Metrological detection of multipartite entanglement through dynamical symmetries
Abstract
Multipartite entanglement, characterized by the quantum Fisher information (QFI), plays a central role in quantum-enhanced metrology and understanding quantum many-body physics. With a dynamical generalization of the Mazur-Suzuki relations, we provide a rigorous lower bound on the QFI for the thermal Gibbs states in terms of dynamical symmetries, i.e., operators with periodic time dependence. We demonstrate that this bound can be saturated when considering a complete set of dynamical symmetries. Moreover, this lower bound with dynamical symmetries can be generalized to the QFI matrix and to the QFI for the thermal pure states, predicted by the eigenstate thermalization hypothesis. Our results reveal a new perspective to detect multipartite entanglement and other generalized variances in an equilibrium system, from its nonstationary dynamical properties, and is promising for studying emergent nonequilibrium many-body physics.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper