22 Training Software Engineering Agents and Verifiers with SWE-Gym We present SWE-Gym, the first environment for training real-world software engineering (SWE) agents. SWE-Gym contains 2,438 real-world Python task instances, each comprising a codebase with an executable runtime environment, unit tests, and a task specified in natural language. We use SWE-Gym to train language model based SWE agents , achieving up to 19% absolute gains in resolve rate on the popular SWE-Bench Verified and Lite test sets. We also experiment with inference-time scaling through verifiers trained on agent trajectories sampled from SWE-Gym. When combined with our fine-tuned SWE agents, we achieve 32.0% and 26.0% on SWE-Bench Verified and Lite, respectively, reflecting a new state-of-the-art for open-weight SWE agents. To facilitate further research, we publicly release SWE-Gym, models, and agent trajectories. 7 authors · Dec 30, 2024 2
10 Coffee-Gym: An Environment for Evaluating and Improving Natural Language Feedback on Erroneous Code This paper presents Coffee-Gym, a comprehensive RL environment for training models that provide feedback on code editing. Coffee-Gym includes two major components: (1) Coffee, a dataset containing humans' code edit traces for coding questions and machine-written feedback for editing erroneous code; (2) CoffeeEval, a reward function that faithfully reflects the helpfulness of feedback by assessing the performance of the revised code in unit tests. With them, Coffee-Gym addresses the unavailability of high-quality datasets for training feedback models with RL, and provides more accurate rewards than the SOTA reward model (i.e., GPT-4). By applying Coffee-Gym, we elicit feedback models that outperform baselines in enhancing open-source code LLMs' code editing, making them comparable with closed-source LLMs. We make the dataset and the model checkpoint publicly available. 10 authors · Sep 29, 2024 3
2 panda-gym: Open-source goal-conditioned environments for robotic learning This paper presents panda-gym, a set of Reinforcement Learning (RL) environments for the Franka Emika Panda robot integrated with OpenAI Gym. Five tasks are included: reach, push, slide, pick & place and stack. They all follow a Multi-Goal RL framework, allowing to use goal-oriented RL algorithms. To foster open-research, we chose to use the open-source physics engine PyBullet. The implementation chosen for this package allows to define very easily new tasks or new robots. This paper also presents a baseline of results obtained with state-of-the-art model-free off-policy algorithms. panda-gym is open-source and freely available at https://github.com/qgallouedec/panda-gym. 4 authors · Jun 25, 2021
1 RFRL Gym: A Reinforcement Learning Testbed for Cognitive Radio Applications Radio Frequency Reinforcement Learning (RFRL) is anticipated to be a widely applicable technology in the next generation of wireless communication systems, particularly 6G and next-gen military communications. Given this, our research is focused on developing a tool to promote the development of RFRL techniques that leverage spectrum sensing. In particular, the tool was designed to address two cognitive radio applications, specifically dynamic spectrum access and jamming. In order to train and test reinforcement learning (RL) algorithms for these applications, a simulation environment is necessary to simulate the conditions that an agent will encounter within the Radio Frequency (RF) spectrum. In this paper, such an environment has been developed, herein referred to as the RFRL Gym. Through the RFRL Gym, users can design their own scenarios to model what an RL agent may encounter within the RF spectrum as well as experiment with different spectrum sensing techniques. Additionally, the RFRL Gym is a subclass of OpenAI gym, enabling the use of third-party ML/RL Libraries. We plan to open-source this codebase to enable other researchers to utilize the RFRL Gym to test their own scenarios and RL algorithms, ultimately leading to the advancement of RL research in the wireless communications domain. This paper describes in further detail the components of the Gym, results from example scenarios, and plans for future additions. Index Terms-machine learning, reinforcement learning, wireless communications, dynamic spectrum access, OpenAI gym 17 authors · Dec 20, 2023
1 LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language Models Large language models (LLMs) provide excellent text-generation capabilities, but standard prompting and generation methods generally do not lead to intentional or goal-directed agents and might necessitate considerable prompt tuning. This becomes particularly apparent in multi-turn conversations: even the best current LLMs rarely ask clarifying questions, engage in explicit information gathering, or take actions now that lead to better decisions after multiple turns. Reinforcement learning has the potential to leverage the powerful modeling capabilities of LLMs, as well as their internal representation of textual interactions, to create capable goal-directed language agents. This can enable intentional and temporally extended interactions, such as with humans, through coordinated persuasion and carefully crafted questions, or in goal-directed play through text games to bring about desired final outcomes. However, enabling this requires the community to develop stable and reliable reinforcement learning algorithms that can effectively train LLMs. Developing such algorithms requires tasks that can gauge progress on algorithm design, provide accessible and reproducible evaluations for multi-turn interactions, and cover a range of task properties and challenges in improving reinforcement learning algorithms. Our paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for LLMs, together with an open-source research framework containing a basic toolkit for getting started on multi-turn RL with offline value-based and policy-based RL methods. Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games. 8 authors · Nov 29, 2023
1 Surgical Gym: A high-performance GPU-based platform for reinforcement learning with surgical robots Recent advances in robot-assisted surgery have resulted in progressively more precise, efficient, and minimally invasive procedures, sparking a new era of robotic surgical intervention. This enables doctors, in collaborative interaction with robots, to perform traditional or minimally invasive surgeries with improved outcomes through smaller incisions. Recent efforts are working toward making robotic surgery more autonomous which has the potential to reduce variability of surgical outcomes and reduce complication rates. Deep reinforcement learning methodologies offer scalable solutions for surgical automation, but their effectiveness relies on extensive data acquisition due to the absence of prior knowledge in successfully accomplishing tasks. Due to the intensive nature of simulated data collection, previous works have focused on making existing algorithms more efficient. In this work, we focus on making the simulator more efficient, making training data much more accessible than previously possible. We introduce Surgical Gym, an open-source high performance platform for surgical robot learning where both the physics simulation and reinforcement learning occur directly on the GPU. We demonstrate between 100-5000x faster training times compared with previous surgical learning platforms. The code is available at: https://github.com/SamuelSchmidgall/SurgicalGym. 3 authors · Oct 6, 2023
1 Robustness Gym: Unifying the NLP Evaluation Landscape Despite impressive performance on standard benchmarks, deep neural networks are often brittle when deployed in real-world systems. Consequently, recent research has focused on testing the robustness of such models, resulting in a diverse set of evaluation methodologies ranging from adversarial attacks to rule-based data transformations. In this work, we identify challenges with evaluating NLP systems and propose a solution in the form of Robustness Gym (RG), a simple and extensible evaluation toolkit that unifies 4 standard evaluation paradigms: subpopulations, transformations, evaluation sets, and adversarial attacks. By providing a common platform for evaluation, Robustness Gym enables practitioners to compare results from all 4 evaluation paradigms with just a few clicks, and to easily develop and share novel evaluation methods using a built-in set of abstractions. To validate Robustness Gym's utility to practitioners, we conducted a real-world case study with a sentiment-modeling team, revealing performance degradations of 18%+. To verify that Robustness Gym can aid novel research analyses, we perform the first study of state-of-the-art commercial and academic named entity linking (NEL) systems, as well as a fine-grained analysis of state-of-the-art summarization models. For NEL, commercial systems struggle to link rare entities and lag their academic counterparts by 10%+, while state-of-the-art summarization models struggle on examples that require abstraction and distillation, degrading by 9%+. Robustness Gym can be found at https://robustnessgym.com/ 9 authors · Jan 12, 2021
- RAG-Gym: Optimizing Reasoning and Search Agents with Process Supervision Retrieval-augmented generation (RAG) has shown great potential for knowledge-intensive tasks, but its traditional architectures rely on static retrieval, limiting their effectiveness for complex questions that require sequential information-seeking. While agentic reasoning and search offer a more adaptive approach, most existing methods depend heavily on prompt engineering. In this work, we introduce RAG-Gym, a unified optimization framework that enhances information-seeking agents through fine-grained process supervision at each search step. We also propose ReSearch, a novel agent architecture that synergizes answer reasoning and search query generation within the RAG-Gym framework. Experiments on four challenging datasets show that RAG-Gym improves performance by up to 25.6\% across various agent architectures, with ReSearch consistently outperforming existing baselines. Further analysis highlights the effectiveness of advanced LLMs as process reward judges and the transferability of trained reward models as verifiers for different LLMs. Additionally, we examine the scaling properties of training and inference in agentic RAG. The project homepage is available at https://rag-gym.github.io/. 12 authors · Feb 19
- Memory Gym: Towards Endless Tasks to Benchmark Memory Capabilities of Agents Memory Gym presents a suite of 2D partially observable environments, namely Mortar Mayhem, Mystery Path, and Searing Spotlights, designed to benchmark memory capabilities in decision-making agents. These environments, originally with finite tasks, are expanded into innovative, endless formats, mirroring the escalating challenges of cumulative memory games such as ``I packed my bag''. This progression in task design shifts the focus from merely assessing sample efficiency to also probing the levels of memory effectiveness in dynamic, prolonged scenarios. To address the gap in available memory-based Deep Reinforcement Learning baselines, we introduce an implementation that integrates Transformer-XL (TrXL) with Proximal Policy Optimization. This approach utilizes TrXL as a form of episodic memory, employing a sliding window technique. Our comparative study between the Gated Recurrent Unit (GRU) and TrXL reveals varied performances across different settings. TrXL, on the finite environments, demonstrates superior sample efficiency in Mystery Path and outperforms in Mortar Mayhem. However, GRU is more efficient on Searing Spotlights. Most notably, in all endless tasks, GRU makes a remarkable resurgence, consistently outperforming TrXL by significant margins. Website and Source Code: https://github.com/MarcoMeter/endless-memory-gym/ 4 authors · Sep 29, 2023
2 Human-Robot Gym: Benchmarking Reinforcement Learning in Human-Robot Collaboration Deep reinforcement learning (RL) has shown promising results in robot motion planning with first attempts in human-robot collaboration (HRC). However, a fair comparison of RL approaches in HRC under the constraint of guaranteed safety is yet to be made. We, therefore, present human-robot gym, a benchmark for safe RL in HRC. Our benchmark provides eight challenging, realistic HRC tasks in a modular simulation framework. Most importantly, human-robot gym includes a safety shield that provably guarantees human safety. We are, thereby, the first to provide a benchmark to train RL agents that adhere to the safety specifications of real-world HRC. This bridges a critical gap between theoretic RL research and its real-world deployment. Our evaluation of six environments led to three key results: (a) the diverse nature of the tasks offered by human-robot gym creates a challenging benchmark for state-of-the-art RL methods, (b) incorporating expert knowledge in the RL training in the form of an action-based reward can outperform the expert, and (c) our agents negligibly overfit to training data. 3 authors · Oct 9, 2023
1 ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym. 11 authors · Jun 15, 2023
1 The Health Gym: Synthetic Health-Related Datasets for the Development of Reinforcement Learning Algorithms In recent years, the machine learning research community has benefited tremendously from the availability of openly accessible benchmark datasets. Clinical data are usually not openly available due to their highly confidential nature. This has hampered the development of reproducible and generalisable machine learning applications in health care. Here we introduce the Health Gym - a growing collection of highly realistic synthetic medical datasets that can be freely accessed to prototype, evaluate, and compare machine learning algorithms, with a specific focus on reinforcement learning. The three synthetic datasets described in this paper present patient cohorts with acute hypotension and sepsis in the intensive care unit, and people with human immunodeficiency virus (HIV) receiving antiretroviral therapy in ambulatory care. The datasets were created using a novel generative adversarial network (GAN). The distributions of variables, and correlations between variables and trends over time in the synthetic datasets mirror those in the real datasets. Furthermore, the risk of sensitive information disclosure associated with the public distribution of the synthetic datasets is estimated to be very low. 9 authors · Mar 12, 2022
- Learning to Fly -- a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control Robotic simulators are crucial for academic research and education as well as the development of safety-critical applications. Reinforcement learning environments -- simple simulations coupled with a problem specification in the form of a reward function -- are also important to standardize the development (and benchmarking) of learning algorithms. Yet, full-scale simulators typically lack portability and parallelizability. Vice versa, many reinforcement learning environments trade-off realism for high sample throughputs in toy-like problems. While public data sets have greatly benefited deep learning and computer vision, we still lack the software tools to simultaneously develop -- and fairly compare -- control theory and reinforcement learning approaches. In this paper, we propose an open-source OpenAI Gym-like environment for multiple quadcopters based on the Bullet physics engine. Its multi-agent and vision based reinforcement learning interfaces, as well as the support of realistic collisions and aerodynamic effects, make it, to the best of our knowledge, a first of its kind. We demonstrate its use through several examples, either for control (trajectory tracking with PID control, multi-robot flight with downwash, etc.) or reinforcement learning (single and multi-agent stabilization tasks), hoping to inspire future research that combines control theory and machine learning. 6 authors · Mar 2, 2021 1
1 Can language agents be alternatives to PPO? A Preliminary Empirical Study On OpenAI Gym The formidable capacity for zero- or few-shot decision-making in language agents encourages us to pose a compelling question: Can language agents be alternatives to PPO agents in traditional sequential decision-making tasks? To investigate this, we first take environments collected in OpenAI Gym as our testbeds and ground them to textual environments that construct the TextGym simulator. This allows for straightforward and efficient comparisons between PPO agents and language agents, given the widespread adoption of OpenAI Gym. To ensure a fair and effective benchmarking, we introduce 5 levels of scenario for accurate domain-knowledge controlling and a unified RL-inspired framework for language agents. Additionally, we propose an innovative explore-exploit-guided language (EXE) agent to solve tasks within TextGym. Through numerical experiments and ablation studies, we extract valuable insights into the decision-making capabilities of language agents and make a preliminary evaluation of their potential to be alternatives to PPO in classical sequential decision-making problems. This paper sheds light on the performance of language agents and paves the way for future research in this exciting domain. Our code is publicly available at~https://github.com/mail-ecnu/Text-Gym-Agents. 8 authors · Dec 5, 2023