Papers
arxiv:2106.00666

You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection

Published on Jun 1, 2021
Authors:
,
,
,
,
,
,

Abstract

Can Transformer perform 2D object- and region-level recognition from a pure sequence-to-sequence perspective with minimal knowledge about the 2D spatial structure? To answer this question, we present You Only Look at One Sequence (YOLOS), a series of object detection models based on the vanilla Vision Transformer with the fewest possible modifications, region priors, as well as inductive biases of the target task. We find that YOLOS pre-trained on the mid-sized ImageNet-1k dataset only can already achieve quite competitive performance on the challenging COCO object detection benchmark, e.g., YOLOS-Base directly adopted from BERT-Base architecture can obtain 42.0 box AP on COCO val. We also discuss the impacts as well as limitations of current pre-train schemes and model scaling strategies for Transformer in vision through YOLOS. Code and pre-trained models are available at https://github.com/hustvl/YOLOS.

Community

Sign up or log in to comment

Models citing this paper 12

Browse 12 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2106.00666 in a dataset README.md to link it from this page.

Spaces citing this paper 107

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.