new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

DISGAN: Wavelet-informed Discriminator Guides GAN to MRI Super-resolution with Noise Cleaning

MRI super-resolution (SR) and denoising tasks are fundamental challenges in the field of deep learning, which have traditionally been treated as distinct tasks with separate paired training data. In this paper, we propose an innovative method that addresses both tasks simultaneously using a single deep learning model, eliminating the need for explicitly paired noisy and clean images during training. Our proposed model is primarily trained for SR, but also exhibits remarkable noise-cleaning capabilities in the super-resolved images. Instead of conventional approaches that introduce frequency-related operations into the generative process, our novel approach involves the use of a GAN model guided by a frequency-informed discriminator. To achieve this, we harness the power of the 3D Discrete Wavelet Transform (DWT) operation as a frequency constraint within the GAN framework for the SR task on magnetic resonance imaging (MRI) data. Specifically, our contributions include: 1) a 3D generator based on residual-in-residual connected blocks; 2) the integration of the 3D DWT with 1times 1 convolution into a DWT+conv unit within a 3D Unet for the discriminator; 3) the use of the trained model for high-quality image SR, accompanied by an intrinsic denoising process. We dub the model "Denoising Induced Super-resolution GAN (DISGAN)" due to its dual effects of SR image generation and simultaneous denoising. Departing from the traditional approach of training SR and denoising tasks as separate models, our proposed DISGAN is trained only on the SR task, but also achieves exceptional performance in denoising. The model is trained on 3D MRI data from dozens of subjects from the Human Connectome Project (HCP) and further evaluated on previously unseen MRI data from subjects with brain tumours and epilepsy to assess its denoising and SR performance.

Over-The-Air Double-Threshold Deep Learner for Jamming Detection in 5G RF domain

With the evolution of 5G wireless communications, the Synchronization Signal Block (SSB) plays a critical role in the synchronization of devices and accessibility of services. However, due to the predictable nature of SSB transmission, including the Primary and Secondary Synchronization Signals (PSS and SSS), jamming attacks are critical threats. By leveraging RF domain knowledge, this work presents a novel deep learning-based technique for detecting jammers in 5G networks. Unlike the existing jamming detection algorithms that mostly rely on network parameters, we introduce a double threshold deep learning jamming detector by focusing on the SSB. The detection method is focused on RF domain features and improves the robustness of the network without requiring integration with the pre-existing network infrastructure. By integrating a preprocessing block that extracts PSS correlation and energy per null resource elements (EPNRE) characteristics, our method distinguishes between normal and jammed received signals with high precision. Additionally, by incorporation of Discrete Wavelet Transform (DWT), the efficacy of training and detection are optimized. A double threshold double Deep Neural Network (DT-DDNN) is also introduced to the architecture complemented by a deep cascade learning model to increase the sensitivity of the model to variations of signal to jamming noise ratio (SJNR). Results show that the proposed method achieves 96.4% detection rate in extra low jamming power, i.e., SJNR between 15 to 30 dB which outperforms the single threshold DNN design with 86.0% detection rate and unprocessed IQ sample DNN design with 83.2% detection rate. Ultimately, performance of DT-DDNN is validated through the analysis of real 5G signals obtained from a practical testbed, demonstrating a strong alignment with the simulation results.

A robust, low-cost approach to Face Detection and Face Recognition

In the domain of Biometrics, recognition systems based on iris, fingerprint or palm print scans etc. are often considered more dependable due to extremely low variance in the properties of these entities with respect to time. However, over the last decade data processing capability of computers has increased manifold, which has made real-time video content analysis possible. This shows that the need of the hour is a robust and highly automated Face Detection and Recognition algorithm with credible accuracy rate. The proposed Face Detection and Recognition system using Discrete Wavelet Transform (DWT) accepts face frames as input from a database containing images from low cost devices such as VGA cameras, webcams or even CCTV's, where image quality is inferior. Face region is then detected using properties of L*a*b* color space and only Frontal Face is extracted such that all additional background is eliminated. Further, this extracted image is converted to grayscale and its dimensions are resized to 128 x 128 pixels. DWT is then applied to entire image to obtain the coefficients. Recognition is carried out by comparison of the DWT coefficients belonging to the test image with those of the registered reference image. On comparison, Euclidean distance classifier is deployed to validate the test image from the database. Accuracy for various levels of DWT Decomposition is obtained and hence, compared.

WaveMix: A Resource-efficient Neural Network for Image Analysis

We propose WaveMix -- a novel neural architecture for computer vision that is resource-efficient yet generalizable and scalable. WaveMix networks achieve comparable or better accuracy than the state-of-the-art convolutional neural networks, vision transformers, and token mixers for several tasks, establishing new benchmarks for segmentation on Cityscapes; and for classification on Places-365, five EMNIST datasets, and iNAT-mini. Remarkably, WaveMix architectures require fewer parameters to achieve these benchmarks compared to the previous state-of-the-art. Moreover, when controlled for the number of parameters, WaveMix requires lesser GPU RAM, which translates to savings in time, cost, and energy. To achieve these gains we used multi-level two-dimensional discrete wavelet transform (2D-DWT) in WaveMix blocks, which has the following advantages: (1) It reorganizes spatial information based on three strong image priors -- scale-invariance, shift-invariance, and sparseness of edges, (2) in a lossless manner without adding parameters, (3) while also reducing the spatial sizes of feature maps, which reduces the memory and time required for forward and backward passes, and (4) expanding the receptive field faster than convolutions do. The whole architecture is a stack of self-similar and resolution-preserving WaveMix blocks, which allows architectural flexibility for various tasks and levels of resource availability. Our code and trained models are publicly available.

Diffusion Probabilistic Model Made Slim

Despite the recent visually-pleasing results achieved, the massive computational cost has been a long-standing flaw for diffusion probabilistic models (DPMs), which, in turn, greatly limits their applications on resource-limited platforms. Prior methods towards efficient DPM, however, have largely focused on accelerating the testing yet overlooked their huge complexity and sizes. In this paper, we make a dedicated attempt to lighten DPM while striving to preserve its favourable performance. We start by training a small-sized latent diffusion model (LDM) from scratch, but observe a significant fidelity drop in the synthetic images. Through a thorough assessment, we find that DPM is intrinsically biased against high-frequency generation, and learns to recover different frequency components at different time-steps. These properties make compact networks unable to represent frequency dynamics with accurate high-frequency estimation. Towards this end, we introduce a customized design for slim DPM, which we term as Spectral Diffusion (SD), for light-weight image synthesis. SD incorporates wavelet gating in its architecture to enable frequency dynamic feature extraction at every reverse steps, and conducts spectrum-aware distillation to promote high-frequency recovery by inverse weighting the objective based on spectrum magni tudes. Experimental results demonstrate that, SD achieves 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks while retaining competitive image fidelity.

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks

As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.

PeriodWave: Multi-Period Flow Matching for High-Fidelity Waveform Generation

Recently, universal waveform generation tasks have been investigated conditioned on various out-of-distribution scenarios. Although GAN-based methods have shown their strength in fast waveform generation, they are vulnerable to train-inference mismatch scenarios such as two-stage text-to-speech. Meanwhile, diffusion-based models have shown their powerful generative performance in other domains; however, they stay out of the limelight due to slow inference speed in waveform generation tasks. Above all, there is no generator architecture that can explicitly disentangle the natural periodic features of high-resolution waveform signals. In this paper, we propose PeriodWave, a novel universal waveform generation model. First, we introduce a period-aware flow matching estimator that can capture the periodic features of the waveform signal when estimating the vector fields. Additionally, we utilize a multi-period estimator that avoids overlaps to capture different periodic features of waveform signals. Although increasing the number of periods can improve the performance significantly, this requires more computational costs. To reduce this issue, we also propose a single period-conditional universal estimator that can feed-forward parallel by period-wise batch inference. Additionally, we utilize discrete wavelet transform to losslessly disentangle the frequency information of waveform signals for high-frequency modeling, and introduce FreeU to reduce the high-frequency noise for waveform generation. The experimental results demonstrated that our model outperforms the previous models both in Mel-spectrogram reconstruction and text-to-speech tasks. All source code will be available at https://github.com/sh-lee-prml/PeriodWave.

DCT-HistoTransformer: Efficient Lightweight Vision Transformer with DCT Integration for histopathological image analysis

In recent years, the integration of advanced imaging techniques and deep learning methods has significantly advanced computer-aided diagnosis (CAD) systems for breast cancer detection and classification. Transformers, which have shown great promise in computer vision, are now being applied to medical image analysis. However, their application to histopathological images presents challenges due to the need for extensive manual annotations of whole-slide images (WSIs), as these models require large amounts of data to work effectively, which is costly and time-consuming. Furthermore, the quadratic computational cost of Vision Transformers (ViTs) is particularly prohibitive for large, high-resolution histopathological images, especially on edge devices with limited computational resources. In this study, we introduce a novel lightweight breast cancer classification approach using transformers that operates effectively without large datasets. By incorporating parallel processing pathways for Discrete Cosine Transform (DCT) Attention and MobileConv, we convert image data from the spatial domain to the frequency domain to utilize the benefits such as filtering out high frequencies in the image, which reduces computational cost. This demonstrates the potential of our approach to improve breast cancer classification in histopathological images, offering a more efficient solution with reduced reliance on extensive annotated datasets. Our proposed model achieves an accuracy of 96.00% pm 0.48% for binary classification and 87.85% pm 0.93% for multiclass classification, which is comparable to state-of-the-art models while significantly reducing computational costs. This demonstrates the potential of our approach to improve breast cancer classification in histopathological images, offering a more efficient solution with reduced reliance on extensive annotated datasets.

DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation

We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git.

More complex encoder is not all you need

U-Net and its variants have been widely used in medical image segmentation. However, most current U-Net variants confine their improvement strategies to building more complex encoder, while leaving the decoder unchanged or adopting a simple symmetric structure. These approaches overlook the true functionality of the decoder: receiving low-resolution feature maps from the encoder and restoring feature map resolution and lost information through upsampling. As a result, the decoder, especially its upsampling component, plays a crucial role in enhancing segmentation outcomes. However, in 3D medical image segmentation, the commonly used transposed convolution can result in visual artifacts. This issue stems from the absence of direct relationship between adjacent pixels in the output feature map. Furthermore, plain encoder has already possessed sufficient feature extraction capability because downsampling operation leads to the gradual expansion of the receptive field, but the loss of information during downsampling process is unignorable. To address the gap in relevant research, we extend our focus beyond the encoder and introduce neU-Net (i.e., not complex encoder U-Net), which incorporates a novel Sub-pixel Convolution for upsampling to construct a powerful decoder. Additionally, we introduce multi-scale wavelet inputs module on the encoder side to provide additional information. Our model design achieves excellent results, surpassing other state-of-the-art methods on both the Synapse and ACDC datasets.

Transform Once: Efficient Operator Learning in Frequency Domain

Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.

Sparse Concept Coded Tetrolet Transform for Unconstrained Odia Character Recognition

Feature representation in the form of spatio-spectral decomposition is one of the robust techniques adopted in automatic handwritten character recognition systems. In this regard, we propose a new image representation approach for unconstrained handwritten alphanumeric characters using sparse concept coded Tetrolets. Tetrolets, which does not use fixed dyadic square blocks for spectral decomposition like conventional wavelets, preserve the localized variations in handwritings by adopting tetrominoes those capture the shape geometry. The sparse concept coding of low entropy Tetrolet representation is found to extract the important hidden information (concept) for superior pattern discrimination. Large scale experimentation using ten databases in six different scripts (Bangla, Devanagari, Odia, English, Arabic and Telugu) has been performed. The proposed feature representation along with standard classifiers such as random forest, support vector machine (SVM), nearest neighbor and modified quadratic discriminant function (MQDF) is found to achieve state-of-the-art recognition performance in all the databases, viz. 99.40% (MNIST); 98.72% and 93.24% (IITBBS); 99.38% and 99.22% (ISI Kolkata). The proposed OCR system is shown to perform better than other sparse based techniques such as PCA, SparsePCA and SparseLDA, as well as better than existing transforms (Wavelet, Slantlet and Stockwell).

ZipGAN: Super-Resolution-based Generative Adversarial Network Framework for Data Compression of Direct Numerical Simulations

The advancement of high-performance computing has enabled the generation of large direct numerical simulation (DNS) datasets of turbulent flows, driving the need for efficient compression/decompression techniques that reduce storage demands while maintaining fidelity. Traditional methods, such as the discrete wavelet transform, cannot achieve compression ratios of 8 or higher for complex turbulent flows without introducing significant encoding/decoding errors. On the other hand, a super-resolution-based generative adversarial network (SR-GAN), called ZipGAN, can accurately reconstruct fine-scale features, preserving velocity gradients and structural details, even at a compression ratio of 512, thanks to the more efficient representation of the data in compact latent space. Additional benefits are ascribed to adversarial training. The high GAN training time is significantly reduced with a progressive transfer learning approach and, once trained, they can be applied independently of the Reynolds number. It is demonstrated that ZipGAN can enhance dataset temporal resolution without additional simulation overhead by generating high-quality intermediate fields from compressed snapshots. The ZipGAN discriminator can reliably evaluate the quality of decoded fields, ensuring fidelity even in the absence of original DNS fields. Hence, ZipGAN compression/decompression method presents a highly efficient and scalable alternative for large-scale DNS storage and transfer, offering substantial advantages over the DWT methods in terms of compression efficiency, reconstruction fidelity, and temporal resolution enhancement.

Utilizing Wavelet Transform in the Analysis of Scaling Dynamics for Milk Quality Evaluation

Food safety and quality are paramount concerns worldwide, especially concerning nutritional quality and its impact on human health. Ensuring the accuracy and efficiency of milk quality assessment is vital for maintaining the quality of dairy farm produce. Milk spectral data, Mid-infrared spectra (MIRS) of milk samples, are frequently employed for milk quality evaluations, encompassing various milk quality parameters. However, conventional milk quality analyses have overlooked the scaling nature, known as stochastic similarity in different scales, inherent in milk spectral data. Wavelet transforms are among the tools used in these analyses, although they are primarily used as data pre-processing techniques without fully realizing their potential in extracting valuable insights. The primary purpose of this study is to demonstrate the importance of accounting for scaling properties in assessing milk quality. A set of 12 descriptors is computed to characterize scaling properties in milk spectral data within the wavelet domain. These descriptors are then assessed for their effectiveness in milk quality assessments utilizing 18 different milk quality parameters. They notably demonstrated comparable performance to existing methods while utilizing fewer features when applied to an MIRS dataset. This innovative approach holds substantial promise for advancing the field of milk quality assessment, offering a means to achieve more accurate and efficient evaluations while shedding light on previously unexplored aspects of milk spectral data.

StyleSwin: Transformer-based GAN for High-resolution Image Generation

Despite the tantalizing success in a broad of vision tasks, transformers have not yet demonstrated on-par ability as ConvNets in high-resolution image generative modeling. In this paper, we seek to explore using pure transformers to build a generative adversarial network for high-resolution image synthesis. To this end, we believe that local attention is crucial to strike the balance between computational efficiency and modeling capacity. Hence, the proposed generator adopts Swin transformer in a style-based architecture. To achieve a larger receptive field, we propose double attention which simultaneously leverages the context of the local and the shifted windows, leading to improved generation quality. Moreover, we show that offering the knowledge of the absolute position that has been lost in window-based transformers greatly benefits the generation quality. The proposed StyleSwin is scalable to high resolutions, with both the coarse geometry and fine structures benefit from the strong expressivity of transformers. However, blocking artifacts occur during high-resolution synthesis because performing the local attention in a block-wise manner may break the spatial coherency. To solve this, we empirically investigate various solutions, among which we find that employing a wavelet discriminator to examine the spectral discrepancy effectively suppresses the artifacts. Extensive experiments show the superiority over prior transformer-based GANs, especially on high resolutions, e.g., 1024x1024. The StyleSwin, without complex training strategies, excels over StyleGAN on CelebA-HQ 1024, and achieves on-par performance on FFHQ-1024, proving the promise of using transformers for high-resolution image generation. The code and models will be available at https://github.com/microsoft/StyleSwin.

Make-A-Shape: a Ten-Million-scale 3D Shape Model

Significant progress has been made in training large generative models for natural language and images. Yet, the advancement of 3D generative models is hindered by their substantial resource demands for training, along with inefficient, non-compact, and less expressive representations. This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale, capable of utilizing 10 millions publicly-available shapes. Technical-wise, we first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme to efficiently exploit coefficient relations. We then make the representation generatable by a diffusion model by devising the subband coefficients packing scheme to layout the representation in a low-resolution grid. Further, we derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients. Last, we extend our framework to be controlled by additional input conditions to enable it to generate shapes from assorted modalities, e.g., single/multi-view images, point clouds, and low-resolution voxels. In our extensive set of experiments, we demonstrate various applications, such as unconditional generation, shape completion, and conditional generation on a wide range of modalities. Our approach not only surpasses the state of the art in delivering high-quality results but also efficiently generates shapes within a few seconds, often achieving this in just 2 seconds for most conditions.

Dynamic Spectrum Mixer for Visual Recognition

Recently, MLP-based vision backbones have achieved promising performance in several visual recognition tasks. However, the existing MLP-based methods directly aggregate tokens with static weights, leaving the adaptability to different images untouched. Moreover, Recent research demonstrates that MLP-Transformer is great at creating long-range dependencies but ineffective at catching high frequencies that primarily transmit local information, which prevents it from applying to the downstream dense prediction tasks, such as semantic segmentation. To address these challenges, we propose a content-adaptive yet computationally efficient structure, dubbed Dynamic Spectrum Mixer (DSM). The DSM represents token interactions in the frequency domain by employing the Discrete Cosine Transform, which can learn long-term spatial dependencies with log-linear complexity. Furthermore, a dynamic spectrum weight generation layer is proposed as the spectrum bands selector, which could emphasize the informative frequency bands while diminishing others. To this end, the technique can efficiently learn detailed features from visual input that contains both high- and low-frequency information. Extensive experiments show that DSM is a powerful and adaptable backbone for a range of visual recognition tasks. Particularly, DSM outperforms previous transformer-based and MLP-based models, on image classification, object detection, and semantic segmentation tasks, such as 83.8 \% top-1 accuracy on ImageNet, and 49.9 \% mIoU on ADE20K.

SPRIGHT: A Fast and Robust Framework for Sparse Walsh-Hadamard Transform

We consider the problem of computing the Walsh-Hadamard Transform (WHT) of some N-length input vector in the presence of noise, where the N-point Walsh spectrum is K-sparse with K = {O}(N^{delta}) scaling sub-linearly in the input dimension N for some 0<delta<1. Over the past decade, there has been a resurgence in research related to the computation of Discrete Fourier Transform (DFT) for some length-N input signal that has a K-sparse Fourier spectrum. In particular, through a sparse-graph code design, our earlier work on the Fast Fourier Aliasing-based Sparse Transform (FFAST) algorithm computes the K-sparse DFT in time {O}(Klog K) by taking {O}(K) noiseless samples. Inspired by the coding-theoretic design framework, Scheibler et al. proposed the Sparse Fast Hadamard Transform (SparseFHT) algorithm that elegantly computes the K-sparse WHT in the absence of noise using {O}(Klog N) samples in time {O}(Klog^2 N). However, the SparseFHT algorithm explicitly exploits the noiseless nature of the problem, and is not equipped to deal with scenarios where the observations are corrupted by noise. Therefore, a question of critical interest is whether this coding-theoretic framework can be made robust to noise. Further, if the answer is yes, what is the extra price that needs to be paid for being robust to noise? In this paper, we show, quite interestingly, that there is {\it no extra price} that needs to be paid for being robust to noise other than a constant factor. In other words, we can maintain the same sample complexity {O}(Klog N) and the computational complexity {O}(Klog^2 N) as those of the noiseless case, using our SParse Robust Iterative Graph-based Hadamard Transform (SPRIGHT) algorithm.

Brain Tumor Detection and Classification based on Hybrid Ensemble Classifier

To improve patient survival and treatment outcomes, early diagnosis of brain tumors is an essential task. It is a difficult task to evaluate the magnetic resonance imaging (MRI) images manually. Thus, there is a need for digital methods for tumor diagnosis with better accuracy. However, it is still a very challenging task in assessing their shape, volume, boundaries, tumor detection, size, segmentation, and classification. In this proposed work, we propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method. It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant. In the beginning, segmentation is done by using Otsu's Threshold method. Feature Extraction is done by using Stationary Wavelet Transform (SWT), Principle Component Analysis (PCA), and Gray Level Co-occurrence Matrix (GLCM), which gives thirteen features for classification. The classification is done by hybrid ensemble classifier (KNN-RF-DT) based on the Majority Voting method. Overall it aimed at improving the performance by traditional classifiers instead of going to deep learning. Traditional classifiers have an advantage over deep learning algorithms because they require small datasets for training and have low computational time complexity, low cost to the users, and can be easily adopted by less skilled people. Overall, our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.

Scattering Vision Transformer: Spectral Mixing Matters

Vision transformers have gained significant attention and achieved state-of-the-art performance in various computer vision tasks, including image classification, instance segmentation, and object detection. However, challenges remain in addressing attention complexity and effectively capturing fine-grained information within images. Existing solutions often resort to down-sampling operations, such as pooling, to reduce computational cost. Unfortunately, such operations are non-invertible and can result in information loss. In this paper, we present a novel approach called Scattering Vision Transformer (SVT) to tackle these challenges. SVT incorporates a spectrally scattering network that enables the capture of intricate image details. SVT overcomes the invertibility issue associated with down-sampling operations by separating low-frequency and high-frequency components. Furthermore, SVT introduces a unique spectral gating network utilizing Einstein multiplication for token and channel mixing, effectively reducing complexity. We show that SVT achieves state-of-the-art performance on the ImageNet dataset with a significant reduction in a number of parameters and FLOPS. SVT shows 2\% improvement over LiTv2 and iFormer. SVT-H-S reaches 84.2\% top-1 accuracy, while SVT-H-B reaches 85.2\% (state-of-art for base versions) and SVT-H-L reaches 85.7\% (again state-of-art for large versions). SVT also shows comparable results in other vision tasks such as instance segmentation. SVT also outperforms other transformers in transfer learning on standard datasets such as CIFAR10, CIFAR100, Oxford Flower, and Stanford Car datasets. The project page is available on this webpage.https://badripatro.github.io/svt/.

ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification

Multivariate time series classification (MTSC) has attracted significant research attention due to its diverse real-world applications. Recently, exploiting transformers for MTSC has achieved state-of-the-art performance. However, existing methods focus on generic features, providing a comprehensive understanding of data, but they ignore class-specific features crucial for learning the representative characteristics of each class. This leads to poor performance in the case of imbalanced datasets or datasets with similar overall patterns but differing in minor class-specific details. In this paper, we propose a novel Shapelet Transformer (ShapeFormer), which comprises class-specific and generic transformer modules to capture both of these features. In the class-specific module, we introduce the discovery method to extract the discriminative subsequences of each class (i.e. shapelets) from the training set. We then propose a Shapelet Filter to learn the difference features between these shapelets and the input time series. We found that the difference feature for each shapelet contains important class-specific features, as it shows a significant distinction between its class and others. In the generic module, convolution filters are used to extract generic features that contain information to distinguish among all classes. For each module, we employ the transformer encoder to capture the correlation between their features. As a result, the combination of two transformer modules allows our model to exploit the power of both types of features, thereby enhancing the classification performance. Our experiments on 30 UEA MTSC datasets demonstrate that ShapeFormer has achieved the highest accuracy ranking compared to state-of-the-art methods. The code is available at https://github.com/xuanmay2701/shapeformer.

Heart Disease Detection using Vision-Based Transformer Models from ECG Images

Heart disease, also known as cardiovascular disease, is a prevalent and critical medical condition characterized by the impairment of the heart and blood vessels, leading to various complications such as coronary artery disease, heart failure, and myocardial infarction. The timely and accurate detection of heart disease is of paramount importance in clinical practice. Early identification of individuals at risk enables proactive interventions, preventive measures, and personalized treatment strategies to mitigate the progression of the disease and reduce adverse outcomes. In recent years, the field of heart disease detection has witnessed notable advancements due to the integration of sophisticated technologies and computational approaches. These include machine learning algorithms, data mining techniques, and predictive modeling frameworks that leverage vast amounts of clinical and physiological data to improve diagnostic accuracy and risk stratification. In this work, we propose to detect heart disease from ECG images using cutting-edge technologies, namely vision transformer models. These models are Google-Vit, Microsoft-Beit, and Swin-Tiny. To the best of our knowledge, this is the initial endeavor concentrating on the detection of heart diseases through image-based ECG data by employing cuttingedge technologies namely, transformer models. To demonstrate the contribution of the proposed framework, the performance of vision transformer models are compared with state-of-the-art studies. Experiment results show that the proposed framework exhibits remarkable classification results.

cWDM: Conditional Wavelet Diffusion Models for Cross-Modality 3D Medical Image Synthesis

This paper contributes to the "BraTS 2024 Brain MR Image Synthesis Challenge" and presents a conditional Wavelet Diffusion Model (cWDM) for directly solving a paired image-to-image translation task on high-resolution volumes. While deep learning-based brain tumor segmentation models have demonstrated clear clinical utility, they typically require MR scans from various modalities (T1, T1ce, T2, FLAIR) as input. However, due to time constraints or imaging artifacts, some of these modalities may be missing, hindering the application of well-performing segmentation algorithms in clinical routine. To address this issue, we propose a method that synthesizes one missing modality image conditioned on three available images, enabling the application of downstream segmentation models. We treat this paired image-to-image translation task as a conditional generation problem and solve it by combining a Wavelet Diffusion Model for high-resolution 3D image synthesis with a simple conditioning strategy. This approach allows us to directly apply our model to full-resolution volumes, avoiding artifacts caused by slice- or patch-wise data processing. While this work focuses on a specific application, the presented method can be applied to all kinds of paired image-to-image translation problems, such as CT leftrightarrow MR and MR leftrightarrow PET translation, or mask-conditioned anatomically guided image generation.

A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images Detection

CNN-based generative modelling has evolved to produce synthetic images indistinguishable from real images in the RGB pixel space. Recent works have observed that CNN-generated images share a systematic shortcoming in replicating high frequency Fourier spectrum decay attributes. Furthermore, these works have successfully exploited this systematic shortcoming to detect CNN-generated images reporting up to 99% accuracy across multiple state-of-the-art GAN models. In this work, we investigate the validity of assertions claiming that CNN-generated images are unable to achieve high frequency spectral decay consistency. We meticulously construct a counterexample space of high frequency spectral decay consistent CNN-generated images emerging from our handcrafted experiments using DCGAN, LSGAN, WGAN-GP and StarGAN, where we empirically show that this frequency discrepancy can be avoided by a minor architecture change in the last upsampling operation. We subsequently use images from this counterexample space to successfully bypass the recently proposed forensics detector which leverages on high frequency Fourier spectrum decay attributes for CNN-generated image detection. Through this study, we show that high frequency Fourier spectrum decay discrepancies are not inherent characteristics for existing CNN-based generative models--contrary to the belief of some existing work--, and such features are not robust to perform synthetic image detection. Our results prompt re-thinking of using high frequency Fourier spectrum decay attributes for CNN-generated image detection. Code and models are available at https://keshik6.github.io/Fourier-Discrepancies-CNN-Detection/

DiffIR: Efficient Diffusion Model for Image Restoration

Diffusion model (DM) has achieved SOTA performance by modeling the image synthesis process into a sequential application of a denoising network. However, different from image synthesis, image restoration (IR) has a strong constraint to generate results in accordance with ground-truth. Thus, for IR, traditional DMs running massive iterations on a large model to estimate whole images or feature maps is inefficient. To address this issue, we propose an efficient DM for IR (DiffIR), which consists of a compact IR prior extraction network (CPEN), dynamic IR transformer (DIRformer), and denoising network. Specifically, DiffIR has two training stages: pretraining and training DM. In pretraining, we input ground-truth images into CPEN_{S1} to capture a compact IR prior representation (IPR) to guide DIRformer. In the second stage, we train the DM to directly estimate the same IRP as pretrained CPEN_{S1} only using LQ images. We observe that since the IPR is only a compact vector, DiffIR can use fewer iterations than traditional DM to obtain accurate estimations and generate more stable and realistic results. Since the iterations are few, our DiffIR can adopt a joint optimization of CPEN_{S2}, DIRformer, and denoising network, which can further reduce the estimation error influence. We conduct extensive experiments on several IR tasks and achieve SOTA performance while consuming less computational costs. Code is available at https://github.com/Zj-BinXia/DiffIR.

PanFlowNet: A Flow-Based Deep Network for Pan-sharpening

Pan-sharpening aims to generate a high-resolution multispectral (HRMS) image by integrating the spectral information of a low-resolution multispectral (LRMS) image with the texture details of a high-resolution panchromatic (PAN) image. It essentially inherits the ill-posed nature of the super-resolution (SR) task that diverse HRMS images can degrade into an LRMS image. However, existing deep learning-based methods recover only one HRMS image from the LRMS image and PAN image using a deterministic mapping, thus ignoring the diversity of the HRMS image. In this paper, to alleviate this ill-posed issue, we propose a flow-based pan-sharpening network (PanFlowNet) to directly learn the conditional distribution of HRMS image given LRMS image and PAN image instead of learning a deterministic mapping. Specifically, we first transform this unknown conditional distribution into a given Gaussian distribution by an invertible network, and the conditional distribution can thus be explicitly defined. Then, we design an invertible Conditional Affine Coupling Block (CACB) and further build the architecture of PanFlowNet by stacking a series of CACBs. Finally, the PanFlowNet is trained by maximizing the log-likelihood of the conditional distribution given a training set and can then be used to predict diverse HRMS images. The experimental results verify that the proposed PanFlowNet can generate various HRMS images given an LRMS image and a PAN image. Additionally, the experimental results on different kinds of satellite datasets also demonstrate the superiority of our PanFlowNet compared with other state-of-the-art methods both visually and quantitatively.

Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation

The integration of Vector Quantised Variational AutoEncoder (VQ-VAE) with autoregressive models as generation part has yielded high-quality results on image generation. However, the autoregressive models will strictly follow the progressive scanning order during the sampling phase. This leads the existing VQ series models to hardly escape the trap of lacking global information. Denoising Diffusion Probabilistic Models (DDPM) in the continuous domain have shown a capability to capture the global context, while generating high-quality images. In the discrete state space, some works have demonstrated the potential to perform text generation and low resolution image generation. We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context, which compensates for the deficiency of the classical autoregressive model along pixel space. Meanwhile, the integration of the discrete VAE with the diffusion model resolves the drawback of conventional autoregressive models being oversized, and the diffusion model which demands excessive time in the sampling process when generating images. It is found that the quality of the generated images is heavily dependent on the discrete visual codebook. Extensive experiments demonstrate that the proposed Vector Quantised Discrete Diffusion Model (VQ-DDM) is able to achieve comparable performance to top-tier methods with low complexity. It also demonstrates outstanding advantages over other vectors quantised with autoregressive models in terms of image inpainting tasks without additional training.

Taking ROCKET on an Efficiency Mission: Multivariate Time Series Classification with LightWaveS

Nowadays, with the rising number of sensors in sectors such as healthcare and industry, the problem of multivariate time series classification (MTSC) is getting increasingly relevant and is a prime target for machine and deep learning approaches. Their expanding adoption in real-world environments is causing a shift in focus from the pursuit of ever-higher prediction accuracy with complex models towards practical, deployable solutions that balance accuracy and parameters such as prediction speed. An MTSC model that has attracted attention recently is ROCKET, based on random convolutional kernels, both because of its very fast training process and its state-of-the-art accuracy. However, the large number of features it utilizes may be detrimental to inference time. Examining its theoretical background and limitations enables us to address potential drawbacks and present LightWaveS: a framework for accurate MTSC, which is fast both during training and inference. Specifically, utilizing wavelet scattering transformation and distributed feature selection, we manage to create a solution that employs just 2.5% of the ROCKET features, while achieving accuracy comparable to recent MTSC models. LightWaveS also scales well across multiple compute nodes and with the number of input channels during training. In addition, it can significantly reduce the input size and provide insight to an MTSC problem by keeping only the most useful channels. We present three versions of our algorithm and their results on distributed training time and scalability, accuracy, and inference speedup. We show that we achieve speedup ranging from 9x to 53x compared to ROCKET during inference on an edge device, on datasets with comparable accuracy.

JPEG-LM: LLMs as Image Generators with Canonical Codec Representations

Recent work in image and video generation has been adopting the autoregressive LLM architecture due to its generality and potentially easy integration into multi-modal systems. The crux of applying autoregressive training in language generation to visual generation is discretization -- representing continuous data like images and videos as discrete tokens. Common methods of discretizing images and videos include modeling raw pixel values, which are prohibitively lengthy, or vector quantization, which requires convoluted pre-hoc training. In this work, we propose to directly model images and videos as compressed files saved on computers via canonical codecs (e.g., JPEG, AVC/H.264). Using the default Llama architecture without any vision-specific modifications, we pretrain JPEG-LM from scratch to generate images (and AVC-LM to generate videos as a proof of concept), by directly outputting compressed file bytes in JPEG and AVC formats. Evaluation of image generation shows that this simple and straightforward approach is more effective than pixel-based modeling and sophisticated vector quantization baselines (on which our method yields a 31% reduction in FID). Our analysis shows that JPEG-LM has an especial advantage over vector quantization models in generating long-tail visual elements. Overall, we show that using canonical codec representations can help lower the barriers between language generation and visual generation, facilitating future research on multi-modal language/image/video LLMs.

Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets

There still remains an extreme performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) when training from scratch on small datasets, which is concluded to the lack of inductive bias. In this paper, we further consider this problem and point out two weaknesses of ViTs in inductive biases, that is, the spatial relevance and diverse channel representation. First, on spatial aspect, objects are locally compact and relevant, thus fine-grained feature needs to be extracted from a token and its neighbors. While the lack of data hinders ViTs to attend the spatial relevance. Second, on channel aspect, representation exhibits diversity on different channels. But the scarce data can not enable ViTs to learn strong enough representation for accurate recognition. To this end, we propose Dynamic Hybrid Vision Transformer (DHVT) as the solution to enhance the two inductive biases. On spatial aspect, we adopt a hybrid structure, in which convolution is integrated into patch embedding and multi-layer perceptron module, forcing the model to capture the token features as well as their neighboring features. On channel aspect, we introduce a dynamic feature aggregation module in MLP and a brand new "head token" design in multi-head self-attention module to help re-calibrate channel representation and make different channel group representation interacts with each other. The fusion of weak channel representation forms a strong enough representation for classification. With this design, we successfully eliminate the performance gap between CNNs and ViTs, and our DHVT achieves a series of state-of-the-art performance with a lightweight model, 85.68% on CIFAR-100 with 22.8M parameters, 82.3% on ImageNet-1K with 24.0M parameters. Code is available at https://github.com/ArieSeirack/DHVT.

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction

Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., band-limited functions, cartoon functions, and Lipschitz functions.

A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond

Mamba, a special case of the State Space Model, is gaining popularity as an alternative to template-based deep learning approaches in medical image analysis. While transformers are powerful architectures, they have drawbacks, including quadratic computational complexity and an inability to address long-range dependencies efficiently. This limitation affects the analysis of large and complex datasets in medical imaging, where there are many spatial and temporal relationships. In contrast, Mamba offers benefits that make it well-suited for medical image analysis. It has linear time complexity, which is a significant improvement over transformers. Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory. Mamba also demonstrates strong performance in merging multimodal data, improving diagnosis accuracy and patient outcomes. The organization of this paper allows readers to appreciate the capabilities of Mamba in medical imaging step by step. We begin by defining core concepts of SSMs and models, including S4, S5, and S6, followed by an exploration of Mamba architectures such as pure Mamba, U-Net variants, and hybrid models with convolutional neural networks, transformers, and Graph Neural Networks. We also cover Mamba optimizations, techniques and adaptations, scanning, datasets, applications, experimental results, and conclude with its challenges and future directions in medical imaging. This review aims to demonstrate the transformative potential of Mamba in overcoming existing barriers within medical imaging while paving the way for innovative advancements in the field. A comprehensive list of Mamba architectures applied in the medical field, reviewed in this work, is available at Github.

Iterative Token Evaluation and Refinement for Real-World Super-Resolution

Real-world image super-resolution (RWSR) is a long-standing problem as low-quality (LQ) images often have complex and unidentified degradations. Existing methods such as Generative Adversarial Networks (GANs) or continuous diffusion models present their own issues including GANs being difficult to train while continuous diffusion models requiring numerous inference steps. In this paper, we propose an Iterative Token Evaluation and Refinement (ITER) framework for RWSR, which utilizes a discrete diffusion model operating in the discrete token representation space, i.e., indexes of features extracted from a VQGAN codebook pre-trained with high-quality (HQ) images. We show that ITER is easier to train than GANs and more efficient than continuous diffusion models. Specifically, we divide RWSR into two sub-tasks, i.e., distortion removal and texture generation. Distortion removal involves simple HQ token prediction with LQ images, while texture generation uses a discrete diffusion model to iteratively refine the distortion removal output with a token refinement network. In particular, we propose to include a token evaluation network in the discrete diffusion process. It learns to evaluate which tokens are good restorations and helps to improve the iterative refinement results. Moreover, the evaluation network can first check status of the distortion removal output and then adaptively select total refinement steps needed, thereby maintaining a good balance between distortion removal and texture generation. Extensive experimental results show that ITER is easy to train and performs well within just 8 iterative steps. Our codes will be available publicly.

Medical Image Classification with KAN-Integrated Transformers and Dilated Neighborhood Attention

Convolutional networks, transformers, hybrid models, and Mamba-based architectures have demonstrated strong performance across various medical image classification tasks. However, these methods were primarily designed to classify clean images using labeled data. In contrast, real-world clinical data often involve image corruptions that are unique to multi-center studies and stem from variations in imaging equipment across manufacturers. In this paper, we introduce the Medical Vision Transformer (MedViTV2), a novel architecture incorporating Kolmogorov-Arnold Network (KAN) layers into the transformer architecture for the first time, aiming for generalized medical image classification. We have developed an efficient KAN block to reduce computational load while enhancing the accuracy of the original MedViT. Additionally, to counteract the fragility of our MedViT when scaled up, we propose an enhanced Dilated Neighborhood Attention (DiNA), an adaptation of the efficient fused dot-product attention kernel capable of capturing global context and expanding receptive fields to scale the model effectively and addressing feature collapse issues. Moreover, a hierarchical hybrid strategy is introduced to stack our Local Feature Perception and Global Feature Perception blocks in an efficient manner, which balances local and global feature perceptions to boost performance. Extensive experiments on 17 medical image classification datasets and 12 corrupted medical image datasets demonstrate that MedViTV2 achieved state-of-the-art results in 27 out of 29 experiments with reduced computational complexity. MedViTV2 is 44\% more computationally efficient than the previous version and significantly enhances accuracy, achieving improvements of 4.6\% on MedMNIST, 5.8\% on NonMNIST, and 13.4\% on the MedMNIST-C benchmark.

A Tour of Convolutional Networks Guided by Linear Interpreters

Convolutional networks are large linear systems divided into layers and connected by non-linear units. These units are the "articulations" that allow the network to adapt to the input. To understand how a network manages to solve a problem we must look at the articulated decisions in entirety. If we could capture the actions of non-linear units for a particular input, we would be able to replay the whole system back and forth as if it was always linear. It would also reveal the actions of non-linearities because the resulting linear system, a Linear Interpreter, depends on the input image. We introduce a hooking layer, called a LinearScope, which allows us to run the network and the linear interpreter in parallel. Its implementation is simple, flexible and efficient. From here we can make many curious inquiries: how do these linear systems look like? When the rows and columns of the transformation matrix are images, how do they look like? What type of basis do these linear transformations rely on? The answers depend on the problems presented, through which we take a tour to some popular architectures used for classification, super-resolution (SR) and image-to-image translation (I2I). For classification we observe that popular networks use a pixel-wise vote per class strategy and heavily rely on bias parameters. For SR and I2I we find that CNNs use wavelet-type basis similar to the human visual system. For I2I we reveal copy-move and template-creation strategies to generate outputs.

Multi-mode Pulsations in AGB Stars: Insights from 3D RHD CO5BOLD Simulations

Stars on the AGB can exhibit acoustic pulsation modes of different radial orders, along with non-radial modes. These pulsations are essential to the mass-loss process and influence the evolutionary pathways of AGB stars. P-L relations serve as a valuable diagnostic for understanding stellar evolution along the AGB. 3D RHD simulations provide a powerful tool for investigating pulsation phenomena driven by convective processes and their non-linear coupling with stellar oscillations. We investigate multi-mode pulsations in AGB stars using advanced 3D 'star-in-a-box' simulations with the CO5BOLD code. Signatures of these multi-mode pulsations were weak in our previous 3D models. Our focus is on identifying and characterising the various pulsation modes, examining their persistence and transitions, and comparing the results with 1D model predictions and observational data where applicable. We produced a new model grid comprising AGB stars with current masses of 0.7, 0.8, and 1,M_{odot}. Fourier analysis was applied to dynamic, time-dependent quantities to extract dominant pulsation modes and their corresponding periods. Additionally, wavelet transforms were employed to identify mode-switching behaviour over time. The models successfully reproduce the P-L sequences found in AGB stars. Mode-switching phenomena are found in both the models and wavelet analyses of observational data, allowing us to infer similarities in the underlying pulsation dynamics. These 3D simulations highlight the natural emergence of multi-mode pulsations, including both radial and non-radial modes, driven by the self-consistent interplay of convection and oscillations. Our findings underscore the value of 3D RHD models in capturing the non-linear behaviour of AGB pulsations, providing insights into mode switching, envelope structures, and potential links to episodic mass-loss events.

Feature Modulation Transformer: Cross-Refinement of Global Representation via High-Frequency Prior for Image Super-Resolution

Transformer-based methods have exhibited remarkable potential in single image super-resolution (SISR) by effectively extracting long-range dependencies. However, most of the current research in this area has prioritized the design of transformer blocks to capture global information, while overlooking the importance of incorporating high-frequency priors, which we believe could be beneficial. In our study, we conducted a series of experiments and found that transformer structures are more adept at capturing low-frequency information, but have limited capacity in constructing high-frequency representations when compared to their convolutional counterparts. Our proposed solution, the cross-refinement adaptive feature modulation transformer (CRAFT), integrates the strengths of both convolutional and transformer structures. It comprises three key components: the high-frequency enhancement residual block (HFERB) for extracting high-frequency information, the shift rectangle window attention block (SRWAB) for capturing global information, and the hybrid fusion block (HFB) for refining the global representation. Our experiments on multiple datasets demonstrate that CRAFT outperforms state-of-the-art methods by up to 0.29dB while using fewer parameters. The source code will be made available at: https://github.com/AVC2-UESTC/CRAFT-SR.git.

BT^2: Backward-compatible Training with Basis Transformation

Modern retrieval system often requires recomputing the representation of every piece of data in the gallery when updating to a better representation model. This process is known as backfilling and can be especially costly in the real world where the gallery often contains billions of samples. Recently, researchers have proposed the idea of Backward Compatible Training (BCT) where the new representation model can be trained with an auxiliary loss to make it backward compatible with the old representation. In this way, the new representation can be directly compared with the old representation, in principle avoiding the need for any backfilling. However, followup work shows that there is an inherent tradeoff where a backward compatible representation model cannot simultaneously maintain the performance of the new model itself. This paper reports our ``not-so-surprising'' finding that adding extra dimensions to the representation can help here. However, we also found that naively increasing the dimension of the representation did not work. To deal with this, we propose Backward-compatible Training with a novel Basis Transformation (BT^2). A basis transformation (BT) is basically a learnable set of parameters that applies an orthonormal transformation. Such a transformation possesses an important property whereby the original information contained in its input is retained in its output. We show in this paper how a BT can be utilized to add only the necessary amount of additional dimensions. We empirically verify the advantage of BT^2 over other state-of-the-art methods in a wide range of settings. We then further extend BT^2 to other challenging yet more practical settings, including significant change in model architecture (CNN to Transformers), modality change, and even a series of updates in the model architecture mimicking the evolution of deep learning models.

Hybrid Spectral Denoising Transformer with Guided Attention

In this paper, we present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising. Challenges in adapting transformer for HSI arise from the capabilities to tackle existing limitations of CNN-based methods in capturing the global and local spatial-spectral correlations while maintaining efficiency and flexibility. To address these issues, we introduce a hybrid approach that combines the advantages of both models with a Spatial-Spectral Separable Convolution (S3Conv), Guided Spectral Self-Attention (GSSA), and Self-Modulated Feed-Forward Network (SM-FFN). Our S3Conv works as a lightweight alternative to 3D convolution, which extracts more spatial-spectral correlated features while keeping the flexibility to tackle HSIs with an arbitrary number of bands. These features are then adaptively processed by GSSA which per-forms 3D self-attention across the spectral bands, guided by a set of learnable queries that encode the spectral signatures. This not only enriches our model with powerful capabilities for identifying global spectral correlations but also maintains linear complexity. Moreover, our SM-FFN proposes the self-modulation that intensifies the activations of more informative regions, which further strengthens the aggregated features. Extensive experiments are conducted on various datasets under both simulated and real-world noise, and it shows that our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead. Code is at https: //github.com/Zeqiang-Lai/HSDT.

Imaging foundation model for universal enhancement of non-ideal measurement CT

Non-ideal measurement computed tomography (NICT), which sacrifices optimal imaging standards for new advantages in CT imaging, is expanding the clinical application scope of CT images. However, with the reduction of imaging standards, the image quality has also been reduced, extremely limiting the clinical acceptability. Although numerous studies have demonstrated the feasibility of deep learning for the NICT enhancement in specific scenarios, their high data cost and limited generalizability have become large obstacles. The recent research on the foundation model has brought new opportunities for building a universal NICT enhancement model - bridging the image quality degradation with minimal data cost. However, owing to the challenges in the collection of large pre-training datasets and the compatibility of data variation, no success has been reported. In this paper, we propose a multi-scale integrated Transformer AMPlifier (TAMP), the first imaging foundation model for universal NICT enhancement. It has been pre-trained on a large-scale physical-driven simulation dataset with 3.6 million NICT-ICT image pairs, and is able to directly generalize to the NICT enhancement tasks with various non-ideal settings and body regions. Via the adaptation with few data, it can further achieve professional performance in real-world specific scenarios. Our extensive experiments have demonstrated that the proposed TAMP has significant potential for promoting the exploration and application of NICT and serving a wider range of medical scenarios.

S2LIC: Learned Image Compression with the SwinV2 Block, Adaptive Channel-wise and Global-inter Attention Context

Recently, deep learning technology has been successfully applied in the field of image compression, leading to superior rate-distortion performance. It is crucial to design an effective and efficient entropy model to estimate the probability distribution of the latent representation. However, the majority of entropy models primarily focus on one-dimensional correlation processing between channel and spatial information. In this paper, we propose an Adaptive Channel-wise and Global-inter attention Context (ACGC) entropy model, which can efficiently achieve dual feature aggregation in both inter-slice and intraslice contexts. Specifically, we divide the latent representation into different slices and then apply the ACGC model in a parallel checkerboard context to achieve faster decoding speed and higher rate-distortion performance. In order to capture redundant global features across different slices, we utilize deformable attention in adaptive global-inter attention to dynamically refine the attention weights based on the actual spatial relationships and context. Furthermore, in the main transformation structure, we propose a high-performance S2LIC model. We introduce the residual SwinV2 Transformer model to capture global feature information and utilize a dense block network as the feature enhancement module to improve the nonlinear representation of the image within the transformation structure. Experimental results demonstrate that our method achieves faster encoding and decoding speeds and outperforms VTM-17.1 and some recent learned image compression methods in both PSNR and MS-SSIM metrics.

One-D-Piece: Image Tokenizer Meets Quality-Controllable Compression

Current image tokenization methods require a large number of tokens to capture the information contained within images. Although the amount of information varies across images, most image tokenizers only support fixed-length tokenization, leading to inefficiency in token allocation. In this study, we introduce One-D-Piece, a discrete image tokenizer designed for variable-length tokenization, achieving quality-controllable mechanism. To enable variable compression rate, we introduce a simple but effective regularization mechanism named "Tail Token Drop" into discrete one-dimensional image tokenizers. This method encourages critical information to concentrate at the head of the token sequence, enabling support of variadic tokenization, while preserving state-of-the-art reconstruction quality. We evaluate our tokenizer across multiple reconstruction quality metrics and find that it delivers significantly better perceptual quality than existing quality-controllable compression methods, including JPEG and WebP, at smaller byte sizes. Furthermore, we assess our tokenizer on various downstream computer vision tasks, including image classification, object detection, semantic segmentation, and depth estimation, confirming its adaptability to numerous applications compared to other variable-rate methods. Our approach demonstrates the versatility of variable-length discrete image tokenization, establishing a new paradigm in both compression efficiency and reconstruction performance. Finally, we validate the effectiveness of tail token drop via detailed analysis of tokenizers.

ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model

Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD). However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets. Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures. In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks. We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively. All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images. For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information. On five benchmark datasets, our proposed frameworks outperform current CNN- and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks. Further experiments show that our architecture is quite robust to degraded data. The source code will be available in https://github.com/ChenHongruixuan/MambaCD

A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images

Automatic identification of brain lesions from magnetic resonance imaging (MRI) scans of stroke survivors would be a useful aid in patient diagnosis and treatment planning. We propose a multi-modal multi-path convolutional neural network system for automating stroke lesion segmentation. Our system has nine end-to-end UNets that take as input 2-dimensional (2D) slices and examines all three planes with three different normalizations. Outputs from these nine total paths are concatenated into a 3D volume that is then passed to a 3D convolutional neural network to output a final lesion mask. We trained and tested our method on datasets from three sources: Medical College of Wisconsin (MCW), Kessler Foundation (KF), and the publicly available Anatomical Tracings of Lesions After Stroke (ATLAS) dataset. Cross-study validation results (with independent training and validation datasets) were obtained to compare with previous methods based on naive Bayes, random forests, and three recently published convolutional neural networks. Model performance was quantified in terms of the Dice coefficient. Training on the KF and MCW images and testing on the ATLAS images yielded a mean Dice coefficient of 0.54. This was reliably better than the next best previous model, UNet, at 0.47. Reversing the train and test datasets yields a mean Dice of 0.47 on KF and MCW images, whereas the next best UNet reaches 0.45. With all three datasets combined, the current system compared to previous methods also attained a reliably higher cross-validation accuracy. It also achieved high Dice values for many smaller lesions that existing methods have difficulty identifying. Overall, our system is a clear improvement over previous methods for automating stroke lesion segmentation, bringing us an important step closer to the inter-rater accuracy level of human experts.

CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transformer models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2\% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at https://github.com/IBM/CrossViT.

Data-independent Module-aware Pruning for Hierarchical Vision Transformers

Hierarchical vision transformers (ViTs) have two advantages over conventional ViTs. First, hierarchical ViTs achieve linear computational complexity with respect to image size by local self-attention. Second, hierarchical ViTs create hierarchical feature maps by merging image patches in deeper layers for dense prediction. However, existing pruning methods ignore the unique properties of hierarchical ViTs and use the magnitude value as the weight importance. This approach leads to two main drawbacks. First, the "local" attention weights are compared at a "global" level, which may cause some "locally" important weights to be pruned due to their relatively small magnitude "globally". The second issue with magnitude pruning is that it fails to consider the distinct weight distributions of the network, which are essential for extracting coarse to fine-grained features at various hierarchical levels. To solve the aforementioned issues, we have developed a Data-independent Module-Aware Pruning method (DIMAP) to compress hierarchical ViTs. To ensure that "local" attention weights at different hierarchical levels are compared fairly in terms of their contribution, we treat them as a module and examine their contribution by analyzing their information distortion. Furthermore, we introduce a novel weight metric that is solely based on weights and does not require input images, thereby eliminating the dependence on the patch merging process. Our method validates its usefulness and strengths on Swin Transformers of different sizes on ImageNet-1k classification. Notably, the top-5 accuracy drop is only 0.07% when we remove 52.5% FLOPs and 52.7% parameters of Swin-B. When we reduce 33.2% FLOPs and 33.2% parameters of Swin-S, we can even achieve a 0.8% higher relative top-5 accuracy than the original model. Code is available at: https://github.com/he-y/Data-independent-Module-Aware-Pruning

HyDe: The First Open-Source, Python-Based, GPU-Accelerated Hyperspectral Denoising Package

As with any physical instrument, hyperspectral cameras induce different kinds of noise in the acquired data. Therefore, Hyperspectral denoising is a crucial step for analyzing hyperspectral images (HSIs). Conventional computational methods rarely use GPUs to improve efficiency and are not fully open-source. Alternatively, deep learning-based methods are often open-source and use GPUs, but their training and utilization for real-world applications remain non-trivial for many researchers. Consequently, we propose HyDe: the first open-source, GPU-accelerated Python-based, hyperspectral image denoising toolbox, which aims to provide a large set of methods with an easy-to-use environment. HyDe includes a variety of methods ranging from low-rank wavelet-based methods to deep neural network (DNN) models. HyDe's interface dramatically improves the interoperability of these methods and the performance of the underlying functions. In fact, these methods maintain similar HSI denoising performance to their original implementations while consuming nearly ten times less energy. Furthermore, we present a method for training DNNs for denoising HSIs which are not spatially related to the training dataset, i.e., training on ground-level HSIs for denoising HSIs with other perspectives including airborne, drone-borne, and space-borne. To utilize the trained DNNs, we show a sliding window method to effectively denoise HSIs which would otherwise require more than 40 GB. The package can be found at: https://github.com/Helmholtz-AI-Energy/HyDe.

Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis

Sequence modeling plays a vital role across various domains, with recurrent neural networks being historically the predominant method of performing these tasks. However, the emergence of transformers has altered this paradigm due to their superior performance. Built upon these advances, transformers have conjoined CNNs as two leading foundational models for learning visual representations. However, transformers are hindered by the O(N^2) complexity of their attention mechanisms, while CNNs lack global receptive fields and dynamic weight allocation. State Space Models (SSMs), specifically the \textbf{Mamba} model with selection mechanisms and hardware-aware architecture, have garnered immense interest lately in sequential modeling and visual representation learning, challenging the dominance of transformers by providing infinite context lengths and offering substantial efficiency maintaining linear complexity in the input sequence. Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models. Intending to help researchers navigate the surge, this survey seeks to offer an encyclopedic review of Mamba models in medical imaging. Specifically, we start with a comprehensive theoretical review forming the basis of SSMs, including Mamba architecture and its alternatives for sequence modeling paradigms in this context. Next, we offer a structured classification of Mamba models in the medical field and introduce a diverse categorization scheme based on their application, imaging modalities, and targeted organs. Finally, we summarize key challenges, discuss different future research directions of the SSMs in the medical domain, and propose several directions to fulfill the demands of this field. In addition, we have compiled the studies discussed in this paper along with their open-source implementations on our GitHub repository.

Domain-adaptive Video Deblurring via Test-time Blurring

Dynamic scene video deblurring aims to remove undesirable blurry artifacts captured during the exposure process. Although previous video deblurring methods have achieved impressive results, they suffer from significant performance drops due to the domain gap between training and testing videos, especially for those captured in real-world scenarios. To address this issue, we propose a domain adaptation scheme based on a blurring model to achieve test-time fine-tuning for deblurring models in unseen domains. Since blurred and sharp pairs are unavailable for fine-tuning during inference, our scheme can generate domain-adaptive training pairs to calibrate a deblurring model for the target domain. First, a Relative Sharpness Detection Module is proposed to identify relatively sharp regions from the blurry input images and regard them as pseudo-sharp images. Next, we utilize a blurring model to produce blurred images based on the pseudo-sharp images extracted during testing. To synthesize blurred images in compliance with the target data distribution, we propose a Domain-adaptive Blur Condition Generation Module to create domain-specific blur conditions for the blurring model. Finally, the generated pseudo-sharp and blurred pairs are used to fine-tune a deblurring model for better performance. Extensive experimental results demonstrate that our approach can significantly improve state-of-the-art video deblurring methods, providing performance gains of up to 7.54dB on various real-world video deblurring datasets. The source code is available at https://github.com/Jin-Ting-He/DADeblur.

D-Former: A U-shaped Dilated Transformer for 3D Medical Image Segmentation

Computer-aided medical image segmentation has been applied widely in diagnosis and treatment to obtain clinically useful information of shapes and volumes of target organs and tissues. In the past several years, convolutional neural network (CNN) based methods (e.g., U-Net) have dominated this area, but still suffered from inadequate long-range information capturing. Hence, recent work presented computer vision Transformer variants for medical image segmentation tasks and obtained promising performances. Such Transformers model long-range dependency by computing pair-wise patch relations. However, they incur prohibitive computational costs, especially on 3D medical images (e.g., CT and MRI). In this paper, we propose a new method called Dilated Transformer, which conducts self-attention for pair-wise patch relations captured alternately in local and global scopes. Inspired by dilated convolution kernels, we conduct the global self-attention in a dilated manner, enlarging receptive fields without increasing the patches involved and thus reducing computational costs. Based on this design of Dilated Transformer, we construct a U-shaped encoder-decoder hierarchical architecture called D-Former for 3D medical image segmentation. Experiments on the Synapse and ACDC datasets show that our D-Former model, trained from scratch, outperforms various competitive CNN-based or Transformer-based segmentation models at a low computational cost without time-consuming per-training process.

Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification

In recent years, the emergence of Transformers with self-attention mechanism has revolutionized the hyperspectral image (HSI) classification. However, these models face major challenges in computational efficiency, as their complexity increases quadratically with the sequence length. The Mamba architecture, leveraging a state space model (SSM), offers a more efficient alternative to Transformers. This paper introduces the Spatial-Spectral Morphological Mamba (MorpMamba) model in which, a token generation module first converts the HSI patch into spatial-spectral tokens. These tokens are then processed by morphological operations, which compute structural and shape information using depthwise separable convolutional operations. The extracted information is enhanced in a feature enhancement module that adjusts the spatial and spectral tokens based on the center region of the HSI sample, allowing for effective information fusion within each block. Subsequently, the tokens are refined through a multi-head self-attention which further improves the feature space. Finally, the combined information is fed into the state space block for classification and the creation of the ground truth map. Experiments on widely used HSI datasets demonstrate that the MorpMamba model outperforms (parametric efficiency) both CNN and Transformer models. The source code will be made publicly available at https://github.com/MHassaanButt/MorpMamba.

NAF-DPM: A Nonlinear Activation-Free Diffusion Probabilistic Model for Document Enhancement

Real-world documents may suffer various forms of degradation, often resulting in lower accuracy in optical character recognition (OCR) systems. Therefore, a crucial preprocessing step is essential to eliminate noise while preserving text and key features of documents. In this paper, we propose NAF-DPM, a novel generative framework based on a diffusion probabilistic model (DPM) designed to restore the original quality of degraded documents. While DPMs are recognized for their high-quality generated images, they are also known for their large inference time. To mitigate this problem we provide the DPM with an efficient nonlinear activation-free (NAF) network and we employ as a sampler a fast solver of ordinary differential equations, which can converge in a few iterations. To better preserve text characters, we introduce an additional differentiable module based on convolutional recurrent neural networks, simulating the behavior of an OCR system during training. Experiments conducted on various datasets showcase the superiority of our approach, achieving state-of-the-art performance in terms of pixel-level and perceptual similarity metrics. Furthermore, the results demonstrate a notable character error reduction made by OCR systems when transcribing real-world document images enhanced by our framework. Code and pre-trained models are available at https://github.com/ispamm/NAF-DPM.

Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances

Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.

ADDP: Learning General Representations for Image Recognition and Generation with Alternating Denoising Diffusion Process

Image recognition and generation have long been developed independently of each other. With the recent trend towards general-purpose representation learning, the development of general representations for both recognition and generation tasks is also promoted. However, preliminary attempts mainly focus on generation performance, but are still inferior on recognition tasks. These methods are modeled in the vector-quantized (VQ) space, whereas leading recognition methods use pixels as inputs. Our key insights are twofold: (1) pixels as inputs are crucial for recognition tasks; (2) VQ tokens as reconstruction targets are beneficial for generation tasks. These observations motivate us to propose an Alternating Denoising Diffusion Process (ADDP) that integrates these two spaces within a single representation learning framework. In each denoising step, our method first decodes pixels from previous VQ tokens, then generates new VQ tokens from the decoded pixels. The diffusion process gradually masks out a portion of VQ tokens to construct the training samples. The learned representations can be used to generate diverse high-fidelity images and also demonstrate excellent transfer performance on recognition tasks. Extensive experiments show that our method achieves competitive performance on unconditional generation, ImageNet classification, COCO detection, and ADE20k segmentation. Importantly, our method represents the first successful development of general representations applicable to both generation and dense recognition tasks. Code shall be released.

Extreme Image Compression using Fine-tuned VQGANs

Recent advances in generative compression methods have demonstrated remarkable progress in enhancing the perceptual quality of compressed data, especially in scenarios with low bitrates. However, their efficacy and applicability to achieve extreme compression ratios (<0.05 bpp) remain constrained. In this work, we propose a simple yet effective coding framework by introducing vector quantization (VQ)--based generative models into the image compression domain. The main insight is that the codebook learned by the VQGAN model yields a strong expressive capacity, facilitating efficient compression of continuous information in the latent space while maintaining reconstruction quality. Specifically, an image can be represented as VQ-indices by finding the nearest codeword, which can be encoded using lossless compression methods into bitstreams. We propose clustering a pre-trained large-scale codebook into smaller codebooks through the K-means algorithm, yielding variable bitrates and different levels of reconstruction quality within the coding framework. Furthermore, we introduce a transformer to predict lost indices and restore images in unstable environments. Extensive qualitative and quantitative experiments on various benchmark datasets demonstrate that the proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics and human perception at extremely low bitrates (le 0.04 bpp). Remarkably, even with the loss of up to 20% of indices, the images can be effectively restored with minimal perceptual loss.

Serpent: Scalable and Efficient Image Restoration via Multi-scale Structured State Space Models

The landscape of computational building blocks of efficient image restoration architectures is dominated by a combination of convolutional processing and various attention mechanisms. However, convolutional filters, while efficient, are inherently local and therefore struggle with modeling long-range dependencies in images. In contrast, attention excels at capturing global interactions between arbitrary image regions, but suffers from a quadratic cost in image dimension. In this work, we propose Serpent, an efficient architecture for high-resolution image restoration that combines recent advances in state space models (SSMs) with multi-scale signal processing in its core computational block. SSMs, originally introduced for sequence modeling, can maintain a global receptive field with a favorable linear scaling in input size. We propose a novel hierarchical architecture inspired by traditional signal processing principles, that converts the input image into a collection of sequences and processes them in a multi-scale fashion. Our experimental results demonstrate that Serpent can achieve reconstruction quality on par with state-of-the-art techniques, while requiring orders of magnitude less compute (up to 150 fold reduction in FLOPS) and a factor of up to 5times less GPU memory while maintaining a compact model size. The efficiency gains achieved by Serpent are especially notable at high image resolutions.

A Simple Approach to Unifying Diffusion-based Conditional Generation

Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.

Scaling Laws in Patchification: An Image Is Worth 50,176 Tokens And More

Since the introduction of Vision Transformer (ViT), patchification has long been regarded as a de facto image tokenization approach for plain visual architectures. By compressing the spatial size of images, this approach can effectively shorten the token sequence and reduce the computational cost of ViT-like plain architectures. In this work, we aim to thoroughly examine the information loss caused by this patchification-based compressive encoding paradigm and how it affects visual understanding. We conduct extensive patch size scaling experiments and excitedly observe an intriguing scaling law in patchification: the models can consistently benefit from decreased patch sizes and attain improved predictive performance, until it reaches the minimum patch size of 1x1, i.e., pixel tokenization. This conclusion is broadly applicable across different vision tasks, various input scales, and diverse architectures such as ViT and the recent Mamba models. Moreover, as a by-product, we discover that with smaller patches, task-specific decoder heads become less critical for dense prediction. In the experiments, we successfully scale up the visual sequence to an exceptional length of 50,176 tokens, achieving a competitive test accuracy of 84.6% with a base-sized model on the ImageNet-1k benchmark. We hope this study can provide insights and theoretical foundations for future works of building non-compressive vision models. Code is available at https://github.com/wangf3014/Patch_Scaling.

CNN based Cuneiform Sign Detection Learned from Annotated 3D Renderings and Mapped Photographs with Illumination Augmentation

Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see https://gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale.

Universal Image Restoration Pre-training via Degradation Classification

This paper proposes the Degradation Classification Pre-Training (DCPT), which enables models to learn how to classify the degradation type of input images for universal image restoration pre-training. Unlike the existing self-supervised pre-training methods, DCPT utilizes the degradation type of the input image as an extremely weak supervision, which can be effortlessly obtained, even intrinsic in all image restoration datasets. DCPT comprises two primary stages. Initially, image features are extracted from the encoder. Subsequently, a lightweight decoder, such as ResNet18, is leveraged to classify the degradation type of the input image solely based on the features extracted in the first stage, without utilizing the input image. The encoder is pre-trained with a straightforward yet potent DCPT, which is used to address universal image restoration and achieve outstanding performance. Following DCPT, both convolutional neural networks (CNNs) and transformers demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover, previous self-supervised pretraining methods, such as masked image modeling, discard the decoder after pre-training, while our DCPT utilizes the pre-trained parameters more effectively. This superiority arises from the degradation classifier acquired during DCPT, which facilitates transfer learning between models of identical architecture trained on diverse degradation types. Source code and models are available at https://github.com/MILab-PKU/dcpt.

When Synthetic Traces Hide Real Content: Analysis of Stable Diffusion Image Laundering

In recent years, methods for producing highly realistic synthetic images have significantly advanced, allowing the creation of high-quality images from text prompts that describe the desired content. Even more impressively, Stable Diffusion (SD) models now provide users with the option of creating synthetic images in an image-to-image translation fashion, modifying images in the latent space of advanced autoencoders. This striking evolution, however, brings an alarming consequence: it is possible to pass an image through SD autoencoders to reproduce a synthetic copy of the image with high realism and almost no visual artifacts. This process, known as SD image laundering, can transform real images into lookalike synthetic ones and risks complicating forensic analysis for content authenticity verification. Our paper investigates the forensic implications of image laundering, revealing a serious potential to obscure traces of real content, including sensitive and harmful materials that could be mistakenly classified as synthetic, thereby undermining the protection of individuals depicted. To address this issue, we propose a two-stage detection pipeline that effectively differentiates between pristine, laundered, and fully synthetic images (those generated from text prompts), showing robustness across various conditions. Finally, we highlight another alarming property of image laundering, which appears to mask the unique artifacts exploited by forensic detectors to solve the camera model identification task, strongly undermining their performance. Our experimental code is available at https://github.com/polimi-ispl/synthetic-image-detection.

Benchmarking Ultra-High-Definition Image Reflection Removal

Deep learning based methods have achieved significant success in the task of single image reflection removal (SIRR). However, the majority of these methods are focused on High-Definition/Standard-Definition (HD/SD) images, while ignoring higher resolution images such as Ultra-High-Definition (UHD) images. With the increasing prevalence of UHD images captured by modern devices, in this paper, we aim to address the problem of UHD SIRR. Specifically, we first synthesize two large-scale UHD datasets, UHDRR4K and UHDRR8K. The UHDRR4K dataset consists of 2,999 and 168 quadruplets of images for training and testing respectively, and the UHDRR8K dataset contains 1,014 and 105 quadruplets. To the best of our knowledge, these two datasets are the first largest-scale UHD datasets for SIRR. Then, we conduct a comprehensive evaluation of six state-of-the-art SIRR methods using the proposed datasets. Based on the results, we provide detailed discussions regarding the strengths and limitations of these methods when applied to UHD images. Finally, we present a transformer-based architecture named RRFormer for reflection removal. RRFormer comprises three modules, namely the Prepossessing Embedding Module, Self-attention Feature Extraction Module, and Multi-scale Spatial Feature Extraction Module. These modules extract hypercolumn features, global and partial attention features, and multi-scale spatial features, respectively. To ensure effective training, we utilize three terms in our loss function: pixel loss, feature loss, and adversarial loss. We demonstrate through experimental results that RRFormer achieves state-of-the-art performance on both the non-UHD dataset and our proposed UHDRR datasets. The code and datasets are publicly available at https://github.com/Liar-zzy/Benchmarking-Ultra-High-Definition-Single-Image-Reflection-Removal.

A Pressure Ulcer Care System For Remote Medical Assistance: Residual U-Net with an Attention Model Based for Wound Area Segmentation

Increasing numbers of patients with disabilities or elderly people with mobility issues often suffer from a pressure ulcer. The affected areas need regular checks, but they have a difficulty in accessing a hospital. Some remote diagnosis systems are being used for them, but there are limitations in checking a patient's status regularly. In this paper, we present a remote medical assistant that can help pressure ulcer management with image processing techniques. The proposed system includes a mobile application with a deep learning model for wound segmentation and analysis. As there are not enough data to train the deep learning model, we make use of a pretrained model from a relevant domain and data augmentation that is appropriate for this task. First of all, an image preprocessing method using bilinear interpolation is used to resize images and normalize the images. Second, for data augmentation, we use rotation, reflection, and a watershed algorithm. Third, we use a pretrained deep learning model generated from skin wound images similar to pressure ulcer images. Finally, we added an attention module that can provide hints on the pressure ulcer image features. The resulting model provides an accuracy of 99.0%, an intersection over union (IoU) of 99.99%, and a dice similarity coefficient (DSC) of 93.4% for pressure ulcer segmentation, which is better than existing results.

MobileMamba: Lightweight Multi-Receptive Visual Mamba Network

Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs. CNNs, with their local receptive fields, struggle to capture long-range dependencies, while Transformers, despite their global modeling capabilities, are limited by quadratic computational complexity in high-resolution scenarios. Recently, state-space models have gained popularity in the visual domain due to their linear computational complexity. Despite their low FLOPs, current lightweight Mamba-based models exhibit suboptimal throughput. In this work, we propose the MobileMamba framework, which balances efficiency and performance. We design a three-stage network to enhance inference speed significantly. At a fine-grained level, we introduce the Multi-Receptive Field Feature Interaction(MRFFI) module, comprising the Long-Range Wavelet Transform-Enhanced Mamba(WTE-Mamba), Efficient Multi-Kernel Depthwise Convolution(MK-DeConv), and Eliminate Redundant Identity components. This module integrates multi-receptive field information and enhances high-frequency detail extraction. Additionally, we employ training and testing strategies to further improve performance and efficiency. MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods which is maximum x21 faster than LocalVim on GPU. Extensive experiments on high-resolution downstream tasks demonstrate that MobileMamba surpasses current efficient models, achieving an optimal balance between speed and accuracy.

Online Recognition of Incomplete Gesture Data to Interface Collaborative Robots

Online recognition of gestures is critical for intuitive human-robot interaction (HRI) and further push collaborative robotics into the market, making robots accessible to more people. The problem is that it is difficult to achieve accurate gesture recognition in real unstructured environments, often using distorted and incomplete multisensory data. This paper introduces an HRI framework to classify large vocabularies of interwoven static gestures (SGs) and dynamic gestures (DGs) captured with wearable sensors. DG features are obtained by applying data dimensionality reduction to raw data from sensors (resampling with cubic interpolation and principal component analysis). Experimental tests were conducted using the UC2017 hand gesture dataset with samples from eight different subjects. The classification models show an accuracy of 95.6% for a library of 24 SGs with a random forest and 99.3% for 10 DGs using artificial neural networks. These results compare equally or favorably with different commonly used classifiers. Long short-term memory deep networks achieved similar performance in online frame-by-frame classification using raw incomplete data, performing better in terms of accuracy than static models with specially crafted features, but worse in training and inference time. The recognized gestures are used to teleoperate a robot in a collaborative process that consists in preparing a breakfast meal.

E-CAR: Efficient Continuous Autoregressive Image Generation via Multistage Modeling

Recent advances in autoregressive (AR) models with continuous tokens for image generation show promising results by eliminating the need for discrete tokenization. However, these models face efficiency challenges due to their sequential token generation nature and reliance on computationally intensive diffusion-based sampling. We present ECAR (Efficient Continuous Auto-Regressive Image Generation via Multistage Modeling), an approach that addresses these limitations through two intertwined innovations: (1) a stage-wise continuous token generation strategy that reduces computational complexity and provides progressively refined token maps as hierarchical conditions, and (2) a multistage flow-based distribution modeling method that transforms only partial-denoised distributions at each stage comparing to complete denoising in normal diffusion models. Holistically, ECAR operates by generating tokens at increasing resolutions while simultaneously denoising the image at each stage. This design not only reduces token-to-image transformation cost by a factor of the stage number but also enables parallel processing at the token level. Our approach not only enhances computational efficiency but also aligns naturally with image generation principles by operating in continuous token space and following a hierarchical generation process from coarse to fine details. Experimental results demonstrate that ECAR achieves comparable image quality to DiT Peebles & Xie [2023] while requiring 10times FLOPs reduction and 5times speedup to generate a 256times256 image.

Destruction of Image Steganography using Generative Adversarial Networks

Digital image steganalysis, or the detection of image steganography, has been studied in depth for years and is driven by Advanced Persistent Threat (APT) groups', such as APT37 Reaper, utilization of steganographic techniques to transmit additional malware to perform further post-exploitation activity on a compromised host. However, many steganalysis algorithms are constrained to work with only a subset of all possible images in the wild or are known to produce a high false positive rate. This results in blocking any suspected image being an unreasonable policy. A more feasible policy is to filter suspicious images prior to reception by the host machine. However, how does one optimally filter specifically to obfuscate or remove image steganography while avoiding degradation of visual image quality in the case that detection of the image was a false positive? We propose the Deep Digital Steganography Purifier (DDSP), a Generative Adversarial Network (GAN) which is optimized to destroy steganographic content without compromising the perceptual quality of the original image. As verified by experimental results, our model is capable of providing a high rate of destruction of steganographic image content while maintaining a high visual quality in comparison to other state-of-the-art filtering methods. Additionally, we test the transfer learning capability of generalizing to to obfuscate real malware payloads embedded into different image file formats and types using an unseen steganographic algorithm and prove that our model can in fact be deployed to provide adequate results.

CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows

We present CSWin Transformer, an efficient and effective Transformer-based backbone for general-purpose vision tasks. A challenging issue in Transformer design is that global self-attention is very expensive to compute whereas local self-attention often limits the field of interactions of each token. To address this issue, we develop the Cross-Shaped Window self-attention mechanism for computing self-attention in the horizontal and vertical stripes in parallel that form a cross-shaped window, with each stripe obtained by splitting the input feature into stripes of equal width. We provide a mathematical analysis of the effect of the stripe width and vary the stripe width for different layers of the Transformer network which achieves strong modeling capability while limiting the computation cost. We also introduce Locally-enhanced Positional Encoding (LePE), which handles the local positional information better than existing encoding schemes. LePE naturally supports arbitrary input resolutions, and is thus especially effective and friendly for downstream tasks. Incorporated with these designs and a hierarchical structure, CSWin Transformer demonstrates competitive performance on common vision tasks. Specifically, it achieves 85.4\% Top-1 accuracy on ImageNet-1K without any extra training data or label, 53.9 box AP and 46.4 mask AP on the COCO detection task, and 52.2 mIOU on the ADE20K semantic segmentation task, surpassing previous state-of-the-art Swin Transformer backbone by +1.2, +2.0, +1.4, and +2.0 respectively under the similar FLOPs setting. By further pretraining on the larger dataset ImageNet-21K, we achieve 87.5% Top-1 accuracy on ImageNet-1K and high segmentation performance on ADE20K with 55.7 mIoU. The code and models are available at https://github.com/microsoft/CSWin-Transformer.

On filter design in deep convolutional neural network

The deep convolutional neural network (DCNN) in computer vision has given promising results. It is widely applied in many areas, from medicine, agriculture, self-driving car, biometric system, and almost all computer vision-based applications. Filters or weights are the critical elements responsible for learning in DCNN. Backpropagation has been the primary learning algorithm for DCNN and provides promising results, but the size and numbers of the filters remain hyper-parameters. Various studies have been done in the last decade on semi-supervised, self-supervised, and unsupervised methods and their properties. The effects of filter initialization, size-shape selection, and the number of filters on learning and optimization have not been investigated in a separate publication to collate all the options. Such attributes are often treated as hyper-parameters and lack mathematical understanding. Computer vision algorithms have many limitations in real-life applications, and understanding the learning process is essential to have some significant improvement. To the best of our knowledge, no separate investigation has been published discussing the filters; this is our primary motivation. This study focuses on arguments for choosing specific physical parameters of filters, initialization, and learning technic over scattered methods. The promising unsupervised approaches have been evaluated. Additionally, the limitations, current challenges, and future scope have been discussed in this paper.

Weakly Supervised Deep Recurrent Neural Networks for Basic Dance Step Generation

Synthesizing human's movements such as dancing is a flourishing research field which has several applications in computer graphics. Recent studies have demonstrated the advantages of deep neural networks (DNNs) for achieving remarkable performance in motion and music tasks with little effort for feature pre-processing. However, applying DNNs for generating dance to a piece of music is nevertheless challenging, because of 1) DNNs need to generate large sequences while mapping the music input, 2) the DNN needs to constraint the motion beat to the music, and 3) DNNs require a considerable amount of hand-crafted data. In this study, we propose a weakly supervised deep recurrent method for real-time basic dance generation with audio power spectrum as input. The proposed model employs convolutional layers and a multilayered Long Short-Term memory (LSTM) to process the audio input. Then, another deep LSTM layer decodes the target dance sequence. Notably, this end-to-end approach has 1) an auto-conditioned decode configuration that reduces accumulation of feedback error of large dance sequence, 2) uses a contrastive cost function to regulate the mapping between the music and motion beat, and 3) trains with weak labels generated from the motion beat, reducing the amount of hand-crafted data. We evaluate the proposed network based on i) the similarities between generated and the baseline dancer motion with a cross entropy measure for large dance sequences, and ii) accurate timing between the music and motion beat with an F-measure. Experimental results revealed that, after training using a small dataset, the model generates basic dance steps with low cross entropy and maintains an F-measure score similar to that of a baseline dancer.