File size: 4,970 Bytes
90faa6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ff707
 
 
 
 
 
 
 
90faa6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7e553
568965e
3aa333e
f0dfabc
8b742f3
3c5aff2
83fb44e
127a4a7
8d6f29e
b9773e3
a59dc2f
89b2ea5
bed98dd
afa33bc
3c34c41
de11e62
9f0c65a
bed27fb
2f18d6b
469352c
26f3238
e3d7041
03ba6b8
c77de77
5aed5fa
054276f
90ff707
90faa6d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-base-finetuned-ctfl-augmented_1
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pakawadeep/mt5-base-finetuned-ctfl-augmented_1

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3352
- Validation Loss: 0.7774
- Train Rouge1: 9.0877
- Train Rouge2: 1.3861
- Train Rougel: 8.9816
- Train Rougelsum: 9.0347
- Train Gen Len: 11.9010
- Epoch: 27

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 5.3770     | 2.6665          | 4.5262       | 0.6931       | 4.5733       | 4.5733          | 8.9356        | 0     |
| 2.7256     | 2.0063          | 5.6931       | 1.3201       | 5.6518       | 5.6931          | 10.2277       | 1     |
| 2.0053     | 1.4899          | 7.7086       | 2.1782       | 7.7086       | 7.7086          | 11.3465       | 2     |
| 1.5782     | 1.2268          | 7.7086       | 2.1782       | 7.7086       | 7.7086          | 11.8168       | 3     |
| 1.3143     | 1.1257          | 8.6987       | 2.1782       | 8.6987       | 8.4866          | 11.9257       | 4     |
| 1.1311     | 1.0411          | 8.9816       | 2.2772       | 8.9109       | 8.9109          | 11.9406       | 5     |
| 1.0120     | 0.9954          | 8.9816       | 2.2772       | 8.9109       | 8.9109          | 11.9406       | 6     |
| 0.9320     | 0.9375          | 8.9816       | 2.2772       | 8.9109       | 8.9109          | 11.9208       | 7     |
| 0.8538     | 0.8867          | 8.9816       | 2.2772       | 8.9109       | 8.9109          | 11.8911       | 8     |
| 0.7999     | 0.8593          | 8.8166       | 1.7822       | 8.7459       | 8.7459          | 11.8861       | 9     |
| 0.7562     | 0.8440          | 8.5573       | 1.2871       | 8.4866       | 8.5337          | 11.8812       | 10    |
| 0.7106     | 0.8085          | 8.5573       | 1.2871       | 8.4866       | 8.5337          | 11.8812       | 11    |
| 0.6685     | 0.8044          | 7.9562       | 0.7921       | 7.8147       | 7.9562          | 11.9059       | 12    |
| 0.6377     | 0.7867          | 8.4512       | 1.2871       | 8.4158       | 8.4512          | 11.8762       | 13    |
| 0.6067     | 0.7731          | 8.2980       | 0.7921       | 8.2096       | 8.2862          | 11.8960       | 14    |
| 0.5826     | 0.7593          | 8.2980       | 0.7921       | 8.2096       | 8.2862          | 11.8861       | 15    |
| 0.5533     | 0.7656          | 8.4512       | 1.2871       | 8.4158       | 8.4512          | 11.9010       | 16    |
| 0.5286     | 0.7657          | 8.4512       | 1.2871       | 8.4158       | 8.4512          | 11.8812       | 17    |
| 0.5049     | 0.7674          | 8.4512       | 1.2871       | 8.4158       | 8.4512          | 11.8465       | 18    |
| 0.4800     | 0.7591          | 8.4512       | 1.2871       | 8.4158       | 8.4512          | 11.8663       | 19    |
| 0.4593     | 0.7637          | 8.4512       | 1.2871       | 8.4158       | 8.4512          | 11.8663       | 20    |
| 0.4362     | 0.7757          | 8.4512       | 1.2871       | 8.4158       | 8.4512          | 11.8762       | 21    |
| 0.4185     | 0.7640          | 8.9816       | 1.2871       | 8.9463       | 8.9816          | 11.8812       | 22    |
| 0.4001     | 0.7496          | 8.9816       | 1.2871       | 8.9463       | 8.9816          | 11.8762       | 23    |
| 0.3826     | 0.7498          | 8.9816       | 1.2871       | 8.9463       | 8.9816          | 11.8515       | 24    |
| 0.3682     | 0.7646          | 8.9816       | 1.2871       | 8.9463       | 8.9816          | 11.8861       | 25    |
| 0.3525     | 0.7656          | 8.9816       | 1.2871       | 8.9463       | 8.9816          | 11.8762       | 26    |
| 0.3352     | 0.7774          | 9.0877       | 1.3861       | 8.9816       | 9.0347          | 11.9010       | 27    |


### Framework versions

- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1