new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

Self-supervised speech representation learning has shown promising results in various speech processing tasks. However, the pre-trained models, e.g., HuBERT, are storage-intensive Transformers, limiting their scope of applications under low-resource settings. To this end, we propose LightHuBERT, a once-for-all Transformer compression framework, to find the desired architectures automatically by pruning structured parameters. More precisely, we create a Transformer-based supernet that is nested with thousands of weight-sharing subnets and design a two-stage distillation strategy to leverage the contextualized latent representations from HuBERT. Experiments on automatic speech recognition (ASR) and the SUPERB benchmark show the proposed LightHuBERT enables over 10^9 architectures concerning the embedding dimension, attention dimension, head number, feed-forward network ratio, and network depth. LightHuBERT outperforms the original HuBERT on ASR and five SUPERB tasks with the HuBERT size, achieves comparable performance to the teacher model in most tasks with a reduction of 29% parameters, and obtains a 3.5times compression ratio in three SUPERB tasks, e.g., automatic speaker verification, keyword spotting, and intent classification, with a slight accuracy loss. The code and pre-trained models are available at https://github.com/mechanicalsea/lighthubert.

DrBERT: Unveiling the Potential of Masked Language Modeling Decoder in BERT pretraining

BERT (Bidirectional Encoder Representations from Transformers) has revolutionized the field of natural language processing through its exceptional performance on numerous tasks. Yet, the majority of researchers have mainly concentrated on enhancements related to the model structure, such as relative position embedding and more efficient attention mechanisms. Others have delved into pretraining tricks associated with Masked Language Modeling, including whole word masking. DeBERTa introduced an enhanced decoder adapted for BERT's encoder model for pretraining, proving to be highly effective. We argue that the design and research around enhanced masked language modeling decoders have been underappreciated. In this paper, we propose several designs of enhanced decoders and introduce DrBERT (Decoder-refined BERT), a novel method for modeling training. Typically, a pretrained BERT model is fine-tuned for specific Natural Language Understanding (NLU) tasks. In our approach, we utilize the original BERT model as the encoder, making only changes to the decoder without altering the encoder. This approach does not necessitate extensive modifications to the model's architecture and can be seamlessly integrated into existing fine-tuning pipelines and services, offering an efficient and effective enhancement strategy. Compared to other methods, while we also incur a moderate training cost for the decoder during the pretraining process, our approach does not introduce additional training costs during the fine-tuning phase. We test multiple enhanced decoder structures after pretraining and evaluate their performance on the GLUE benchmark. Our results demonstrate that DrBERT, having only undergone subtle refinements to the model structure during pretraining, significantly enhances model performance without escalating the inference time and serving budget.

W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training

Motivated by the success of masked language modeling~(MLM) in pre-training natural language processing models, we propose w2v-BERT that explores MLM for self-supervised speech representation learning. w2v-BERT is a framework that combines contrastive learning and MLM, where the former trains the model to discretize input continuous speech signals into a finite set of discriminative speech tokens, and the latter trains the model to learn contextualized speech representations via solving a masked prediction task consuming the discretized tokens. In contrast to existing MLM-based speech pre-training frameworks such as HuBERT, which relies on an iterative re-clustering and re-training process, or vq-wav2vec, which concatenates two separately trained modules, w2v-BERT can be optimized in an end-to-end fashion by solving the two self-supervised tasks~(the contrastive task and MLM) simultaneously. Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models on the LibriSpeech benchmarks when using the Libri-Light~60k corpus as the unsupervised data. In particular, when compared to published models such as conformer-based wav2vec~2.0 and HuBERT, our model shows~5\% to~10\% relative WER reduction on the test-clean and test-other subsets. When applied to the Google's Voice Search traffic dataset, w2v-BERT outperforms our internal conformer-based wav2vec~2.0 by more than~30\% relatively.

GottBERT: a pure German Language Model

Lately, pre-trained language models advanced the field of natural language processing (NLP). The introduction of Bidirectional Encoders for Transformers (BERT) and its optimized version RoBERTa have had significant impact and increased the relevance of pre-trained models. First, research in this field mainly started on English data followed by models trained with multilingual text corpora. However, current research shows that multilingual models are inferior to monolingual models. Currently, no German single language RoBERTa model is yet published, which we introduce in this work (GottBERT). The German portion of the OSCAR data set was used as text corpus. In an evaluation we compare its performance on the two Named Entity Recognition (NER) tasks Conll 2003 and GermEval 2014 as well as on the text classification tasks GermEval 2018 (fine and coarse) and GNAD with existing German single language BERT models and two multilingual ones. GottBERT was pre-trained related to the original RoBERTa model using fairseq. All downstream tasks were trained using hyperparameter presets taken from the benchmark of German BERT. The experiments were setup utilizing FARM. Performance was measured by the F_{1} score. GottBERT was successfully pre-trained on a 256 core TPU pod using the RoBERTa BASE architecture. Even without extensive hyper-parameter optimization, in all NER and one text classification task, GottBERT already outperformed all other tested German and multilingual models. In order to support the German NLP field, we publish GottBERT under the AGPLv3 license.

BiBERT: Accurate Fully Binarized BERT

The large pre-trained BERT has achieved remarkable performance on Natural Language Processing (NLP) tasks but is also computation and memory expensive. As one of the powerful compression approaches, binarization extremely reduces the computation and memory consumption by utilizing 1-bit parameters and bitwise operations. Unfortunately, the full binarization of BERT (i.e., 1-bit weight, embedding, and activation) usually suffer a significant performance drop, and there is rare study addressing this problem. In this paper, with the theoretical justification and empirical analysis, we identify that the severe performance drop can be mainly attributed to the information degradation and optimization direction mismatch respectively in the forward and backward propagation, and propose BiBERT, an accurate fully binarized BERT, to eliminate the performance bottlenecks. Specifically, BiBERT introduces an efficient Bi-Attention structure for maximizing representation information statistically and a Direction-Matching Distillation (DMD) scheme to optimize the full binarized BERT accurately. Extensive experiments show that BiBERT outperforms both the straightforward baseline and existing state-of-the-art quantized BERTs with ultra-low bit activations by convincing margins on the NLP benchmark. As the first fully binarized BERT, our method yields impressive 56.3 times and 31.2 times saving on FLOPs and model size, demonstrating the vast advantages and potential of the fully binarized BERT model in real-world resource-constrained scenarios.

HuBERTopic: Enhancing Semantic Representation of HuBERT through Self-supervision Utilizing Topic Model

Recently, the usefulness of self-supervised representation learning (SSRL) methods has been confirmed in various downstream tasks. Many of these models, as exemplified by HuBERT and WavLM, use pseudo-labels generated from spectral features or the model's own representation features. From previous studies, it is known that the pseudo-labels contain semantic information. However, the masked prediction task, the learning criterion of HuBERT, focuses on local contextual information and may not make effective use of global semantic information such as speaker, theme of speech, and so on. In this paper, we propose a new approach to enrich the semantic representation of HuBERT. We apply topic model to pseudo-labels to generate a topic label for each utterance. An auxiliary topic classification task is added to HuBERT by using topic labels as teachers. This allows additional global semantic information to be incorporated in an unsupervised manner. Experimental results demonstrate that our method achieves comparable or better performance than the baseline in most tasks, including automatic speech recognition and five out of the eight SUPERB tasks. Moreover, we find that topic labels include various information about utterance, such as gender, speaker, and its theme. This highlights the effectiveness of our approach in capturing multifaceted semantic nuances.

MosaicBERT: A Bidirectional Encoder Optimized for Fast Pretraining

Although BERT-style encoder models are heavily used in NLP research, many researchers do not pretrain their own BERTs from scratch due to the high cost of training. In the past half-decade since BERT first rose to prominence, many advances have been made with other transformer architectures and training configurations that have yet to be systematically incorporated into BERT. Here, we introduce MosaicBERT, a BERT-style encoder architecture and training recipe that is empirically optimized for fast pretraining. This efficient architecture incorporates FlashAttention, Attention with Linear Biases (ALiBi), Gated Linear Units (GLU), a module to dynamically remove padded tokens, and low precision LayerNorm into the classic transformer encoder block. The training recipe includes a 30% masking ratio for the Masked Language Modeling (MLM) objective, bfloat16 precision, and vocabulary size optimized for GPU throughput, in addition to best-practices from RoBERTa and other encoder models. When pretrained from scratch on the C4 dataset, this base model achieves a downstream average GLUE (dev) score of 79.6 in 1.13 hours on 8 A100 80 GB GPUs at a cost of roughly $20. We plot extensive accuracy vs. pretraining speed Pareto curves and show that MosaicBERT base and large are consistently Pareto optimal when compared to a competitive BERT base and large. This empirical speed up in pretraining enables researchers and engineers to pretrain custom BERT-style models at low cost instead of finetune on existing generic models. We open source our model weights and code.

Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT

Transformer based architectures have become de-facto models used for a range of Natural Language Processing tasks. In particular, the BERT based models achieved significant accuracy gain for GLUE tasks, CoNLL-03 and SQuAD. However, BERT based models have a prohibitive memory footprint and latency. As a result, deploying BERT based models in resource constrained environments has become a challenging task. In this work, we perform an extensive analysis of fine-tuned BERT models using second order Hessian information, and we use our results to propose a novel method for quantizing BERT models to ultra low precision. In particular, we propose a new group-wise quantization scheme, and we use a Hessian based mix-precision method to compress the model further. We extensively test our proposed method on BERT downstream tasks of SST-2, MNLI, CoNLL-03, and SQuAD. We can achieve comparable performance to baseline with at most 2.3% performance degradation, even with ultra-low precision quantization down to 2 bits, corresponding up to 13times compression of the model parameters, and up to 4times compression of the embedding table as well as activations. Among all tasks, we observed the highest performance loss for BERT fine-tuned on SQuAD. By probing into the Hessian based analysis as well as visualization, we show that this is related to the fact that current training/fine-tuning strategy of BERT does not converge for SQuAD.

Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese

Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT -- Maltese -- with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks -- dependency parsing, part-of-speech tagging, and named-entity recognition -- and one semantic classification task -- sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pre-trained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks.

Boosting Distributed Training Performance of the Unpadded BERT Model

Pre-training models are an important tool in Natural Language Processing (NLP), while the BERT model is a classic pre-training model whose structure has been widely adopted by followers. It was even chosen as the reference model for the MLPerf training benchmark. The distributed training performance optimization of BERT models plays an important role in accelerating the solutions of most NLP tasks. BERT model often uses padding tensors as its inputs, leading to excessive redundant computations. Thus, removing these redundant computations is essential to improve the distributed training performance. This paper designs a new approach to train BERT models with variable-length inputs efficiently. Firstly, we propose a general structure for the variable-length BERT models, and accelerate the encoder layer via our grouped multi-stream FMHA (Fused Multi-Head Attention) method. Secondly, through data exchange, we address the unbalanced workload problem caused by the variable-length inputs, which overlaps highly with the training process. Finally, we optimize the overall performance of the BERT model, such as kernel fusion, and operator optimization. Our experimental results show that our highly optimized BERT model achieves state-of-the-art throughput and ranks first in MLPerf Training v2.0 within the same GPU configuration. The optimizations in this paper can be applied to more BERT-like models in our future works.

bert2BERT: Towards Reusable Pretrained Language Models

In recent years, researchers tend to pre-train ever-larger language models to explore the upper limit of deep models. However, large language model pre-training costs intensive computational resources and most of the models are trained from scratch without reusing the existing pre-trained models, which is wasteful. In this paper, we propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model (e.g., BERT_BASE) to a large model (e.g., BERT_LARGE) through parameter initialization and significantly improve the pre-training efficiency of the large model. Specifically, we extend the previous function-preserving on Transformer-based language model, and further improve it by proposing advanced knowledge for large model's initialization. In addition, a two-stage pre-training method is proposed to further accelerate the training process. We did extensive experiments on representative PLMs (e.g., BERT and GPT) and demonstrate that (1) our method can save a significant amount of training cost compared with baselines including learning from scratch, StackBERT and MSLT; (2) our method is generic and applicable to different types of pre-trained models. In particular, bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes. The source code will be publicly available upon publication.

Learning and Evaluating Contextual Embedding of Source Code

Recent research has achieved impressive results on understanding and improving source code by building up on machine-learning techniques developed for natural languages. A significant advancement in natural-language understanding has come with the development of pre-trained contextual embeddings, such as BERT, which can be fine-tuned for downstream tasks with less labeled data and training budget, while achieving better accuracies. However, there is no attempt yet to obtain a high-quality contextual embedding of source code, and to evaluate it on multiple program-understanding tasks simultaneously; that is the gap that this paper aims to mitigate. Specifically, first, we curate a massive, deduplicated corpus of 7.4M Python files from GitHub, which we use to pre-train CuBERT, an open-sourced code-understanding BERT model; and, second, we create an open-sourced benchmark that comprises five classification tasks and one program-repair task, akin to code-understanding tasks proposed in the literature before. We fine-tune CuBERT on our benchmark tasks, and compare the resulting models to different variants of Word2Vec token embeddings, BiLSTM and Transformer models, as well as published state-of-the-art models, showing that CuBERT outperforms them all, even with shorter training, and with fewer labeled examples. Future work on source-code embedding can benefit from reusing our benchmark, and from comparing against CuBERT models as a strong baseline.

ModernBERT is More Efficient than Conventional BERT for Chest CT Findings Classification in Japanese Radiology Reports

Objective: This study aims to evaluate and compare the performance of two Japanese language models-conventional Bidirectional Encoder Representations from Transformers (BERT) and the newer ModernBERT-in classifying findings from chest CT reports, with a focus on tokenization efficiency, processing time, and classification performance. Methods: We conducted a retrospective study using the CT-RATE-JPN dataset containing 22,778 training reports and 150 test reports. Both models were fine-tuned for multi-label classification of 18 common chest CT conditions. The training data was split in 18,222:4,556 for training and validation. Performance was evaluated using F1 scores for each condition and exact match accuracy across all 18 labels. Results: ModernBERT demonstrated superior tokenization efficiency, requiring 24.0% fewer tokens per document (258.1 vs. 339.6) compared to BERT Base. This translated to significant performance improvements, with ModernBERT completing training in 1877.67 seconds versus BERT's 3090.54 seconds (39% reduction). ModernBERT processed 38.82 samples per second during training (1.65x faster) and 139.90 samples per second during inference (1.66x faster). Despite these efficiency gains, classification performance remained comparable, with ModernBERT achieving superior F1 scores in 8 conditions, while BERT performed better in 4 conditions. Overall exact match accuracy was slightly higher for ModernBERT (74.67% vs. 72.67%), though this difference was not statistically significant (p=0.6291). Conclusion: ModernBERT offers substantial improvements in tokenization efficiency and training speed without sacrificing classification performance. These results suggest that ModernBERT is a promising candidate for clinical applications in Japanese radiology reports analysis.

Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling

Post-training quantization~(PTQ) of transformer language models faces significant challenges due to the existence of detrimental outliers in activations. We observe that these outliers are concentrated in specific channels and are asymmetric across channels. To address this issue, we propose the Outlier Suppression+~(OS+) framework, which contains the channel-wise shifting for asymmetry and channel-wise scaling for concentration. We show that these operations can be seamlessly migrated into subsequent modules while maintaining equivalence. Second, we propose a fast and stable scheme to calculate effective shifting and scaling values. The channel-wise shifting aligns the center of each channel for removal of outlier asymmetry. The channel-wise scaling quantitatively evaluates changes brought by migration and quantization for better quantization burden balance. We validate our OS+ under both standard and fine-grained quantization settings with models including BERT, OPT, BLOOM, BLOOMZ, and LLaMA. Comprehensive results across various tasks demonstrate the superiority of our approach. Especially, with standard quantization, OS+ can achieve near-floating-point performance on both small models and large language models on 8-bit and 6-bit. Besides, we establish a new state-of-the-art for 4-bit BERT with 15.5\% improvement. Our code is available at https://github.com/ModelTC/Outlier_Suppression_Plus.

Arabic Synonym BERT-based Adversarial Examples for Text Classification

Text classification systems have been proven vulnerable to adversarial text examples, modified versions of the original text examples that are often unnoticed by human eyes, yet can force text classification models to alter their classification. Often, research works quantifying the impact of adversarial text attacks have been applied only to models trained in English. In this paper, we introduce the first word-level study of adversarial attacks in Arabic. Specifically, we use a synonym (word-level) attack using a Masked Language Modeling (MLM) task with a BERT model in a black-box setting to assess the robustness of the state-of-the-art text classification models to adversarial attacks in Arabic. To evaluate the grammatical and semantic similarities of the newly produced adversarial examples using our synonym BERT-based attack, we invite four human evaluators to assess and compare the produced adversarial examples with their original examples. We also study the transferability of these newly produced Arabic adversarial examples to various models and investigate the effectiveness of defense mechanisms against these adversarial examples on the BERT models. We find that fine-tuned BERT models were more susceptible to our synonym attacks than the other Deep Neural Networks (DNN) models like WordCNN and WordLSTM we trained. We also find that fine-tuned BERT models were more susceptible to transferred attacks. We, lastly, find that fine-tuned BERT models successfully regain at least 2% in accuracy after applying adversarial training as an initial defense mechanism.

Semantic Stealth: Adversarial Text Attacks on NLP Using Several Methods

In various real-world applications such as machine translation, sentiment analysis, and question answering, a pivotal role is played by NLP models, facilitating efficient communication and decision-making processes in domains ranging from healthcare to finance. However, a significant challenge is posed to the robustness of these natural language processing models by text adversarial attacks. These attacks involve the deliberate manipulation of input text to mislead the predictions of the model while maintaining human interpretability. Despite the remarkable performance achieved by state-of-the-art models like BERT in various natural language processing tasks, they are found to remain vulnerable to adversarial perturbations in the input text. In addressing the vulnerability of text classifiers to adversarial attacks, three distinct attack mechanisms are explored in this paper using the victim model BERT: BERT-on-BERT attack, PWWS attack, and Fraud Bargain's Attack (FBA). Leveraging the IMDB, AG News, and SST2 datasets, a thorough comparative analysis is conducted to assess the effectiveness of these attacks on the BERT classifier model. It is revealed by the analysis that PWWS emerges as the most potent adversary, consistently outperforming other methods across multiple evaluation scenarios, thereby emphasizing its efficacy in generating adversarial examples for text classification. Through comprehensive experimentation, the performance of these attacks is assessed and the findings indicate that the PWWS attack outperforms others, demonstrating lower runtime, higher accuracy, and favorable semantic similarity scores. The key insight of this paper lies in the assessment of the relative performances of three prevalent state-of-the-art attack mechanisms.

WavThruVec: Latent speech representation as intermediate features for neural speech synthesis

Recent advances in neural text-to-speech research have been dominated by two-stage pipelines utilizing low-level intermediate speech representation such as mel-spectrograms. However, such predetermined features are fundamentally limited, because they do not allow to exploit the full potential of a data-driven approach through learning hidden representations. For this reason, several end-to-end methods have been proposed. However, such models are harder to train and require a large number of high-quality recordings with transcriptions. Here, we propose WavThruVec - a two-stage architecture that resolves the bottleneck by using high-dimensional Wav2Vec 2.0 embeddings as intermediate speech representation. Since these hidden activations provide high-level linguistic features, they are more robust to noise. That allows us to utilize annotated speech datasets of a lower quality to train the first-stage module. At the same time, the second-stage component can be trained on large-scale untranscribed audio corpora, as Wav2Vec 2.0 embeddings are already time-aligned. This results in an increased generalization capability to out-of-vocabulary words, as well as to a better generalization to unseen speakers. We show that the proposed model not only matches the quality of state-of-the-art neural models, but also presents useful properties enabling tasks like voice conversion or zero-shot synthesis.

ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding

Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.

AD-BERT: Using Pre-trained contextualized embeddings to Predict the Progression from Mild Cognitive Impairment to Alzheimer's Disease

Objective: We develop a deep learning framework based on the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model using unstructured clinical notes from electronic health records (EHRs) to predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Materials and Methods: We identified 3657 patients diagnosed with MCI together with their progress notes from Northwestern Medicine Enterprise Data Warehouse (NMEDW) between 2000-2020. The progress notes no later than the first MCI diagnosis were used for the prediction. We first preprocessed the notes by deidentification, cleaning and splitting, and then pretrained a BERT model for AD (AD-BERT) based on the publicly available Bio+Clinical BERT on the preprocessed notes. The embeddings of all the sections of a patient's notes processed by AD-BERT were combined by MaxPooling to compute the probability of MCI-to-AD progression. For replication, we conducted a similar set of experiments on 2563 MCI patients identified at Weill Cornell Medicine (WCM) during the same timeframe. Results: Compared with the 7 baseline models, the AD-BERT model achieved the best performance on both datasets, with Area Under receiver operating characteristic Curve (AUC) of 0.8170 and F1 score of 0.4178 on NMEDW dataset and AUC of 0.8830 and F1 score of 0.6836 on WCM dataset. Conclusion: We developed a deep learning framework using BERT models which provide an effective solution for prediction of MCI-to-AD progression using clinical note analysis.

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content and position, respectively, and the attention weights among words are computed using disentangled matrices on their contents and relative positions, respectively. Second, an enhanced mask decoder is used to incorporate absolute positions in the decoding layer to predict the masked tokens in model pre-training. In addition, a new virtual adversarial training method is used for fine-tuning to improve models' generalization. We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understanding (NLU) and natural langauge generation (NLG) downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). Notably, we scale up DeBERTa by training a larger version that consists of 48 Transform layers with 1.5 billion parameters. The significant performance boost makes the single DeBERTa model surpass the human performance on the SuperGLUE benchmark (Wang et al., 2019a) for the first time in terms of macro-average score (89.9 versus 89.8), and the ensemble DeBERTa model sits atop the SuperGLUE leaderboard as of January 6, 2021, out performing the human baseline by a decent margin (90.3 versus 89.8).

Math Word Problem Solving by Generating Linguistic Variants of Problem Statements

The art of mathematical reasoning stands as a fundamental pillar of intellectual progress and is a central catalyst in cultivating human ingenuity. Researchers have recently published a plethora of works centered around the task of solving Math Word Problems (MWP) - a crucial stride towards general AI. These existing models are susceptible to dependency on shallow heuristics and spurious correlations to derive the solution expressions. In order to ameliorate this issue, in this paper, we propose a framework for MWP solvers based on the generation of linguistic variants of the problem text. The approach involves solving each of the variant problems and electing the predicted expression with the majority of the votes. We use DeBERTa (Decoding-enhanced BERT with disentangled attention) as the encoder to leverage its rich textual representations and enhanced mask decoder to construct the solution expressions. Furthermore, we introduce a challenging dataset, Psmall{ARAMAWPS}, consisting of paraphrased, adversarial, and inverse variants of selectively sampled MWPs from the benchmark Msmall{AWPS} dataset. We extensively experiment on this dataset along with other benchmark datasets using some baseline MWP solver models. We show that training on linguistic variants of problem statements and voting on candidate predictions improve the mathematical reasoning and robustness of the model. We make our code and data publicly available.

The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models

Transformer-based language models have become a key building block for natural language processing. While these models are extremely accurate, they can be too large and computationally intensive to run on standard deployments. A variety of compression methods, including distillation, quantization, structured and unstructured pruning are known to decrease model size and increase inference speed, with low accuracy loss. In this context, this paper's contributions are two-fold. We perform an in-depth study of the accuracy-compression trade-off for unstructured weight pruning of BERT models. We introduce Optimal BERT Surgeon (oBERT), an efficient and accurate weight pruning method based on approximate second-order information, which we show to yield state-of-the-art results in both stages of language tasks: pre-training and fine-tuning. Specifically, oBERT extends existing work on unstructured second-order pruning by allowing for pruning blocks of weights, and by being applicable at the BERT scale. Second, we investigate the impact of this pruning method when compounding compression approaches to obtain highly compressed but accurate models for deployment on edge devices. These models significantly push boundaries of the current state-of-the-art sparse BERT models with respect to all metrics: model size, inference speed and task accuracy. For example, relative to the dense BERT-base, we obtain 10x model size compression (in MB) with < 1% accuracy drop, 10x CPU-inference speedup with < 2% accuracy drop, and 29x CPU-inference speedup with < 7.5% accuracy drop. Our code, fully integrated with Transformers and SparseML, is available at https://github.com/neuralmagic/sparseml/tree/main/research/optimal_BERT_surgeon_oBERT.

LegalTurk Optimized BERT for Multi-Label Text Classification and NER

The introduction of the Transformer neural network, along with techniques like self-supervised pre-training and transfer learning, has paved the way for advanced models like BERT. Despite BERT's impressive performance, opportunities for further enhancement exist. To our knowledge, most efforts are focusing on improving BERT's performance in English and in general domains, with no study specifically addressing the legal Turkish domain. Our study is primarily dedicated to enhancing the BERT model within the legal Turkish domain through modifications in the pre-training phase. In this work, we introduce our innovative modified pre-training approach by combining diverse masking strategies. In the fine-tuning task, we focus on two essential downstream tasks in the legal domain: name entity recognition and multi-label text classification. To evaluate our modified pre-training approach, we fine-tuned all customized models alongside the original BERT models to compare their performance. Our modified approach demonstrated significant improvements in both NER and multi-label text classification tasks compared to the original BERT model. Finally, to showcase the impact of our proposed models, we trained our best models with different corpus sizes and compared them with BERTurk models. The experimental results demonstrate that our innovative approach, despite being pre-trained on a smaller corpus, competes with BERTurk.

It's All in The [MASK]: Simple Instruction-Tuning Enables BERT-like Masked Language Models As Generative Classifiers

While encoder-only models such as BERT and ModernBERT are ubiquitous in real-world NLP applications, their conventional reliance on task-specific classification heads can limit their applicability compared to decoder-based large language models (LLMs). In this work, we introduce ModernBERT-Large-Instruct, a 0.4B-parameter encoder model that leverages its masked language modelling (MLM) head for generative classification. Our approach employs an intentionally simple training loop and inference mechanism that requires no heavy pre-processing, heavily engineered prompting, or architectural modifications. ModernBERT-Large-Instruct exhibits strong zero-shot performance on both classification and knowledge-based tasks, outperforming similarly sized LLMs on MMLU and achieving 93% of Llama3-1B's MMLU performance with 60% less parameters. We also demonstrate that, when fine-tuned, the generative approach using the MLM head matches or even surpasses traditional classification-head methods across diverse NLU tasks.This capability emerges specifically in models trained on contemporary, diverse data mixes, with models trained on lower volume, less-diverse data yielding considerably weaker performance. Although preliminary, these results demonstrate the potential of using the original generative masked language modelling head over traditional task-specific heads for downstream tasks. Our work suggests that further exploration into this area is warranted, highlighting many avenues for future improvements.

BERTuit: Understanding Spanish language in Twitter through a native transformer

The appearance of complex attention-based language models such as BERT, Roberta or GPT-3 has allowed to address highly complex tasks in a plethora of scenarios. However, when applied to specific domains, these models encounter considerable difficulties. This is the case of Social Networks such as Twitter, an ever-changing stream of information written with informal and complex language, where each message requires careful evaluation to be understood even by humans given the important role that context plays. Addressing tasks in this domain through Natural Language Processing involves severe challenges. When powerful state-of-the-art multilingual language models are applied to this scenario, language specific nuances use to get lost in translation. To face these challenges we present BERTuit, the larger transformer proposed so far for Spanish language, pre-trained on a massive dataset of 230M Spanish tweets using RoBERTa optimization. Our motivation is to provide a powerful resource to better understand Spanish Twitter and to be used on applications focused on this social network, with special emphasis on solutions devoted to tackle the spreading of misinformation in this platform. BERTuit is evaluated on several tasks and compared against M-BERT, XLM-RoBERTa and XLM-T, very competitive multilingual transformers. The utility of our approach is shown with applications, in this case: a zero-shot methodology to visualize groups of hoaxes and profiling authors spreading disinformation. Misinformation spreads wildly on platforms such as Twitter in languages other than English, meaning performance of transformers may suffer when transferred outside English speaking communities.

BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.

ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs

Transformers have become keystone models in natural language processing over the past decade. They have achieved great popularity in deep learning applications, but the increasing sizes of the parameter spaces required by transformer models generate a commensurate need to accelerate performance. Natural language processing problems are also routinely faced with variable-length sequences, as word counts commonly vary among sentences. Existing deep learning frameworks pad variable-length sequences to a maximal length, which adds significant memory and computational overhead. In this paper, we present ByteTransformer, a high-performance transformer boosted for variable-length inputs. We propose a padding-free algorithm that liberates the entire transformer from redundant computations on zero padded tokens. In addition to algorithmic-level optimization, we provide architecture-aware optimizations for transformer functional modules, especially the performance-critical algorithm Multi-Head Attention (MHA). Experimental results on an NVIDIA A100 GPU with variable-length sequence inputs validate that our fused MHA outperforms PyTorch by 6.13x. The end-to-end performance of ByteTransformer for a forward BERT transformer surpasses state-of-the-art transformer frameworks, such as PyTorch JIT, TensorFlow XLA, Tencent TurboTransformer, Microsoft DeepSpeed-Inference and NVIDIA FasterTransformer, by 87\%, 131\%, 138\%, 74\% and 55\%, respectively. We also demonstrate the general applicability of our optimization methods to other BERT-like models, including ALBERT, DistilBERT, and DeBERTa.

Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders

Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective universal lexical and sentence encoders even without any additional data and without any supervision. We propose an extremely simple, fast and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds without any additional external knowledge. Mirror-BERT relies on fully identical or slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning. We report huge gains over off-the-shelf MLMs with Mirror-BERT in both lexical-level and sentence-level tasks, across different domains and different languages. Notably, in the standard sentence semantic similarity (STS) tasks, our self-supervised Mirror-BERT model even matches the performance of the task-tuned Sentence-BERT models from prior work. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple approach can yield effective universal lexical and sentence encoders.

Applying Pre-trained Multilingual BERT in Embeddings for Improved Malicious Prompt Injection Attacks Detection

Large language models (LLMs) are renowned for their exceptional capabilities, and applying to a wide range of applications. However, this widespread use brings significant vulnerabilities. Also, it is well observed that there are huge gap which lies in the need for effective detection and mitigation strategies against malicious prompt injection attacks in large language models, as current approaches may not adequately address the complexity and evolving nature of these vulnerabilities in real-world applications. Therefore, this work focuses the impact of malicious prompt injection attacks which is one of most dangerous vulnerability on real LLMs applications. It examines to apply various BERT (Bidirectional Encoder Representations from Transformers) like multilingual BERT, DistilBert for classifying malicious prompts from legitimate prompts. Also, we observed how tokenizing the prompt texts and generating embeddings using multilingual BERT contributes to improve the performance of various machine learning methods: Gaussian Naive Bayes, Random Forest, Support Vector Machine, and Logistic Regression. The performance of each model is rigorously analyzed with various parameters to improve the binary classification to discover malicious prompts. Multilingual BERT approach to embed the prompts significantly improved and outperformed the existing works and achieves an outstanding accuracy of 96.55% by Logistic regression. Additionally, we investigated the incorrect predictions of the model to gain insights into its limitations. The findings can guide researchers in tuning various BERT for finding the most suitable model for diverse LLMs vulnerabilities.

Can bidirectional encoder become the ultimate winner for downstream applications of foundation models?

Over the past few decades, Artificial Intelligence(AI) has progressed from the initial machine learning stage to the deep learning stage, and now to the stage of foundational models. Foundational models have the characteristics of pre-training, transfer learning, and self-supervised learning, and pre-trained models can be fine-tuned and applied to various downstream tasks. Under the framework of foundational models, models such as Bidirectional Encoder Representations from Transformers(BERT) and Generative Pre-trained Transformer(GPT) have greatly advanced the development of natural language processing(NLP), especially the emergence of many models based on BERT. BERT broke through the limitation of only using one-way methods for language modeling in pre-training by using a masked language model. It can capture bidirectional context information to predict the masked words in the sequence, this can improve the feature extraction ability of the model. This makes the model very useful for downstream tasks, especially for specialized applications. The model using the bidirectional encoder can better understand the domain knowledge and be better applied to these downstream tasks. So we hope to help understand how this technology has evolved and improved model performance in various natural language processing tasks under the background of foundational models and reveal its importance in capturing context information and improving the model's performance on downstream tasks. This article analyzes one-way and bidirectional models based on GPT and BERT and compares their differences based on the purpose of the model. It also briefly analyzes BERT and the improvements of some models based on BERT. The model's performance on the Stanford Question Answering Dataset(SQuAD) and General Language Understanding Evaluation(GLUE) was compared.

Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data

In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.

DomURLs_BERT: Pre-trained BERT-based Model for Malicious Domains and URLs Detection and Classification

Detecting and classifying suspicious or malicious domain names and URLs is fundamental task in cybersecurity. To leverage such indicators of compromise, cybersecurity vendors and practitioners often maintain and update blacklists of known malicious domains and URLs. However, blacklists frequently fail to identify emerging and obfuscated threats. Over the past few decades, there has been significant interest in developing machine learning models that automatically detect malicious domains and URLs, addressing the limitations of blacklists maintenance and updates. In this paper, we introduce DomURLs_BERT, a pre-trained BERT-based encoder adapted for detecting and classifying suspicious/malicious domains and URLs. DomURLs_BERT is pre-trained using the Masked Language Modeling (MLM) objective on a large multilingual corpus of URLs, domain names, and Domain Generation Algorithms (DGA) dataset. In order to assess the performance of DomURLs_BERT, we have conducted experiments on several binary and multi-class classification tasks involving domain names and URLs, covering phishing, malware, DGA, and DNS tunneling. The evaluations results show that the proposed encoder outperforms state-of-the-art character-based deep learning models and cybersecurity-focused BERT models across multiple tasks and datasets. The pre-training dataset, the pre-trained DomURLs_BERT encoder, and the experiments source code are publicly available.

Towards Efficient Methods in Medical Question Answering using Knowledge Graph Embeddings

In Natural Language Processing (NLP), Machine Reading Comprehension (MRC) is the task of answering a question based on a given context. To handle questions in the medical domain, modern language models such as BioBERT, SciBERT and even ChatGPT are trained on vast amounts of in-domain medical corpora. However, in-domain pre-training is expensive in terms of time and resources. In this paper, we propose a resource-efficient approach for injecting domain knowledge into a model without relying on such domain-specific pre-training. Knowledge graphs are powerful resources for accessing medical information. Building on existing work, we introduce a method using Multi-Layer Perceptrons (MLPs) for aligning and integrating embeddings extracted from medical knowledge graphs with the embedding spaces of pre-trained language models (LMs). The aligned embeddings are fused with open-domain LMs BERT and RoBERTa that are fine-tuned for two MRC tasks, span detection (COVID-QA) and multiple-choice questions (PubMedQA). We compare our method to prior techniques that rely on a vocabulary overlap for embedding alignment and show how our method circumvents this requirement to deliver better performance. On both datasets, our method allows BERT/RoBERTa to either perform on par (occasionally exceeding) with stronger domain-specific models or show improvements in general over prior techniques. With the proposed approach, we signal an alternative method to in-domain pre-training to achieve domain proficiency.

Language Models are Super Mario: Absorbing Abilities from Homologous Models as a Free Lunch

In this paper, we uncover that Language Models (LMs), either encoder- or decoder-based, can obtain new capabilities by assimilating the parameters of homologous models without retraining or GPUs. Typically, new abilities of LMs can be imparted by Supervised Fine-Tuning (SFT), reflected in the disparity between fine-tuned and pre-trained parameters (i.e., delta parameters). We initially observe that by introducing a novel operation called DARE (Drop And REscale), most delta parameters can be directly set to zeros without affecting the capabilities of SFT LMs and larger models can tolerate a higher proportion of discarded parameters. Based on this observation, we further sparsify delta parameters of multiple SFT homologous models with DARE and subsequently merge them into a single model by parameter averaging. We conduct experiments on eight datasets from the GLUE benchmark with BERT and RoBERTa. We also merge WizardLM, WizardMath, and Code Alpaca based on Llama 2. Experimental results show that: (1) The delta parameter value ranges for SFT models are typically small, often within 0.005, and DARE can eliminate 99% of them effortlessly. However, once the models are continuously pre-trained, the value ranges can grow to around 0.03, making DARE impractical. We have also tried to remove fine-tuned instead of delta parameters and find that a 10% reduction can lead to drastically decreased performance (even to 0). This highlights that SFT merely stimulates the abilities via delta parameters rather than injecting new abilities into LMs; (2) DARE can merge multiple task-specific LMs into one LM with diverse abilities. For instance, the merger of WizardLM and WizardMath improves the GSM8K zero-shot accuracy of WizardLM from 2.2 to 66.3, retaining its instruction-following ability while surpassing WizardMath's original 64.2 performance. Codes are available at https://github.com/yule-BUAA/MergeLM.

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

Masked language modeling (MLM) pre-training methods such as BERT corrupt the input by replacing some tokens with [MASK] and then train a model to reconstruct the original tokens. While they produce good results when transferred to downstream NLP tasks, they generally require large amounts of compute to be effective. As an alternative, we propose a more sample-efficient pre-training task called replaced token detection. Instead of masking the input, our approach corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network. Then, instead of training a model that predicts the original identities of the corrupted tokens, we train a discriminative model that predicts whether each token in the corrupted input was replaced by a generator sample or not. Thorough experiments demonstrate this new pre-training task is more efficient than MLM because the task is defined over all input tokens rather than just the small subset that was masked out. As a result, the contextual representations learned by our approach substantially outperform the ones learned by BERT given the same model size, data, and compute. The gains are particularly strong for small models; for example, we train a model on one GPU for 4 days that outperforms GPT (trained using 30x more compute) on the GLUE natural language understanding benchmark. Our approach also works well at scale, where it performs comparably to RoBERTa and XLNet while using less than 1/4 of their compute and outperforms them when using the same amount of compute.

Understanding Telecom Language Through Large Language Models

The recent progress of artificial intelligence (AI) opens up new frontiers in the possibility of automating many tasks involved in Telecom networks design, implementation, and deployment. This has been further pushed forward with the evolution of generative artificial intelligence (AI), including the emergence of large language models (LLMs), which is believed to be the cornerstone toward realizing self-governed, interactive AI agents. Motivated by this, in this paper, we aim to adapt the paradigm of LLMs to the Telecom domain. In particular, we fine-tune several LLMs including BERT, distilled BERT, RoBERTa and GPT-2, to the Telecom domain languages, and demonstrate a use case for identifying the 3rd Generation Partnership Project (3GPP) standard working groups. We consider training the selected models on 3GPP technical documents (Tdoc) pertinent to years 2009-2019 and predict the Tdoc categories in years 2020-2023. The results demonstrate that fine-tuning BERT and RoBERTa model achieves 84.6% accuracy, while GPT-2 model achieves 83% in identifying 3GPP working groups. The distilled BERT model with around 50% less parameters achieves similar performance as others. This corroborates that fine-tuning pretrained LLM can effectively identify the categories of Telecom language. The developed framework shows a stepping stone towards realizing intent-driven and self-evolving wireless networks from Telecom languages, and paves the way for the implementation of generative AI in the Telecom domain.

VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain

The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.

Clinical-Longformer and Clinical-BigBird: Transformers for long clinical sequences

Transformers-based models, such as BERT, have dramatically improved the performance for various natural language processing tasks. The clinical knowledge enriched model, namely ClinicalBERT, also achieved state-of-the-art results when performed on clinical named entity recognition and natural language inference tasks. One of the core limitations of these transformers is the substantial memory consumption due to their full self-attention mechanism. To overcome this, long sequence transformer models, e.g. Longformer and BigBird, were proposed with the idea of sparse attention mechanism to reduce the memory usage from quadratic to the sequence length to a linear scale. These models extended the maximum input sequence length from 512 to 4096, which enhanced the ability of modeling long-term dependency and consequently achieved optimal results in a variety of tasks. Inspired by the success of these long sequence transformer models, we introduce two domain enriched language models, namely Clinical-Longformer and Clinical-BigBird, which are pre-trained from large-scale clinical corpora. We evaluate both pre-trained models using 10 baseline tasks including named entity recognition, question answering, and document classification tasks. The results demonstrate that Clinical-Longformer and Clinical-BigBird consistently and significantly outperform ClinicalBERT as well as other short-sequence transformers in all downstream tasks. We have made our source code available at [https://github.com/luoyuanlab/Clinical-Longformer] the pre-trained models available for public download at: [https://huggingface.co/yikuan8/Clinical-Longformer].