Papers
arxiv:2306.10675

LaDe: The First Comprehensive Last-mile Delivery Dataset from Industry

Published on Jun 19, 2023
Authors:
,
,
,
,
,
,
,
,
,
,
,

Abstract

Real-world last-mile delivery datasets are crucial for research in logistics, supply chain management, and spatio-temporal data mining. Despite a plethora of algorithms developed to date, no widely accepted, publicly available last-mile delivery dataset exists to support research in this field. In this paper, we introduce LaDe, the first publicly available last-mile delivery dataset with millions of packages from the industry. LaDe has three unique characteristics: (1) Large-scale. It involves 10,677k packages of 21k couriers over 6 months of real-world operation. (2) Comprehensive information. It offers original package information, such as its location and time requirements, as well as task-event information, which records when and where the courier is while events such as task-accept and task-finish events happen. (3) Diversity. The dataset includes data from various scenarios, including package pick-up and delivery, and from multiple cities, each with its unique spatio-temporal patterns due to their distinct characteristics such as populations. We verify LaDe on three tasks by running several classical baseline models per task. We believe that the large-scale, comprehensive, diverse feature of LaDe can offer unparalleled opportunities to researchers in the supply chain community, data mining community, and beyond. The dataset homepage is publicly available at https://huggingface.co/datasets/Cainiao-AI/LaDe.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2306.10675 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2306.10675 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.