new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores

The ever-growing complexity of reinforcement learning (RL) tasks demands a distributed RL system to efficiently generate and process a massive amount of data to train intelligent agents. However, existing open-source libraries suffer from various limitations, which impede their practical use in challenging scenarios where large-scale training is necessary. While industrial systems from OpenAI and DeepMind have achieved successful large-scale RL training, their system architecture and implementation details remain undisclosed to the community. In this paper, we present a novel abstraction on the dataflows of RL training, which unifies practical RL training across diverse applications into a general framework and enables fine-grained optimizations. Following this abstraction, we develop a scalable, efficient, and extensible distributed RL system called ReaLly Scalable RL (SRL). The system architecture of SRL separates major RL computation components and allows massively parallelized training. Moreover, SRL offers user-friendly and extensible interfaces for customized algorithms. Our evaluation shows that SRL outperforms existing academic libraries in both a single machine and a medium-sized cluster. In a large-scale cluster, the novel architecture of SRL leads to up to 3.7x speedup compared to the design choices adopted by the existing libraries. We also conduct a direct benchmark comparison to OpenAI's industrial system, Rapid, in the challenging hide-and-seek environment. SRL reproduces the same solution as reported by OpenAI with up to 5x speedup in wall-clock time. Furthermore, we also examine the performance of SRL in a much harder variant of the hide-and-seek environment and achieve substantial learning speedup by scaling SRL to over 15k CPU cores and 32 A100 GPUs. Notably, SRL is the first in the academic community to perform RL experiments at such a large scale.

Llumnix: Dynamic Scheduling for Large Language Model Serving

Inference serving for large language models (LLMs) is the key to unleashing their potential in people's daily lives. However, efficient LLM serving remains challenging today because the requests are inherently heterogeneous and unpredictable in terms of resource and latency requirements, as a result of the diverse applications and the dynamic execution nature of LLMs. Existing systems are fundamentally limited in handling these characteristics and cause problems such as severe queuing delays, poor tail latencies, and SLO violations. We introduce Llumnix, an LLM serving system that reacts to such heterogeneous and unpredictable requests by runtime rescheduling across multiple model instances. Similar to context switching across CPU cores in modern operating systems, Llumnix reschedules requests to improve load balancing and isolation, mitigate resource fragmentation, and differentiate request priorities and SLOs. Llumnix implements the rescheduling with an efficient and scalable live migration mechanism for requests and their in-memory states, and exploits it in a dynamic scheduling policy that unifies the multiple rescheduling scenarios elegantly. Our evaluations show that Llumnix improves tail latencies by an order of magnitude, accelerates high-priority requests by up to 1.5x, and delivers up to 36% cost savings while achieving similar tail latencies, compared against state-of-the-art LLM serving systems. Llumnix is publicly available at https://github.com/AlibabaPAI/llumnix.

Ghost in the Minecraft: Generally Capable Agents for Open-World Enviroments via Large Language Models with Text-based Knowledge and Memory

The captivating realm of Minecraft has attracted substantial research interest in recent years, serving as a rich platform for developing intelligent agents capable of functioning in open-world environments. However, the current research landscape predominantly focuses on specific objectives, such as the popular "ObtainDiamond" task, and has not yet shown effective generalization to a broader spectrum of tasks. Furthermore, the current leading success rate for the "ObtainDiamond" task stands at around 20%, highlighting the limitations of Reinforcement Learning (RL) based controllers used in existing methods. To tackle these challenges, we introduce Ghost in the Minecraft (GITM), a novel framework integrates Large Language Models (LLMs) with text-based knowledge and memory, aiming to create Generally Capable Agents (GCAs) in Minecraft. These agents, equipped with the logic and common sense capabilities of LLMs, can skillfully navigate complex, sparse-reward environments with text-based interactions. We develop a set of structured actions and leverage LLMs to generate action plans for the agents to execute. The resulting LLM-based agent markedly surpasses previous methods, achieving a remarkable improvement of +47.5% in success rate on the "ObtainDiamond" task, demonstrating superior robustness compared to traditional RL-based controllers. Notably, our agent is the first to procure all items in the Minecraft Overworld technology tree, demonstrating its extensive capabilities. GITM does not need any GPU for training, but a single CPU node with 32 CPU cores is enough. This research shows the potential of LLMs in developing capable agents for handling long-horizon, complex tasks and adapting to uncertainties in open-world environments. See the project website at https://github.com/OpenGVLab/GITM.

SpecMaskGIT: Masked Generative Modeling of Audio Spectrograms for Efficient Audio Synthesis and Beyond

Recent advances in generative models that iteratively synthesize audio clips sparked great success to text-to-audio synthesis (TTA), but with the cost of slow synthesis speed and heavy computation. Although there have been attempts to accelerate the iterative procedure, high-quality TTA systems remain inefficient due to hundreds of iterations required in the inference phase and large amount of model parameters. To address the challenges, we propose SpecMaskGIT, a light-weighted, efficient yet effective TTA model based on the masked generative modeling of spectrograms. First, SpecMaskGIT synthesizes a realistic 10s audio clip by less than 16 iterations, an order-of-magnitude less than previous iterative TTA methods.As a discrete model, SpecMaskGIT outperforms larger VQ-Diffusion and auto-regressive models in the TTA benchmark, while being real-time with only 4 CPU cores or even 30x faster with a GPU. Next, built upon a latent space of Mel-spectrogram, SpecMaskGIT has a wider range of applications (e.g., the zero-shot bandwidth extension) than similar methods built on the latent wave domain. Moreover, we interpret SpecMaskGIT as a generative extension to previous discriminative audio masked Transformers, and shed light on its audio representation learning potential. We hope our work inspires the exploration of masked audio modeling toward further diverse scenarios.

T-MAC: CPU Renaissance via Table Lookup for Low-Bit LLM Deployment on Edge

The deployment of Large Language Models (LLMs) on edge devices is increasingly important to enhance on-device intelligence. Weight quantization is crucial for reducing the memory footprint of LLMs on devices. However, low-bit LLMs necessitate mixed precision matrix multiplication (mpGEMM) of low precision weights and high precision activations during inference. Existing systems, lacking native support for mpGEMM, resort to dequantize weights for high precision computation. Such an indirect way can lead to a significant inference overhead. In this paper, we introduce T-MAC, an innovative lookup table(LUT)-based method designed for efficient low-bit LLM (i.e., weight-quantized LLM) inference on CPUs. T-MAC directly supports mpGEMM without dequantization, while simultaneously eliminating multiplications and reducing additions required. Specifically, T-MAC transforms the traditional data-type-centric multiplication to bit-wise table lookup, and enables a unified and scalable mpGEMM solution. Our LUT-based kernels scale linearly to the weight bit-width. Evaluated on low-bit Llama and BitNet models, T-MAC demonstrates up to 4x increase in throughput and 70% reduction in energy consumption compared to llama.cpp. For BitNet-b1.58-3B, T-MAC delivers a token generation throughput of 30 tokens/s with a single core and 71 tokens/s with eight cores on M2-Ultra, and 11 tokens/s on lower-end devices like Raspberry Pi 5, which significantly exceeds the adult average reading speed. T-MAC with LUT-based computing paradigm, paves the way for the practical deployment of low-bit LLMs on resource-constrained edge devices without compromising computational efficiency. The system is open-sourced at https://github.com/microsoft/T-MAC.

Learning to Move Like Professional Counter-Strike Players

In multiplayer, first-person shooter games like Counter-Strike: Global Offensive (CS:GO), coordinated movement is a critical component of high-level strategic play. However, the complexity of team coordination and the variety of conditions present in popular game maps make it impractical to author hand-crafted movement policies for every scenario. We show that it is possible to take a data-driven approach to creating human-like movement controllers for CS:GO. We curate a team movement dataset comprising 123 hours of professional game play traces, and use this dataset to train a transformer-based movement model that generates human-like team movement for all players in a "Retakes" round of the game. Importantly, the movement prediction model is efficient. Performing inference for all players takes less than 0.5 ms per game step (amortized cost) on a single CPU core, making it plausible for use in commercial games today. Human evaluators assess that our model behaves more like humans than both commercially-available bots and procedural movement controllers scripted by experts (16% to 59% higher by TrueSkill rating of "human-like"). Using experiments involving in-game bot vs. bot self-play, we demonstrate that our model performs simple forms of teamwork, makes fewer common movement mistakes, and yields movement distributions, player lifetimes, and kill locations similar to those observed in professional CS:GO match play.

Position Paper: Think Globally, React Locally -- Bringing Real-time Reference-based Website Phishing Detection on macOS

Background. The recent surge in phishing attacks keeps undermining the effectiveness of the traditional anti-phishing blacklist approaches. On-device anti-phishing solutions are gaining popularity as they offer faster phishing detection locally. Aim. We aim to eliminate the delay in recognizing and recording phishing campaigns in databases via on-device solutions that identify phishing sites immediately when encountered by the user rather than waiting for a web crawler's scan to finish. Additionally, utilizing operating system-specific resources and frameworks, we aim to minimize the impact on system performance and depend on local processing to protect user privacy. Method. We propose a phishing detection solution that uses a combination of computer vision and on-device machine learning models to analyze websites in real time. Our reference-based approach analyzes the visual content of webpages, identifying phishing attempts through layout analysis, credential input areas detection, and brand impersonation criteria combination. Results. Our case study shows it's feasible to perform background processing on-device continuously, for the case of the web browser requiring the resource use of 16% of a single CPU core and less than 84MB of RAM on Apple M1 while maintaining the accuracy of brand logo detection at 46.6% (comparable with baselines), and of Credential Requiring Page detection at 98.1% (improving the baseline by 3.1%), within the test dataset. Conclusions. Our results demonstrate the potential of on-device, real-time phishing detection systems to enhance cybersecurity defensive technologies and extend the scope of phishing detection to more similar regions of interest, e.g., email clients and messenger windows.

DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training

Graph neural networks (GNNs) are machine learning models specialized for graph data and widely used in many applications. To train GNNs on large graphs that exceed CPU memory, several systems store data on disk and conduct out-of-core processing. However, these systems suffer from either read amplification when reading node features that are usually smaller than a disk page or degraded model accuracy by treating the graph as disconnected partitions. To close this gap, we build a system called DiskGNN, which achieves high I/O efficiency and thus fast training without hurting model accuracy. The key technique used by DiskGNN is offline sampling, which helps decouple graph sampling from model computation. In particular, by conducting graph sampling beforehand, DiskGNN acquires the node features that will be accessed by model computation, and such information is utilized to pack the target node features contiguously on disk to avoid read amplification. Besides, also adopts designs including four-level feature store to fully utilize the memory hierarchy to cache node features and reduce disk access, batched packing to accelerate the feature packing process, and pipelined training to overlap disk access with other operations. We compare DiskGNN with Ginex and MariusGNN, which are state-of-the-art systems for out-of-core GNN training. The results show that DiskGNN can speed up the baselines by over 8x while matching their best model accuracy.