Papers
arxiv:2308.13164

Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model

Published on Aug 25, 2023
Authors:
,
,
,
,

Abstract

In this paper, we rethink the low-light image enhancement task and propose a physically explainable and <PRE_TAG>generative diffusion model</POST_TAG> for low-light image enhancement, termed as Diff-Retinex. We aim to integrate the advantages of the physical model and the generative network. Furthermore, we hope to supplement and even deduce the information missing in the low-light image through the generative network. Therefore, Diff-Retinex formulates the low-light image enhancement problem into Retinex decomposition and conditional image generation. In the Retinex decomposition, we integrate the superiority of attention in Transformer and meticulously design a Retinex Transformer decomposition network (TDN) to decompose the image into illumination and reflectance maps. Then, we design multi-path generative diffusion networks to reconstruct the normal-light Retinex probability distribution and solve the various degradations in these components respectively, including dark illumination, noise, color deviation, loss of scene contents, etc. Owing to <PRE_TAG>generative diffusion model</POST_TAG>, Diff-Retinex puts the restoration of low-light subtle detail into practice. Extensive experiments conducted on real-world low-light datasets qualitatively and quantitatively demonstrate the effectiveness, superiority, and generalization of the proposed method.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2308.13164 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2308.13164 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2308.13164 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.