprehension (e.g., for RACE), and we apply it to Bulgarian multiple-choice reading comprehension. We propose a new dataset containing 2,221 questions from matriculation exams for twelfth grade in various subjects -history, biology, geography and philosophy-, and 412 additional questions from online quizzes in history. While the quiz authors gave no relevant context, we incorporate knowledge from Wikipedia, retrieving documents matching the combination of question + each answer option. Moreover, we experiment with different indexing and pre-training strategies. The evaluation results show accuracy of 42.23%, which is well above the baseline of 24.89%.
ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models
Recent advancements in AI have led to the development of large multimodal models (LMMs) capable of processing complex tasks involving joint reasoning over text and visual content in the image (e.g., navigating maps in public places). This paper introduces ConTextual, a novel benchmark comprising instructions designed explicitly to evaluate LMMs' ability to perform context-sensitive text-rich visual reasoning. ConTextual emphasizes diverse real-world scenarios (e.g., time-reading, navigation, shopping and more) demanding a deeper understanding of the interactions between textual and visual elements. Our findings reveal a significant performance gap of 30.8% between the best-performing LMM, GPT-4V(ision), and human capabilities using human evaluation indicating substantial room for improvement in context-sensitive text-rich visual reasoning. Notably, while GPT-4V excelled in abstract categories like meme and quote interpretation, its overall performance still lagged behind humans. In addition to human evaluations, we also employed automatic evaluation metrics using GPT-4, uncovering similar trends in performance disparities. We also perform a fine-grained evaluation across diverse visual contexts and provide qualitative analysis which provides a robust framework for future advancements in the LMM design. https://con-textual.github.io/
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
Clustered Retrieved Augmented Generation (CRAG)
Providing external knowledge to Large Language Models (LLMs) is a key point for using these models in real-world applications for several reasons, such as incorporating up-to-date content in a real-time manner, providing access to domain-specific knowledge, and contributing to hallucination prevention. The vector database-based Retrieval Augmented Generation (RAG) approach has been widely adopted to this end. Thus, any part of external knowledge can be retrieved and provided to some LLM as the input context. Despite RAG approach's success, it still might be unfeasible for some applications, because the context retrieved can demand a longer context window than the size supported by LLM. Even when the context retrieved fits into the context window size, the number of tokens might be expressive and, consequently, impact costs and processing time, becoming impractical for most applications. To address these, we propose CRAG, a novel approach able to effectively reduce the number of prompting tokens without degrading the quality of the response generated compared to a solution using RAG. Through our experiments, we show that CRAG can reduce the number of tokens by at least 46\%, achieving more than 90\% in some cases, compared to RAG. Moreover, the number of tokens with CRAG does not increase considerably when the number of reviews analyzed is higher, unlike RAG, where the number of tokens is almost 9x higher when there are 75 reviews compared to 4 reviews.
Coverage-based Example Selection for In-Context Learning
In-context learning (ICL), the ability of large language models to perform novel tasks by conditioning on a prompt with a few task examples, requires these examples to be informative about the test instance. The standard approach of independently ranking and selecting the most similar examples selects redundant examples while omitting important information. In this work, we show that BERTScore-Recall (BSR) selects better examples that demonstrate more of the salient aspects, e.g. reasoning patterns, of the test input. We further extend BSR and many standard metrics to easily optimizable set-level metrics, giving still better coverage of those salient aspects. On 15 datasets spanning 6 tasks and with 7 diverse LLMs, we show that (1) BSR is the superior metric for in-context example selection across the board, and (2) for compositional tasks, set selection using Set-BSR outperforms independent ranking by up to 17 points on average and, despite being training-free, surpasses methods that leverage task or LLM-specific training.
The Life Cycle of Knowledge in Big Language Models: A Survey
Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.
Context-NER : Contextual Phrase Generation at Scale
NLP research has been focused on NER extraction and how to efficiently extract them from a sentence. However, generating relevant context of entities from a sentence has remained under-explored. In this work we introduce the task Context-NER in which relevant context of an entity has to be generated. The extracted context may not be found exactly as a substring in the sentence. We also introduce the EDGAR10-Q dataset for the same, which is a corpus of 1,500 publicly traded companies. It is a manually created complex corpus and one of the largest in terms of number of sentences and entities (1 M and 2.8 M). We introduce a baseline approach that leverages phrase generation algorithms and uses the pre-trained BERT model to get 33% ROUGE-L score. We also do a one shot evaluation with GPT-3 and get 39% score, signifying the hardness and future scope of this task. We hope that addition of this dataset and our study will pave the way for further research in this domain.
A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning
Extensive knowledge graphs (KGs) have been constructed to facilitate knowledge-driven tasks across various scenarios. However, existing work usually develops separate reasoning models for different KGs, lacking the ability to generalize and transfer knowledge across diverse KGs and reasoning settings. In this paper, we propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability. Specifically, we introduce a prompt graph centered with a query-related example fact as context to understand the query relation. To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer that maps entities and relations in prompt graphs to predefined tokens. Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively. We conduct evaluation on 43 different KGs in both transductive and inductive settings. Results indicate that the proposed KG-ICL outperforms baselines on most datasets, showcasing its outstanding generalization and universal reasoning capabilities. The source code is accessible on GitHub: https://github.com/nju-websoft/KG-ICL.
Why does in-context learning fail sometimes? Evaluating in-context learning on open and closed questions
We measure the performance of in-context learning as a function of task novelty and difficulty for open and closed questions. For that purpose, we created a novel benchmark consisting of hard scientific questions, each paired with a context of various relevancy. We show that counter-intuitively, a context that is more aligned with the topic does not always help more than a less relevant context. This effect is especially visible for open questions and questions of high difficulty or novelty. This result reveals a fundamental difference between the treatment of close-form and open-form questions by large-language models and shows a need for a more robust evaluation of in-context learning on the variety of different types of questions. It also poses a new question of how to optimally select a context for large language models, especially in the context of Retrieval Augmented Generation (RAG) systems. Our results suggest that the answer to this question can be highly application-dependent and might be contingent on factors including the format of the question, the perceived difficulty level of the questions, and the novelty or popularity of the information we seek.
How Easily do Irrelevant Inputs Skew the Responses of Large Language Models?
By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading contents. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. Resources are available at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information.
Asking It All: Generating Contextualized Questions for any Semantic Role
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all possible semantic roles of the predicate. We develop a two-stage model for this task, which first produces a context-independent question prototype for each role and then revises it to be contextually appropriate for the passage. Unlike most existing approaches to question generation, our approach does not require conditioning on existing answers in the text. Instead, we condition on the type of information to inquire about, regardless of whether the answer appears explicitly in the text, could be inferred from it, or should be sought elsewhere. Our evaluation demonstrates that we generate diverse and well-formed questions for a large, broad-coverage ontology of predicates and roles.
Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2-10% for Gemini, GPT, and Gemma.
Hyper-multi-step: The Truth Behind Difficult Long-context Tasks
Long-context language models (LCLM), characterized by their extensive context window, is becoming increasingly popular. Meanwhile, many long-context benchmarks present challenging tasks that even the most advanced LCLMs struggle to complete. However, the underlying sources of various challenging long-context tasks have seldom been studied. To bridge this gap, we conduct experiments to indicate their difficulty stems primarily from two basic issues: "multi-matching retrieval," which requires the simultaneous retrieval of multiple items, and "logic-based retrieval," which necessitates logical judgment within retrieval criteria. These two problems, while seemingly straightforward, actually exceed the capabilities of LCLMs because they are proven to be hyper-multi-step (demanding numerous steps to solve) in nature. This finding could explain why LLMs struggle with more advanced long-context tasks, providing a more accurate perspective for rethinking solutions for them.
There Is No Standard Answer: Knowledge-Grounded Dialogue Generation with Adversarial Activated Multi-Reference Learning
Knowledge-grounded conversation (KGC) shows excellent potential to deliver an engaging and informative response. However, existing approaches emphasize selecting one golden knowledge given a particular dialogue context, overlooking the one-to-many phenomenon in dialogue. As a result, the existing paradigm limits the diversity of knowledge selection and generation. To this end, we establish a multi-reference KGC dataset and propose a series of metrics to systematically assess the one-to-many efficacy of existing KGC models. Furthermore, to extend the hypothesis space of knowledge selection to enhance the mapping relationship between multiple knowledge and multiple responses, we devise a span-based variational model and optimize the model in a wake-sleep style with an ameliorated evidence lower bound objective to learn the one-to-many generalization. Both automatic and human evaluations demonstrate the efficacy of our approach.
Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy
This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study.
Lost in the Middle: How Language Models Use Long Contexts
While recent language models have the ability to take long contexts as input, relatively little is known about how well the language models use longer context. We analyze language model performance on two tasks that require identifying relevant information within their input contexts: multi-document question answering and key-value retrieval. We find that performance is often highest when relevant information occurs at the beginning or end of the input context, and significantly degrades when models must access relevant information in the middle of long contexts. Furthermore, performance substantially decreases as the input context grows longer, even for explicitly long-context models. Our analysis provides a better understanding of how language models use their input context and provides new evaluation protocols for future long-context models.
GreaseLM: Graph REASoning Enhanced Language Models for Question Answering
Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval
We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., 'a list of ice cream shops in San Diego'). In the past, such queries were considered to be tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.
Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems
Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.
Lexical Knowledge Internalization for Neural Dialog Generation
We propose knowledge internalization (KI), which aims to complement the lexical knowledge into neural dialog models. Instead of further conditioning the knowledge-grounded dialog (KGD) models on externally retrieved knowledge, we seek to integrate knowledge about each input token internally into the model's parameters. To tackle the challenge due to the large scale of lexical knowledge, we adopt the contrastive learning approach and create an effective token-level lexical knowledge retriever that requires only weak supervision mined from Wikipedia. We demonstrate the effectiveness and general applicability of our approach on various datasets and diversified model structures.
Context versus Prior Knowledge in Language Models
To answer a question, language models often need to integrate prior knowledge learned during pretraining and new information presented in context. We hypothesize that models perform this integration in a predictable way across different questions and contexts: models will rely more on prior knowledge for questions about entities (e.g., persons, places, etc.) that they are more familiar with due to higher exposure in the training corpus, and be more easily persuaded by some contexts than others. To formalize this problem, we propose two mutual information-based metrics to measure a model's dependency on a context and on its prior about an entity: first, the persuasion score of a given context represents how much a model depends on the context in its decision, and second, the susceptibility score of a given entity represents how much the model can be swayed away from its original answer distribution about an entity. Following well-established measurement modeling methods, we empirically test for the validity and reliability of these metrics. Finally, we explore and find a relationship between the scores and the model's expected familiarity with an entity, and provide two use cases to illustrate their benefits.
CooK: Empowering General-Purpose Language Models with Modular and Collaborative Knowledge
Large language models (LLMs) are increasingly adopted for knowledge-intensive tasks and contexts. Existing approaches improve the knowledge capabilities of general-purpose LLMs through retrieval or generated knowledge prompting, but they fall short of reflecting two key properties of knowledge-rich models: knowledge should be modular, ever-growing, sourced from diverse domains; knowledge acquisition and production should be a collaborative process, where diverse stakeholders contribute new information. To this end, we propose CooK, a novel framework to empower general-purpose large language models with modular and collaboratively sourced knowledge. We first introduce specialized language models, autoregressive models trained on corpora from a wide range of domains and sources. These specialized LMs serve as parametric knowledge repositories that are later prompted to generate background knowledge for general-purpose LLMs. We then propose three knowledge filters to dynamically select and retain information in generated documents by controlling for relevance, brevity, and factuality. Finally, we propose bottom-up and top-down knowledge integration approaches to augment general-purpose LLMs with the curated (relevant, factual) knowledge from community-driven specialized LMs that enable multi-domain knowledge synthesis and on-demand knowledge requests. Through extensive experiments, we demonstrate that CooK achieves state-of-the-art performance on six benchmark datasets. Our results highlight the potential of enriching general-purpose LLMs with evolving and modular knowledge -- relevant knowledge that can be continuously updated through the collective efforts of the research community.
Rethinking Search: Making Domain Experts out of Dilettantes
When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice.
CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge
Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).
DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification
We introduce semantic towers, an extrinsic knowledge representation method, and compare it to intrinsic knowledge in large language models for ontology learning. Our experiments show a trade-off between performance and semantic grounding for extrinsic knowledge compared to a fine-tuned model intrinsic knowledge. We report our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024 challenge.
KoLA: Carefully Benchmarking World Knowledge of Large Language Models
The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For ability modeling, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering 19 tasks. (2) For data, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For evaluation criteria, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models and a unique self-contrast metric for automatically evaluating knowledge hallucination. We evaluate 21 open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset and open-participation leaderboard are publicly released at https://kola.xlore.cn and will be continuously updated to provide references for developing LLMs and knowledge-related systems.
Decomposing Complex Queries for Tip-of-the-tongue Retrieval
When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). This retrieval setting, called tip of the tongue (TOT), is especially challenging for models heavily reliant on lexical and semantic overlap between query and document text. In this work, we introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results. This approach allows us to take advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorportating query decompositions into retrievers can improve gold book recall up to 7% relative again for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries.
PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search
While contextualized word embeddings have been a de-facto standard, learning contextualized phrase embeddings is less explored and being hindered by the lack of a human-annotated benchmark that tests machine understanding of phrase semantics given a context sentence or paragraph (instead of phrases alone). To fill this gap, we propose PiC -- a dataset of ~28K of noun phrases accompanied by their contextual Wikipedia pages and a suite of three tasks for training and evaluating phrase embeddings. Training on PiC improves ranking models' accuracy and remarkably pushes span-selection (SS) models (i.e., predicting the start and end index of the target phrase) near-human accuracy, which is 95% Exact Match (EM) on semantic search given a query phrase and a passage. Interestingly, we find evidence that such impressive performance is because the SS models learn to better capture the common meaning of a phrase regardless of its actual context. SotA models perform poorly in distinguishing two senses of the same phrase in two contexts (~60% EM) and in estimating the similarity between two different phrases in the same context (~70% EM).
Enhancing Few-shot Text-to-SQL Capabilities of Large Language Models: A Study on Prompt Design Strategies
In-context learning (ICL) has emerged as a new approach to various natural language processing tasks, utilizing large language models (LLMs) to make predictions based on context that has been supplemented with a few examples or task-specific instructions. In this paper, we aim to extend this method to question answering tasks that utilize structured knowledge sources, and improve Text-to-SQL systems by exploring various prompt design strategies for employing LLMs. We conduct a systematic investigation into different demonstration selection methods and optimal instruction formats for prompting LLMs in the Text-to-SQL task. Our approach involves leveraging the syntactic structure of an example's SQL query to retrieve demonstrations, and we demonstrate that pursuing both diversity and similarity in demonstration selection leads to enhanced performance. Furthermore, we show that LLMs benefit from database-related knowledge augmentations. Our most effective strategy outperforms the state-of-the-art system by 2.5 points (Execution Accuracy) and the best fine-tuned system by 5.1 points on the Spider dataset. These results highlight the effectiveness of our approach in adapting LLMs to the Text-to-SQL task, and we present an analysis of the factors contributing to the success of our strategy.
Context Filtering with Reward Modeling in Question Answering
Question Answering (QA) in NLP is the task of finding answers to a query within a relevant context retrieved by a retrieval system. Yet, the mix of relevant and irrelevant information in these contexts can hinder performance enhancements in QA tasks. To address this, we introduce a context filtering approach that removes non-essential details, summarizing crucial content through Reward Modeling. This method emphasizes keeping vital data while omitting the extraneous during summarization model training. We offer a framework for developing efficient QA models by discerning useful information from dataset pairs, bypassing the need for costly human evaluation. Furthermore, we show that our approach can significantly outperform the baseline, as evidenced by a 6.8-fold increase in the EM Per Token (EPT) metric, which we propose as a measure of token efficiency, indicating a notable token-efficiency boost for low-resource settings.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
Semantic Specialization for Knowledge-based Word Sense Disambiguation
A promising approach for knowledge-based Word Sense Disambiguation (WSD) is to select the sense whose contextualized embeddings computed for its definition sentence are closest to those computed for a target word in a given sentence. This approach relies on the similarity of the sense and context embeddings computed by a pre-trained language model. We propose a semantic specialization for WSD where contextualized embeddings are adapted to the WSD task using solely lexical knowledge. The key idea is, for a given sense, to bring semantically related senses and contexts closer and send different/unrelated senses farther away. We realize this idea as the joint optimization of the Attract-Repel objective for sense pairs and the self-training objective for context-sense pairs while controlling deviations from the original embeddings. The proposed method outperformed previous studies that adapt contextualized embeddings. It achieved state-of-the-art performance on knowledge-based WSD when combined with the reranking heuristic that uses the sense inventory. We found that the similarity characteristics of specialized embeddings conform to the key idea. We also found that the (dis)similarity of embeddings between the related/different/unrelated senses correlates well with the performance of WSD.
Can Large Language Models Recall Reference Location Like Humans?
When completing knowledge-intensive tasks, humans sometimes need not just an answer but also a corresponding reference passage for auxiliary reading. Previous methods required obtaining pre-segmented article chunks through additional retrieval models. This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models (LLMs) to independently recall reference passage from any starting position. We propose a two-stage framework that simulates the scenario of humans recalling easily forgotten references. Initially, the LLM is prompted to recall document title identifiers to obtain a coarse-grained document set. Then, based on the acquired coarse-grained document set, it recalls fine-grained passage. In the two-stage recall process, we use constrained decoding to ensure that content outside of the stored documents is not generated. To increase speed, we only recall a short prefix in the second stage, then locate its position to retrieve a complete passage. Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms, and the obtained reference significantly assist downstream tasks.
Knowledge Circuits in Pretrained Transformers
The remarkable capabilities of modern large language models are rooted in their vast repositories of knowledge encoded within their parameters, enabling them to perceive the world and engage in reasoning. The inner workings of how these models store knowledge have long been a subject of intense interest and investigation among researchers. To date, most studies have concentrated on isolated components within these models, such as the Multilayer Perceptrons and attention head. In this paper, we delve into the computation graph of the language model to uncover the knowledge circuits that are instrumental in articulating specific knowledge. The experiments, conducted with GPT2 and TinyLLAMA, has allowed us to observe how certain information heads, relation heads, and Multilayer Perceptrons collaboratively encode knowledge within the model. Moreover, we evaluate the impact of current knowledge editing techniques on these knowledge circuits, providing deeper insights into the functioning and constraints of these editing methodologies. Finally, we utilize knowledge circuits to analyze and interpret language model behaviors such as hallucinations and in-context learning. We believe the knowledge circuit holds potential for advancing our understanding of Transformers and guiding the improved design of knowledge editing. Code and data are available in https://github.com/zjunlp/KnowledgeCircuits.
Making Retrieval-Augmented Language Models Robust to Irrelevant Context
Retrieval-augmented language models (RALMs) hold promise to produce language understanding systems that are are factual, efficient, and up-to-date. An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant, and does not harm performance when it is not. This is particularly important in multi-hop reasoning scenarios, where misuse of irrelevant evidence can lead to cascading errors. However, recent work has shown that retrieval augmentation can sometimes have a negative effect on performance. In this work, we present a thorough analysis on five open-domain question answering benchmarks, characterizing cases when retrieval reduces accuracy. We then propose two methods to mitigate this issue. First, a simple baseline that filters out retrieved passages that do not entail question-answer pairs according to a natural language inference (NLI) model. This is effective in preventing performance reduction, but at a cost of also discarding relevant passages. Thus, we propose a method for automatically generating data to fine-tune the language model to properly leverage retrieved passages, using a mix of relevant and irrelevant contexts at training time. We empirically show that even 1,000 examples suffice to train the model to be robust to irrelevant contexts while maintaining high performance on examples with relevant ones.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
Elements of World Knowledge (EWOK): A cognition-inspired framework for evaluating basic world knowledge in language models
The ability to build and leverage world models is essential for a general-purpose AI agent. Testing such capabilities is hard, in part because the building blocks of world models are ill-defined. We present Elements of World Knowledge (EWOK), a framework for evaluating world modeling in language models by testing their ability to use knowledge of a concept to match a target text with a plausible/implausible context. EWOK targets specific concepts from multiple knowledge domains known to be vital for world modeling in humans. Domains range from social interactions (help/hinder) to spatial relations (left/right). Both, contexts and targets are minimal pairs. Objects, agents, and locations in the items can be flexibly filled in enabling easy generation of multiple controlled datasets. We then introduce EWOK-CORE-1.0, a dataset of 4,374 items covering 11 world knowledge domains. We evaluate 20 openweights large language models (1.3B--70B parameters) across a battery of evaluation paradigms along with a human norming study comprising 12,480 measurements. The overall performance of all tested models is worse than human performance, with results varying drastically across domains. These data highlight simple cases where even large models fail and present rich avenues for targeted research on LLM world modeling capabilities.
Wizard of Wikipedia: Knowledge-Powered Conversational agents
In open-domain dialogue intelligent agents should exhibit the use of knowledge, however there are few convincing demonstrations of this to date. The most popular sequence to sequence models typically "generate and hope" generic utterances that can be memorized in the weights of the model when mapping from input utterance(s) to output, rather than employing recalled knowledge as context. Use of knowledge has so far proved difficult, in part because of the lack of a supervised learning benchmark task which exhibits knowledgeable open dialogue with clear grounding. To that end we collect and release a large dataset with conversations directly grounded with knowledge retrieved from Wikipedia. We then design architectures capable of retrieving knowledge, reading and conditioning on it, and finally generating natural responses. Our best performing dialogue models are able to conduct knowledgeable discussions on open-domain topics as evaluated by automatic metrics and human evaluations, while our new benchmark allows for measuring further improvements in this important research direction.
Link-Context Learning for Multimodal LLMs
The ability to learn from context with novel concepts, and deliver appropriate responses are essential in human conversations. Despite current Multimodal Large Language Models (MLLMs) and Large Language Models (LLMs) being trained on mega-scale datasets, recognizing unseen images or understanding novel concepts in a training-free manner remains a challenge. In-Context Learning (ICL) explores training-free few-shot learning, where models are encouraged to ``learn to learn" from limited tasks and generalize to unseen tasks. In this work, we propose link-context learning (LCL), which emphasizes "reasoning from cause and effect" to augment the learning capabilities of MLLMs. LCL goes beyond traditional ICL by explicitly strengthening the causal relationship between the support set and the query set. By providing demonstrations with causal links, LCL guides the model to discern not only the analogy but also the underlying causal associations between data points, which empowers MLLMs to recognize unseen images and understand novel concepts more effectively. To facilitate the evaluation of this novel approach, we introduce the ISEKAI dataset, comprising exclusively of unseen generated image-label pairs designed for link-context learning. Extensive experiments show that our LCL-MLLM exhibits strong link-context learning capabilities to novel concepts over vanilla MLLMs. Code and data will be released at https://github.com/isekai-portal/Link-Context-Learning.
ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension
We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://nlp.jhu.edu/record.
PCoQA: Persian Conversational Question Answering Dataset
Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page.
Can We Edit Factual Knowledge by In-Context Learning?
Previous studies have shown that large language models (LLMs) like GPTs store massive factual knowledge in their parameters. However, the stored knowledge could be false or out-dated. Traditional knowledge editing methods refine LLMs via fine-tuning on texts containing specific knowledge. However, with the increasing scales of LLMs, these gradient-based approaches bring large computation costs. The trend of model-as-a-service also makes it impossible to modify knowledge in black-box LMs. Inspired by in-context learning (ICL), a new paradigm based on demonstration contexts without parameter updating, we explore whether ICL can edit factual knowledge. To answer this question, we give a comprehensive empirical study of ICL strategies. Experiments show that in-context knowledge editing (IKE), without any gradient and parameter updating, achieves a competitive success rate compared to gradient-based methods on GPT-J (6B) but with much fewer side effects, including less over-editing on similar but unrelated facts and less knowledge forgetting on previously stored knowledge. We also apply the method to larger LMs with tens or hundreds of parameters like OPT-175B, which shows the scalability of our method. The code is available at https://github.com/Zce1112zslx/IKE.
Language Models are Surprisingly Fragile to Drug Names in Biomedical Benchmarks
Medical knowledge is context-dependent and requires consistent reasoning across various natural language expressions of semantically equivalent phrases. This is particularly crucial for drug names, where patients often use brand names like Advil or Tylenol instead of their generic equivalents. To study this, we create a new robustness dataset, RABBITS, to evaluate performance differences on medical benchmarks after swapping brand and generic drug names using physician expert annotations. We assess both open-source and API-based LLMs on MedQA and MedMCQA, revealing a consistent performance drop ranging from 1-10\%. Furthermore, we identify a potential source of this fragility as the contamination of test data in widely used pre-training datasets. All code is accessible at https://github.com/BittermanLab/RABBITS, and a HuggingFace leaderboard is available at https://huggingface.co/spaces/AIM-Harvard/rabbits-leaderboard.
Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering
Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems.
SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
Textual Entailment for Effective Triple Validation in Object Prediction
Knowledge base population seeks to expand knowledge graphs with facts that are typically extracted from a text corpus. Recently, language models pretrained on large corpora have been shown to contain factual knowledge that can be retrieved using cloze-style strategies. Such approach enables zero-shot recall of facts, showing competitive results in object prediction compared to supervised baselines. However, prompt-based fact retrieval can be brittle and heavily depend on the prompts and context used, which may produce results that are unintended or hallucinatory.We propose to use textual entailment to validate facts extracted from language models through cloze statements. Our results show that triple validation based on textual entailment improves language model predictions in different training regimes. Furthermore, we show that entailment-based triple validation is also effective to validate candidate facts extracted from other sources including existing knowledge graphs and text passages where named entities are recognized.
Pretrained Language Models for Sequential Sentence Classification
As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts.
The Web Is Your Oyster - Knowledge-Intensive NLP against a Very Large Web Corpus
In order to address increasing demands of real-world applications, the research for knowledge-intensive NLP (KI-NLP) should advance by capturing the challenges of a truly open-domain environment: web-scale knowledge, lack of structure, inconsistent quality and noise. To this end, we propose a new setup for evaluating existing knowledge intensive tasks in which we generalize the background corpus to a universal web snapshot. We investigate a slate of NLP tasks which rely on knowledge - either factual or common sense, and ask systems to use a subset of CCNet - the Sphere corpus - as a knowledge source. In contrast to Wikipedia, otherwise a common background corpus in KI-NLP, Sphere is orders of magnitude larger and better reflects the full diversity of knowledge on the web. Despite potential gaps in coverage, challenges of scale, lack of structure and lower quality, we find that retrieval from Sphere enables a state of the art system to match and even outperform Wikipedia-based models on several tasks. We also observe that while a dense index can outperform a sparse BM25 baseline on Wikipedia, on Sphere this is not yet possible. To facilitate further research and minimise the community's reliance on proprietary, black-box search engines, we share our indices, evaluation metrics and infrastructure.
TiEBe: A Benchmark for Assessing the Current Knowledge of Large Language Models
In a rapidly evolving knowledge landscape and the increasing adoption of large language models, a need has emerged to keep these models continuously updated with current events. While existing benchmarks evaluate general factual recall, they often overlook two critical aspects: the ability of models to integrate evolving knowledge through continual learning and the significant regional disparities in their performance. To address these gaps, we introduce the Timely Events Benchmark (TiEBe), a dataset containing over 11,000 question-answer pairs focused on globally and regionally significant events. TiEBe leverages structured retrospective data from Wikipedia, enabling continuous updates to assess LLMs' knowledge of evolving global affairs and their understanding of events across different regions. Our benchmark demonstrates that LLMs exhibit substantial geographic disparities in factual recall, emphasizing the need for more balanced global knowledge representation. Furthermore, TiEBe serves as a tool for evaluating continual learning strategies, providing insights into models' ability to acquire new information without forgetting past knowledge.
Knowledge Graph Enhanced Retrieval-Augmented Generation for Failure Mode and Effects Analysis
Failure mode and effects analysis (FMEA) is a critical tool for mitigating potential failures, particular during ramp-up phases of new products. However, its effectiveness is often limited by the missing reasoning capabilities of the FMEA tools, which are usually tabular structured. Meanwhile, large language models (LLMs) offer novel prospects for fine-tuning on custom datasets for reasoning within FMEA contexts. However, LLMs face challenges in tasks that require factual knowledge, a gap that retrieval-augmented generation (RAG) approaches aim to fill. RAG retrieves information from a non-parametric data store and uses a language model to generate responses. Building on this idea, we propose to advance the non-parametric data store with a knowledge graph (KG). By enhancing the RAG framework with a KG, our objective is to leverage analytical and semantic question-answering capabilities on FMEA data. This paper contributes by presenting a new ontology for FMEA observations, an algorithm for creating vector embeddings from the FMEA KG, and a KG enhanced RAG framework. Our approach is validated through a human study and we measure the performance of the context retrieval recall and precision.
Generations of Knowledge Graphs: The Crazy Ideas and the Business Impact
Knowledge Graphs (KGs) have been used to support a wide range of applications, from web search to personal assistant. In this paper, we describe three generations of knowledge graphs: entity-based KGs, which have been supporting general search and question answering (e.g., at Google and Bing); text-rich KGs, which have been supporting search and recommendations for products, bio-informatics, etc. (e.g., at Amazon and Alibaba); and the emerging integration of KGs and LLMs, which we call dual neural KGs. We describe the characteristics of each generation of KGs, the crazy ideas behind the scenes in constructing such KGs, and the techniques developed over time to enable industry impact. In addition, we use KGs as examples to demonstrate a recipe to evolve research ideas from innovations to production practice, and then to the next level of innovations, to advance both science and business.
IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search
The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
Alloprof: a new French question-answer education dataset and its use in an information retrieval case study
Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting.
MemeSense: An Adaptive In-Context Framework for Social Commonsense Driven Meme Moderation
Memes present unique moderation challenges due to their subtle, multimodal interplay of images, text, and social context. Standard systems relying predominantly on explicit textual cues often overlook harmful content camouflaged by irony, symbolism, or cultural references. To address this gap, we introduce MemeSense, an adaptive in-context learning framework that fuses social commonsense reasoning with visually and semantically related reference examples. By encoding crucial task information into a learnable cognitive shift vector, MemeSense effectively balances lexical, visual, and ethical considerations, enabling precise yet context-aware meme intervention. Extensive evaluations on a curated set of implicitly harmful memes demonstrate that MemeSense substantially outperforms strong baselines, paving the way for safer online communities. Code and data available at: https://github.com/sayantan11995/MemeSense
Enhancing LLM's Cognition via Structurization
When reading long-form text, human cognition is complex and structurized. While large language models (LLMs) process input contexts through a causal and sequential perspective, this approach can potentially limit their ability to handle intricate and complex inputs effectively. To enhance LLM's cognition capability, this paper presents a novel concept of context structurization. Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements. By doing so, LLMs can better grasp intricate and extended contexts through precise attention and information-seeking along the organized structures. Extensive evaluations are conducted across various model architectures and sizes (including a series of auto-regressive LLMs as well as BERT-like masking models) on a diverse set of NLP tasks (e.g., context-based question-answering, exhaustive hallucination evaluation, and passage-level dense retrieval). Empirical results show consistent and significant performance gains afforded by a single-round structurization. In particular, we boost the open-sourced LLaMA2-70B model to achieve comparable performance against GPT-3.5-Turbo as the hallucination evaluator. Besides, we show the feasibility of distilling advanced LLMs' language processing abilities to a smaller yet effective StruXGPT-7B to execute structurization, addressing the practicality of our approach. Code is available at https://github.com/alibaba/struxgpt.
SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine
We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering.
KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models
We present KNOW--the Knowledge Navigator Ontology for the World--the first ontology designed to capture everyday knowledge to augment large language models (LLMs) in real-world generative AI use cases such as personal AI assistants. Our domain is human life, both its everyday concerns and its major milestones. We have limited the initial scope of the modeled concepts to only established human universals: spacetime (places, events) plus social (people, groups, organizations). The inclusion criteria for modeled concepts are pragmatic, beginning with universality and utility. We compare and contrast previous work such as Schema.org and Cyc--as well as attempts at a synthesis of knowledge graphs and language models--noting how LLMs already encode internally much of the commonsense tacit knowledge that took decades to capture in the Cyc project. We also make available code-generated software libraries for the 12 most popular programming languages, enabling the direct use of ontology concepts in software engineering. We emphasize simplicity and developer experience in promoting AI interoperability.
Prompt-Time Ontology-Driven Symbolic Knowledge Capture with Large Language Models
In applications such as personal assistants, large language models (LLMs) must consider the user's personal information and preferences. However, LLMs lack the inherent ability to learn from user interactions. This paper explores capturing personal information from user prompts using ontology and knowledge-graph approaches. We use a subset of the KNOW ontology, which models personal information, to train the language model on these concepts. We then evaluate the success of knowledge capture using a specially constructed dataset. Our code and datasets are publicly available at https://github.com/HaltiaAI/paper-PTODSKC
DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for In-Context Learning
Recent advances in natural language processing, primarily propelled by Large Language Models (LLMs), have showcased their remarkable capabilities grounded in in-context learning. A promising avenue for guiding LLMs in intricate reasoning tasks involves the utilization of intermediate reasoning steps within the Chain-of-Thought (CoT) paradigm. Nevertheless, the central challenge lies in the effective selection of exemplars for facilitating in-context learning. In this study, we introduce a framework that leverages Dual Queries and Low-rank approximation Re-ranking (DQ-LoRe) to automatically select exemplars for in-context learning. Dual Queries first query LLM to obtain LLM-generated knowledge such as CoT, then query the retriever to obtain the final exemplars via both question and the knowledge. Moreover, for the second query, LoRe employs dimensionality reduction techniques to refine exemplar selection, ensuring close alignment with the input question's knowledge. Through extensive experiments, we demonstrate that DQ-LoRe significantly outperforms prior state-of-the-art methods in the automatic selection of exemplars for GPT-4, enhancing performance from 92.5% to 94.2%. Our comprehensive analysis further reveals that DQ-LoRe consistently outperforms retrieval-based approaches in terms of both performance and adaptability, especially in scenarios characterized by distribution shifts. DQ-LoRe pushes the boundary of in-context learning and opens up new avenues for addressing complex reasoning challenges. Our code is released at https://github.com/AI4fun/DQ-LoRe}{https://github.com/AI4fun/DQ-LoRe.
Enhancing Retrieval-Augmented Generation: A Study of Best Practices
Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
Contrastive Learning of User Behavior Sequence for Context-Aware Document Ranking
Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a user's behavior. In reality, it is highly variable: user's queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in user's behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking.
A Survey on In-context Learning
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few examples. It has been a new trend to explore ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress and challenges of ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques, including training strategies, demonstration designing strategies, as well as related analysis. Finally, we discuss the challenges of ICL and provide potential directions for further research. We hope that our work can encourage more research on uncovering how ICL works and improving ICL.
Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset.
Deciphering the Interplay of Parametric and Non-parametric Memory in Retrieval-augmented Language Models
Generative language models often struggle with specialized or less-discussed knowledge. A potential solution is found in Retrieval-Augmented Generation (RAG) models which act like retrieving information before generating responses. In this study, we explore how the Atlas approach, a RAG model, decides between what it already knows (parametric) and what it retrieves (non-parametric). We use causal mediation analysis and controlled experiments to examine how internal representations influence information processing. Our findings disentangle the effects of parametric knowledge and the retrieved context. They indicate that in cases where the model can choose between both types of information (parametric and non-parametric), it relies more on the context than the parametric knowledge. Furthermore, the analysis investigates the computations involved in how the model uses the information from the context. We find that multiple mechanisms are active within the model and can be detected with mediation analysis: first, the decision of whether the context is relevant, and second, how the encoder computes output representations to support copying when relevant.
Thrust: Adaptively Propels Large Language Models with External Knowledge
Although large-scale pre-trained language models (PTLMs) are shown to encode rich knowledge in their model parameters, the inherent knowledge in PTLMs can be opaque or static, making external knowledge necessary. However, the existing information retrieval techniques could be costly and may even introduce noisy and sometimes misleading knowledge. To address these challenges, we propose the instance-level adaptive propulsion of external knowledge (IAPEK), where we only conduct the retrieval when necessary. To achieve this goal, we propose measuring whether a PTLM contains enough knowledge to solve an instance with a novel metric, Thrust, which leverages the representation distribution of a small number of seen instances. Extensive experiments demonstrate that thrust is a good measurement of PTLM models' instance-level knowledgeability. Moreover, we can achieve significantly higher cost-efficiency with the Thrust score as the retrieval indicator than the naive usage of external knowledge on 88% of the evaluated tasks with 26% average performance improvement. Such findings shed light on the real-world practice of knowledge-enhanced LMs with a limited knowledge-seeking budget due to computation latency or costs.
Mind the Gap! Injecting Commonsense Knowledge for Abstractive Dialogue Summarization
In this paper, we propose to leverage the unique characteristics of dialogues sharing commonsense knowledge across participants, to resolve the difficulties in summarizing them. We present SICK, a framework that uses commonsense inferences as additional context. Compared to previous work that solely relies on the input dialogue, SICK uses an external knowledge model to generate a rich set of commonsense inferences and selects the most probable one with a similarity-based selection method. Built upon SICK, SICK++ utilizes commonsense as supervision, where the task of generating commonsense inferences is added upon summarizing the dialogue in a multi-task learning setting. Experimental results show that with injected commonsense knowledge, our framework generates more informative and consistent summaries than existing methods.
Building astroBERT, a language model for Astronomy & Astrophysics
The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned.
SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications
We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities.
Holistic Reasoning with Long-Context LMs: A Benchmark for Database Operations on Massive Textual Data
The rapid increase in textual information means we need more efficient methods to sift through, organize, and understand it all. While retrieval-augmented generation (RAG) models excel in accessing information from large document collections, they struggle with complex tasks that require aggregation and reasoning over information spanning across multiple documents--what we call holistic reasoning. Long-context language models (LCLMs) have great potential for managing large-scale documents, but their holistic reasoning capabilities remain unclear. In this work, we introduce HoloBench, a novel framework that brings database reasoning operations into text-based contexts, making it easier to systematically evaluate how LCLMs handle holistic reasoning across large documents. Our approach adjusts key factors such as context length, information density, distribution of information, and query complexity to evaluate LCLMs comprehensively. Our experiments show that the amount of information in the context has a bigger influence on LCLM performance than the actual context length. Furthermore, the complexity of queries affects performance more than the amount of information, particularly for different types of queries. Interestingly, queries that involve finding maximum or minimum values are easier for LCLMs and are less affected by context length, even though they pose challenges for RAG systems. However, tasks requiring the aggregation of multiple pieces of information show a noticeable drop in accuracy as context length increases. Additionally, we find that while grouping relevant information generally improves performance, the optimal positioning varies across models. Our findings surface both the advancements and the ongoing challenges in achieving a holistic understanding of long contexts.
Measuring Domain Knowledge for Early Prediction of Student Performance: A Semantic Approach
The growing popularity of data mining catalyses the researchers to explore various exciting aspects of education. Early prediction of student performance is an emerging area among them. The researchers have used various predictors in performance modelling studies. Although prior cognition can affect student performance, establishing their relationship is still an open research challenge. Quantifying the knowledge from readily available data is the major challenge here. We have proposed a semantic approach for this purpose. Association mining on nearly 0.35 million observations establishes that prior cognition impacts the student performance. The proposed approach of measuring domain knowledge can help the early performance modelling studies to use it as a predictor.
Thus Spake Long-Context Large Language Model
Long context is an important topic in Natural Language Processing (NLP), running through the development of NLP architectures, and offers immense opportunities for Large Language Models (LLMs) giving LLMs the lifelong learning potential akin to humans. Unfortunately, the pursuit of a long context is accompanied by numerous obstacles. Nevertheless, long context remains a core competitive advantage for LLMs. In the past two years, the context length of LLMs has achieved a breakthrough extension to millions of tokens. Moreover, the research on long-context LLMs has expanded from length extrapolation to a comprehensive focus on architecture, infrastructure, training, and evaluation technologies. Inspired by the symphonic poem, Thus Spake Zarathustra, we draw an analogy between the journey of extending the context of LLM and the attempts of humans to transcend its mortality. In this survey, We will illustrate how LLM struggles between the tremendous need for a longer context and its equal need to accept the fact that it is ultimately finite. To achieve this, we give a global picture of the lifecycle of long-context LLMs from four perspectives: architecture, infrastructure, training, and evaluation, showcasing the full spectrum of long-context technologies. At the end of this survey, we will present 10 unanswered questions currently faced by long-context LLMs. We hope this survey can serve as a systematic introduction to the research on long-context LLMs.
Shiva++: An Enhanced Graph based Ontology Matcher
With the web getting bigger and assimilating knowledge about different concepts and domains, it is becoming very difficult for simple database driven applications to capture the data for a domain. Thus developers have come out with ontology based systems which can store large amount of information and can apply reasoning and produce timely information. Thus facilitating effective knowledge management. Though this approach has made our lives easier, but at the same time has given rise to another problem. Two different ontologies assimilating same knowledge tend to use different terms for the same concepts. This creates confusion among knowledge engineers and workers, as they do not know which is a better term then the other. Thus we need to merge ontologies working on same domain so that the engineers can develop a better application over it. This paper shows the development of one such matcher which merges the concepts available in two ontologies at two levels; 1) at string level and 2) at semantic level; thus producing better merged ontologies. We have used a graph matching technique which works at the core of the system. We have also evaluated the system and have tested its performance with its predecessor which works only on string matching. Thus current approach produces better results.
End-to-end Knowledge Retrieval with Multi-modal Queries
We investigate knowledge retrieval with multi-modal queries, i.e. queries containing information split across image and text inputs, a challenging task that differs from previous work on cross-modal retrieval. We curate a new dataset called ReMuQ for benchmarking progress on this task. ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries. We introduce a retriever model ``ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion without being dependent on intermediate modules such as object detectors or caption generators. We introduce a new pretraining task that is effective for learning knowledge retrieval with multimodal queries and also improves performance on downstream tasks. We demonstrate superior performance in retrieval on two datasets (ReMuQ and OK-VQA) under zero-shot settings as well as further improvements when finetuned on these datasets.
In-Context Learning for Text Classification with Many Labels
In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.
WiC: the Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Representations
By design, word embeddings are unable to model the dynamic nature of words' semantics, i.e., the property of words to correspond to potentially different meanings. To address this limitation, dozens of specialized meaning representation techniques such as sense or contextualized embeddings have been proposed. However, despite the popularity of research on this topic, very few evaluation benchmarks exist that specifically focus on the dynamic semantics of words. In this paper we show that existing models have surpassed the performance ceiling of the standard evaluation dataset for the purpose, i.e., Stanford Contextual Word Similarity, and highlight its shortcomings. To address the lack of a suitable benchmark, we put forward a large-scale Word in Context dataset, called WiC, based on annotations curated by experts, for generic evaluation of context-sensitive representations. WiC is released in https://pilehvar.github.io/wic/.
ChroKnowledge: Unveiling Chronological Knowledge of Language Models in Multiple Domains
Large language models (LLMs) have significantly impacted many aspects of our lives. However, assessing and ensuring their chronological knowledge remains challenging. Existing approaches fall short in addressing the accumulative nature of knowledge, often relying on a single time stamp. To overcome this, we introduce ChroKnowBench, a benchmark dataset designed to evaluate chronologically accumulated knowledge across three key aspects: multiple domains, time dependency, temporal state. Our benchmark distinguishes between knowledge that evolves (e.g., scientific discoveries, amended laws) and knowledge that remain constant (e.g., mathematical truths, commonsense facts). Building on this benchmark, we present ChroKnowledge (Chronological Categorization of Knowledge), a novel sampling-based framework for evaluating and updating LLMs' non-parametric chronological knowledge. Our evaluation shows: (1) The ability of eliciting temporal knowledge varies depending on the data format that model was trained on. (2) LLMs partially recall knowledge or show a cut-off at temporal boundaries rather than recalling all aspects of knowledge correctly. Thus, we apply our ChroKnowPrompt, an in-depth prompting to elicit chronological knowledge by traversing step-by-step through the surrounding time spans. We observe that our framework successfully updates the overall knowledge across the entire timeline in both the biomedical domain (+11.9%) and the general domain (+2.8%), demonstrating its effectiveness in refining temporal knowledge. This non-parametric approach also enables knowledge updates not only in open-source models but also in proprietary LLMs, ensuring comprehensive applicability across model types. We perform a comprehensive analysis based on temporal characteristics of ChroKnowPrompt and validate the potential of various models to elicit intrinsic temporal knowledge through our method.
Zero-Shot Clinical Acronym Expansion via Latent Meaning Cells
We introduce Latent Meaning Cells, a deep latent variable model which learns contextualized representations of words by combining local lexical context and metadata. Metadata can refer to granular context, such as section type, or to more global context, such as unique document ids. Reliance on metadata for contextualized representation learning is apropos in the clinical domain where text is semi-structured and expresses high variation in topics. We evaluate the LMC model on the task of zero-shot clinical acronym expansion across three datasets. The LMC significantly outperforms a diverse set of baselines at a fraction of the pre-training cost and learns clinically coherent representations. We demonstrate that not only is metadata itself very helpful for the task, but that the LMC inference algorithm provides an additional large benefit.
Retrieval-Augmented Meta Learning for Low-Resource Text Classification
Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.
The advantages of context specific language models: the case of the Erasmian Language Model
The current trend to improve language model performance seems to be based on scaling up with the number of parameters (e.g. the state of the art GPT4 model has approximately 1.7 trillion parameters) or the amount of training data fed into the model. However this comes at significant costs in terms of computational resources and energy costs that compromise the sustainability of AI solutions, as well as risk relating to privacy and misuse. In this paper we present the Erasmian Language Model (ELM) a small context specific, 900 million parameter model, pre-trained and fine-tuned by and for Erasmus University Rotterdam. We show how the model performs adequately in a classroom context for essay writing, and how it achieves superior performance in subjects that are part of its context. This has implications for a wide range of institutions and organizations, showing that context specific language models may be a viable alternative for resource constrained, privacy sensitive use cases.
ALR^2: A Retrieve-then-Reason Framework for Long-context Question Answering
The context window of large language models (LLMs) has been extended significantly in recent years. However, while the context length that the LLM can process has grown, the capability of the model to accurately reason over that context degrades noticeably. This occurs because modern LLMs often become overwhelmed by the vast amount of information in the context; when answering questions, the model must identify and reason over relevant evidence sparsely distributed throughout the text. To alleviate the challenge of long-context reasoning, we develop a retrieve-then-reason framework, enabling LLMs to reason over relevant evidence collected during an intermediate retrieval step. We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts", resulting in flawed reasoning and the production of incorrect answers. To address these issues, we introduce ALR^2, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure, i.e., aligning LLMs with the objectives of both retrieval and reasoning. We demonstrate the efficacy of ALR^2 for mitigating performance degradation in long-context reasoning tasks. Through extensive experiments on long-context QA benchmarks, we find our method to outperform competitive baselines by large margins, achieving at least 8.4 and 7.9 EM gains on the long-context versions of HotpotQA and SQuAD datasets, respectively.
Understanding In-Context Learning from Repetitions
This paper explores the elusive mechanism underpinning in-context learning in Large Language Models (LLMs). Our work provides a novel perspective by examining in-context learning via the lens of surface repetitions. We quantitatively investigate the role of surface features in text generation, and empirically establish the existence of token co-occurrence reinforcement, a principle that strengthens the relationship between two tokens based on their contextual co-occurrences. By investigating the dual impacts of these features, our research illuminates the internal workings of in-context learning and expounds on the reasons for its failures. This paper provides an essential contribution to the understanding of in-context learning and its potential limitations, providing a fresh perspective on this exciting capability.
Generated Knowledge Prompting for Commonsense Reasoning
It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models. To investigate this question, we develop generated knowledge prompting, which consists of generating knowledge from a language model, then providing the knowledge as additional input when answering a question. Our method does not require task-specific supervision for knowledge integration, or access to a structured knowledge base, yet it improves performance of large-scale, state-of-the-art models on four commonsense reasoning tasks, achieving state-of-the-art results on numerical commonsense (NumerSense), general commonsense (CommonsenseQA 2.0), and scientific commonsense (QASC) benchmarks. Generated knowledge prompting highlights large-scale language models as flexible sources of external knowledge for improving commonsense reasoning. Our code is available at https://github.com/liujch1998/GKP
FACT: Examining the Effectiveness of Iterative Context Rewriting for Multi-fact Retrieval
Large Language Models (LLMs) are proficient at retrieving single facts from extended contexts, yet they struggle with tasks requiring the simultaneous retrieval of multiple facts, especially during generation. This paper identifies a novel "lost-in-the-middle" phenomenon, where LLMs progressively lose track of critical information throughout the generation process, resulting in incomplete or inaccurate retrieval. To address this challenge, we introduce Find All Crucial Texts (FACT), an iterative retrieval method that refines context through successive rounds of rewriting. This approach enables models to capture essential facts incrementally, which are often overlooked in single-pass retrieval. Experiments demonstrate that FACT substantially enhances multi-fact retrieval performance across various tasks, though improvements are less notable in general-purpose QA scenarios. Our findings shed light on the limitations of LLMs in multi-fact retrieval and underscore the need for more resilient long-context retrieval strategies.
Give Me the Facts! A Survey on Factual Knowledge Probing in Pre-trained Language Models
Pre-trained Language Models (PLMs) are trained on vast unlabeled data, rich in world knowledge. This fact has sparked the interest of the community in quantifying the amount of factual knowledge present in PLMs, as this explains their performance on downstream tasks, and potentially justifies their use as knowledge bases. In this work, we survey methods and datasets that are used to probe PLMs for factual knowledge. Our contributions are: (1) We propose a categorization scheme for factual probing methods that is based on how their inputs, outputs and the probed PLMs are adapted; (2) We provide an overview of the datasets used for factual probing; (3) We synthesize insights about knowledge retention and prompt optimization in PLMs, analyze obstacles to adopting PLMs as knowledge bases and outline directions for future work.
WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine
We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc.
HICL: Hashtag-Driven In-Context Learning for Social Media Natural Language Understanding
Natural language understanding (NLU) is integral to various social media applications. However, existing NLU models rely heavily on context for semantic learning, resulting in compromised performance when faced with short and noisy social media content. To address this issue, we leverage in-context learning (ICL), wherein language models learn to make inferences by conditioning on a handful of demonstrations to enrich the context and propose a novel hashtag-driven in-context learning (HICL) framework. Concretely, we pre-train a model #Encoder, which employs #hashtags (user-annotated topic labels) to drive BERT-based pre-training through contrastive learning. Our objective here is to enable #Encoder to gain the ability to incorporate topic-related semantic information, which allows it to retrieve topic-related posts to enrich contexts and enhance social media NLU with noisy contexts. To further integrate the retrieved context with the source text, we employ a gradient-based method to identify trigger terms useful in fusing information from both sources. For empirical studies, we collected 45M tweets to set up an in-context NLU benchmark, and the experimental results on seven downstream tasks show that HICL substantially advances the previous state-of-the-art results. Furthermore, we conducted extensive analyzes and found that: (1) combining source input with a top-retrieved post from #Encoder is more effective than using semantically similar posts; (2) trigger words can largely benefit in merging context from the source and retrieved posts.
Boosting Healthcare LLMs Through Retrieved Context
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing, and yet, their factual inaccuracies and hallucinations limits their application, particularly in critical domains like healthcare. Context retrieval methods, by introducing relevant information as input, have emerged as a crucial approach for enhancing LLM factuality and reliability. This study explores the boundaries of context retrieval methods within the healthcare domain, optimizing their components and benchmarking their performance against open and closed alternatives. Our findings reveal how open LLMs, when augmented with an optimized retrieval system, can achieve performance comparable to the biggest private solutions on established healthcare benchmarks (multiple-choice question answering). Recognizing the lack of realism of including the possible answers within the question (a setup only found in medical exams), and after assessing a strong LLM performance degradation in the absence of those options, we extend the context retrieval system in that direction. In particular, we propose OpenMedPrompt a pipeline that improves the generation of more reliable open-ended answers, moving this technology closer to practical application.
Multi-task Retrieval for Knowledge-Intensive Tasks
Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking. Although neural retrieval outperforms traditional methods like tf-idf and BM25, its performance degrades considerably when applied to out-of-domain data. Driven by the question of whether a neural retrieval model can be universal and perform robustly on a wide variety of problems, we propose a multi-task trained model. Our approach not only outperforms previous methods in the few-shot setting, but also rivals specialised neural retrievers, even when in-domain training data is abundant. With the help of our retriever, we improve existing models for downstream tasks and closely match or improve the state of the art on multiple benchmarks.
Retrieval Augmentation for Commonsense Reasoning: A Unified Approach
A common thread of retrieval-augmented methods in the existing literature focuses on retrieving encyclopedic knowledge, such as Wikipedia, which facilitates well-defined entity and relation spaces that can be modeled. However, applying such methods to commonsense reasoning tasks faces two unique challenges, i.e., the lack of a general large-scale corpus for retrieval and a corresponding effective commonsense retriever. In this paper, we systematically investigate how to leverage commonsense knowledge retrieval to improve commonsense reasoning tasks. We proposed a unified framework of retrieval-augmented commonsense reasoning (called RACo), including a newly constructed commonsense corpus with over 20 million documents and novel strategies for training a commonsense retriever. We conducted experiments on four different commonsense reasoning tasks. Extensive evaluation results showed that our proposed RACo can significantly outperform other knowledge-enhanced method counterparts, achieving new SoTA performance on the CommonGen and CREAK leaderboards.
A Survey of Knowledge-Enhanced Text Generation
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws
Scaling laws describe the relationship between the size of language models and their capabilities. Unlike prior studies that evaluate a model's capability via loss or benchmarks, we estimate the number of knowledge bits a model stores. We focus on factual knowledge represented as tuples, such as (USA, capital, Washington D.C.) from a Wikipedia page. Through multiple controlled datasets, we establish that language models can and only can store 2 bits of knowledge per parameter, even when quantized to int8, and such knowledge can be flexibly extracted for downstream applications. Consequently, a 7B model can store 14B bits of knowledge, surpassing the English Wikipedia and textbooks combined based on our estimation. More broadly, we present 12 results on how (1) training duration, (2) model architecture, (3) quantization, (4) sparsity constraints such as MoE, and (5) data signal-to-noise ratio affect a model's knowledge storage capacity. Notable insights include: * The GPT-2 architecture, with rotary embedding, matches or even surpasses LLaMA/Mistral architectures in knowledge storage, particularly over shorter training durations. This arises because LLaMA/Mistral uses GatedMLP, which is less stable and harder to train. * Prepending training data with domain names (e.g., wikipedia.org) significantly increases a model's knowledge capacity. Language models can autonomously identify and prioritize domains rich in knowledge, optimizing their storage capacity.