File size: 4,970 Bytes
90faa6d 90ff707 90faa6d 3c7e553 568965e 3aa333e f0dfabc 8b742f3 3c5aff2 83fb44e 127a4a7 8d6f29e b9773e3 a59dc2f 89b2ea5 bed98dd afa33bc 3c34c41 de11e62 9f0c65a bed27fb 2f18d6b 469352c 26f3238 e3d7041 03ba6b8 c77de77 5aed5fa 054276f 90ff707 90faa6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-base-finetuned-ctfl-augmented_1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pakawadeep/mt5-base-finetuned-ctfl-augmented_1
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3352
- Validation Loss: 0.7774
- Train Rouge1: 9.0877
- Train Rouge2: 1.3861
- Train Rougel: 8.9816
- Train Rougelsum: 9.0347
- Train Gen Len: 11.9010
- Epoch: 27
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 5.3770 | 2.6665 | 4.5262 | 0.6931 | 4.5733 | 4.5733 | 8.9356 | 0 |
| 2.7256 | 2.0063 | 5.6931 | 1.3201 | 5.6518 | 5.6931 | 10.2277 | 1 |
| 2.0053 | 1.4899 | 7.7086 | 2.1782 | 7.7086 | 7.7086 | 11.3465 | 2 |
| 1.5782 | 1.2268 | 7.7086 | 2.1782 | 7.7086 | 7.7086 | 11.8168 | 3 |
| 1.3143 | 1.1257 | 8.6987 | 2.1782 | 8.6987 | 8.4866 | 11.9257 | 4 |
| 1.1311 | 1.0411 | 8.9816 | 2.2772 | 8.9109 | 8.9109 | 11.9406 | 5 |
| 1.0120 | 0.9954 | 8.9816 | 2.2772 | 8.9109 | 8.9109 | 11.9406 | 6 |
| 0.9320 | 0.9375 | 8.9816 | 2.2772 | 8.9109 | 8.9109 | 11.9208 | 7 |
| 0.8538 | 0.8867 | 8.9816 | 2.2772 | 8.9109 | 8.9109 | 11.8911 | 8 |
| 0.7999 | 0.8593 | 8.8166 | 1.7822 | 8.7459 | 8.7459 | 11.8861 | 9 |
| 0.7562 | 0.8440 | 8.5573 | 1.2871 | 8.4866 | 8.5337 | 11.8812 | 10 |
| 0.7106 | 0.8085 | 8.5573 | 1.2871 | 8.4866 | 8.5337 | 11.8812 | 11 |
| 0.6685 | 0.8044 | 7.9562 | 0.7921 | 7.8147 | 7.9562 | 11.9059 | 12 |
| 0.6377 | 0.7867 | 8.4512 | 1.2871 | 8.4158 | 8.4512 | 11.8762 | 13 |
| 0.6067 | 0.7731 | 8.2980 | 0.7921 | 8.2096 | 8.2862 | 11.8960 | 14 |
| 0.5826 | 0.7593 | 8.2980 | 0.7921 | 8.2096 | 8.2862 | 11.8861 | 15 |
| 0.5533 | 0.7656 | 8.4512 | 1.2871 | 8.4158 | 8.4512 | 11.9010 | 16 |
| 0.5286 | 0.7657 | 8.4512 | 1.2871 | 8.4158 | 8.4512 | 11.8812 | 17 |
| 0.5049 | 0.7674 | 8.4512 | 1.2871 | 8.4158 | 8.4512 | 11.8465 | 18 |
| 0.4800 | 0.7591 | 8.4512 | 1.2871 | 8.4158 | 8.4512 | 11.8663 | 19 |
| 0.4593 | 0.7637 | 8.4512 | 1.2871 | 8.4158 | 8.4512 | 11.8663 | 20 |
| 0.4362 | 0.7757 | 8.4512 | 1.2871 | 8.4158 | 8.4512 | 11.8762 | 21 |
| 0.4185 | 0.7640 | 8.9816 | 1.2871 | 8.9463 | 8.9816 | 11.8812 | 22 |
| 0.4001 | 0.7496 | 8.9816 | 1.2871 | 8.9463 | 8.9816 | 11.8762 | 23 |
| 0.3826 | 0.7498 | 8.9816 | 1.2871 | 8.9463 | 8.9816 | 11.8515 | 24 |
| 0.3682 | 0.7646 | 8.9816 | 1.2871 | 8.9463 | 8.9816 | 11.8861 | 25 |
| 0.3525 | 0.7656 | 8.9816 | 1.2871 | 8.9463 | 8.9816 | 11.8762 | 26 |
| 0.3352 | 0.7774 | 9.0877 | 1.3861 | 8.9816 | 9.0347 | 11.9010 | 27 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|