Model Name: orca_mini_phi-4

orca_mini_phi-4 is trained with various SFT Datasets on microsoft/phi-4 using Llama's architecture.

"Obsessed with Open Source GenAI's potential? So am I ! Let's Contribute together 🚀 https://www.linkedin.com/in/pankajam"

NOTICE

By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges. I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model. Dive in and innovate!

Example Usage

Use this model for Free on Google Colab with T4 GPU :)

Open In Colab

Example Usage on Your Personal Computer

Download GGUF version here and Follow Ollama instructions: coming soon....

Below shows a code example on how to use this model in default half precision (bfloat16) format

import torch
from transformers import pipeline

model_slug = "pankajmathur/orca_mini_phi-4"
pipeline = pipeline(
    "text-generation",
    model=model_slug,
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])

Below shows a code example on how to use this model in 4-bit format via bitsandbytes library

import torch
from transformers import BitsAndBytesConfig, pipeline

model_slug = "pankajmathur/orca_mini_phi-4"
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16",
    bnb_4bit_use_double_quant=True,
)
pipeline = pipeline(
    "text-generation",
    model=model_slug,
    model_kwargs={"quantization_config": quantization_config},
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])

Below shows a code example on how to use this model in 8-bit format via bitsandbytes library

import torch
from transformers import BitsAndBytesConfig, pipeline

model_slug = "pankajmathur/orca_mini_phi-4"
quantization_config = BitsAndBytesConfig(
    load_in_8bit=True
)
pipeline = pipeline(
    "text-generation",
    model=model_slug,
    model_kwargs={"quantization_config": quantization_config},
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])

Built with Axolotl

Downloads last month
105
Safetensors
Model size
14.7B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pankajmathur/orca_mini_phi-4

Base model

microsoft/phi-4
Finetuned
(45)
this model
Merges
1 model
Quantizations
5 models

Datasets used to train pankajmathur/orca_mini_phi-4