Papers
arxiv:2404.15217

Towards Large-Scale Training of Pathology Foundation Models

Published on Mar 24
Authors:
,
,
,
,
,
,
,
,
,

Abstract

Driven by the recent advances in deep learning methods and, in particular, by the development of modern self-supervised learning algorithms, increased interest and efforts have been devoted to build foundation models (FMs) for medical images. In this work, we present our scalable training pipeline for large pathology imaging data, and a comprehensive analysis of various hyperparameter choices and training techniques for building pathology FMs. We release and make publicly available the first batch of our pathology FMs (https://github.com/kaiko-ai/towards_large_pathology_fms) trained on open-access TCGA whole slide images, a commonly used collection of pathology images. The experimental evaluation shows that our models reach state-of-the-art performance on various patch-level downstream tasks, ranging from breast cancer subtyping to colorectal nuclear segmentation. Finally, to unify the evaluation approaches used in the field and to simplify future comparisons of different FMs, we present an open-source framework (https://github.com/kaiko-ai/eva) designed for the consistent evaluation of pathology FMs across various downstream tasks.

Community

Sign up or log in to comment

Models citing this paper 5

Browse 5 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2404.15217 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2404.15217 in a Space README.md to link it from this page.

Collections including this paper 1