Papers
arxiv:2504.07228

ConceptCarve: Dynamic Realization of Evidence

Published on Apr 9
Authors:
,

Abstract

Finding evidence for human opinion and behavior at scale is a challenging task, often requiring an understanding of sophisticated thought patterns among vast online communities found on social media. For example, studying how gun ownership is related to the perception of Freedom, requires a retrieval system that can operate at scale over social media posts, while dealing with two key challenges: (1) identifying abstract concept instances, (2) which can be instantiated differently across different communities. To address these, we introduce ConceptCarve, an evidence retrieval framework that utilizes traditional retrievers and LLMs to dynamically characterize the search space during retrieval. Our experiments show that ConceptCarve surpasses traditional retrieval systems in finding evidence within a social media community. It also produces an interpretable representation of the evidence for that community, which we use to qualitatively analyze complex thought patterns that manifest differently across the communities.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2504.07228 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2504.07228 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.