Papers
arxiv:2501.09446

Double Visual Defense: Adversarial Pre-training and Instruction Tuning for Improving Vision-Language Model Robustness

Published on Jan 16
Authors:
,
,
,

Abstract

This paper investigates the robustness of vision-language models against adversarial visual perturbations and introduces a novel ``double visual defense" to enhance this robustness. Unlike previous approaches that resort to lightweight adversarial fine-tuning of a pre-trained CLIP model, we perform large-scale adversarial vision-language pre-training from scratch using web-scale data. We then strengthen the defense by incorporating adversarial visual instruction tuning. The resulting models from each stage, DeltaCLIP and Delta^2LLaVA, show substantially enhanced zero-shot robustness and set a new state-of-the-art in adversarial defense for vision-language models. For example, the adversarial robustness of DeltaCLIP surpasses that of the previous best models on ImageNet-1k by ~20%. %For example, DeltaCLIP surpasses the previous best models on ImageNet-1k by ~20% in terms of adversarial robustness. Similarly, compared to prior art, Delta^2LLaVA brings a ~30% robustness improvement to image captioning task and a ~20% robustness improvement to visual question answering task. Furthermore, our models exhibit stronger zero-shot recognition capability, fewer hallucinations, and superior reasoning performance compared to baselines. Our project page is https://doublevisualdefense.github.io/.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 5

Browse 5 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2501.09446 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2501.09446 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.