paicup09 commited on
Commit
c1124bf
·
1 Parent(s): 13ccdcd

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1874.81 +/- 215.83
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96a802cd61bf4d37f0f185b00aca3fc87c4718b60dc74a6cc045f954c59b80d3
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7effacba1c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7effacba1ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7effacba1d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7effacba1dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7effacba1e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7effacba1ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7effacba1f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7effacba5040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7effacba50d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7effacba5160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7effacba51f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7effacba5280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7effacb9d8a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675029154726900961,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK/PLD9g2CQ/+JUQP4vc5D+KbeY/qR9rPxq4Dj/GATI+CEixviDnYr8lxTm/ZwfJP4qpmDzQYXa+K+FPv1eUDUA6/oY/5DPJvz04vL65iW0/EI8BP19mTMB3BLs+VeaXvYLPnr+14ts++wTav0uJcD+72Ew9jRgbvtyd/T75a5c/4gJjP8YiPT8Aam07mVmBv3ChAz+x83m/78hfv4ITij+9NQQ+lKpvvg9cYj9nA16+MJKaPzCMar+3QCa9UVlVPgSEJ7+7DIA9/3PGPimOyr6Cz56/teLbPvsE2r+aOoi/In5ivrBi7T0QbxE/jLZaPzLUJ74KBY+/Fvk+P/R8zz3VBCw/Nbl5vwL+KD27/+a/qyaTvw/pLT8w/zm/lkqRPiPeir1W3Cg/A1EjP4VLe72Uc9o9xAtKP0iPkL4mEnM/gs+ev+EFFcBrTBY/mjqIv2ScRD+pUGA+NyUVP+v6pD3bgh4+d14HP8PQ5z6XNy6/WIxAP0ZRKL/S6A1A9l4hv8VlnL+vjGE/pNJ6v4nfCsDykxI/qvtaP+MVGz5S3R4/HiUav0GuKj4Af0G/qOYUP3hVTj+14ts+a0wWP5o6iL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABQGgO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8zL6OwAAAACdCOS/AAAAALftrb0AAAAAtrcAQAAAAADNH2s6AAAAAKiI4z8AAAAA6m9guwAAAAC4nfO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAumKetgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLTAML0AAAAAwdjvvwAAAADf+8C9AAAAAPmb9z8AAAAAEMGYvQAAAADHieo/AAAAAKeZnj0AAAAAILPwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMm5qbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIABhAY+AAAAANxO4L8AAAAAfgwHvgAAAAC+RvI/AAAAAEtefr0AAAAAMR0AQAAAAABAadK9AAAAALrF278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSunM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAq4CevQAAAABdweC/AAAAAOBBjzwAAAAAR4rhPwAAAACwk4k9AAAAAO3KAEAAAAAAqByrOwAAAABx+/q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJj0iQvHtF+MAWyUTegDjAF0lEdAqfA5Ec81XXV9lChoBkdAmN61XJYDDGgHTegDaAhHQKnwgUDdP+J1fZQoaAZHQIRsbx9XtBxoB03oA2gIR0Cp8I0gr6LwdX2UKGgGR0CdgX6KLsKLaAdN6ANoCEdAqfJPIbOu73V9lChoBkdAnZlhl+Vkc2gHTegDaAhHQKn8pD8+A3F1fZQoaAZHQJ2ZTmV7hNxoB03oA2gIR0Cp/PCyprDZdX2UKGgGR0CbwKVy3kPuaAdN6ANoCEdAqfz8QmNR33V9lChoBkdAmC0R7Z39rGgHTegDaAhHQKn+sYMvysl1fZQoaAZHQJ7V4sK9f1JoB03oA2gIR0CqCNrd30PIdX2UKGgGR0CXwBU1yeZoaAdN6ANoCEdAqgkhNCZ4OnV9lChoBkdAnQGIuGsV+WgHTegDaAhHQKoJLOKO1fF1fZQoaAZHQKCyxS8an75oB03oA2gIR0CqCuN/4IrwdX2UKGgGR0CfTAofCAMEaAdN6ANoCEdAqhUlnAZbZHV9lChoBkdAnnKeMqBmPGgHTegDaAhHQKoVbomG/N91fZQoaAZHQKBBepH7P6doB03oA2gIR0CqFXrDQ7cPdX2UKGgGR0CgNnmKZUkwaAdN6ANoCEdAqhcsuL74z3V9lChoBkdAn7Cd6LOzIGgHTegDaAhHQKohXXIU8FJ1fZQoaAZHQKA3hcW0qpdoB03oA2gIR0CqIaTK9wm3dX2UKGgGR0CgN4VRLsa9aAdN6ANoCEdAqiGwKx9oe3V9lChoBkdAoIf2nn+yaGgHTegDaAhHQKojZBLPD511fZQoaAZHQJ41Z0OmR/5oB03oA2gIR0CqLZkjxCpndX2UKGgGR0CfLCCMPz4DaAdN6ANoCEdAqi3jZUT+N3V9lChoBkdAnKQRujynUGgHTegDaAhHQKot7vRZ2ZB1fZQoaAZHQKCQ8nMt9QZoB03oA2gIR0CqL57mEGqxdX2UKGgGR0CUxVw0O3DvaAdN6ANoCEdAqjmu4wyqMnV9lChoBkdAmqsLxy4nW2gHTegDaAhHQKo58uGKyfN1fZQoaAZHQJ5pivzOHFhoB03oA2gIR0CqOf4f4h2XdX2UKGgGR0CZ7XJmukk9aAdN6ANoCEdAqjuynJkoW3V9lChoBkdAmfdgw9JSSGgHTegDaAhHQKpF66e5Fw11fZQoaAZHQJfEizPa+N9oB03oA2gIR0CqRjKE384xdX2UKGgGR0Cbs8kMkQf7aAdN6ANoCEdAqkY+cQRPGnV9lChoBkdAgmAERradtmgHTegDaAhHQKpH9bhWHUN1fZQoaAZHQKDEYPkJa7poB03oA2gIR0CqUjksasIWdX2UKGgGR0CTzCGdI5HVaAdN6ANoCEdAqlKEHMUypXV9lChoBkdAnK/8JUo8ZGgHTegDaAhHQKpSj63y7PJ1fZQoaAZHQJ+1fdIoVmBoB03oA2gIR0CqVDPlMh5gdX2UKGgGR0Cg1p2ll9SdaAdN6ANoCEdAql54+fRNRHV9lChoBkdAnZrAnQY1pGgHTegDaAhHQKpewotL+P11fZQoaAZHQKDLUb1AZ89oB03oA2gIR0CqXs4BFNL2dX2UKGgGR0CfNlEFnqVyaAdN6ANoCEdAqmCO+0w8GXV9lChoBkdAkol65LAYYWgHTegDaAhHQKpqlJrcj7h1fZQoaAZHQKAq6qQRwqBoB03oA2gIR0Cqatel0o0AdX2UKGgGR0CeuEtzS1E3aAdN6ANoCEdAqmrjO7g883V9lChoBkdAoD7PwqiGnGgHTegDaAhHQKpsjmU4aP11fZQoaAZHQJePpGtp22ZoB03oA2gIR0CqdqpGe+VUdX2UKGgGR0CbJBeJ53TvaAdN6ANoCEdAqnbyiAUcn3V9lChoBkdAnmcXYQJ5V2gHTegDaAhHQKp2/gvUSZl1fZQoaAZHQJdLdFWn0kJoB03oA2gIR0CqeLgBLf1pdX2UKGgGR0CgX/65Gz8haAdN6ANoCEdAqoLDLyMDOnV9lChoBkdAoBudUIcBEWgHTegDaAhHQKqDBzJ6po91fZQoaAZHQJzql2MbWEtoB03oA2gIR0CqgxInjQzDdX2UKGgGR0CevDWAPNFCaAdN6ANoCEdAqoTI9V3ljnV9lChoBkdAnM+BsQ/X5GgHTegDaAhHQKqPGxPfsNV1fZQoaAZHQKBc5q1w5vNoB03oA2gIR0Cqj2SwfQrudX2UKGgGR0CgmRqR+z+naAdN6ANoCEdAqo9wNgBtDXV9lChoBkdAnzfiZOSGJ2gHTegDaAhHQKqRIsjmjj91fZQoaAZHQJ5jmJAMUh5oB03oA2gIR0Cqm080k4WDdX2UKGgGR0CdbKnXd0q6aAdN6ANoCEdAqpuTjPv8ZXV9lChoBkdAnS6YbGWD6GgHTegDaAhHQKqbnsLORkp1fZQoaAZHQJoG16zE74loB03oA2gIR0CqnVT3IuGsdX2UKGgGR0CfG7x2B8QaaAdN6ANoCEdAqqdi0D2alXV9lChoBkdAoOtSguh9LGgHTegDaAhHQKqnq8Swnpl1fZQoaAZHQJ8qcWi1y/9oB03oA2gIR0Cqp7eLvTgEdX2UKGgGR0CaUcLxI8QqaAdN6ANoCEdAqqllhw2l23V9lChoBkdAlLsd0JWvKWgHTSIDaAhHQKqxoEdvKlp1fZQoaAZHQJnyPHeaa1FoB03oA2gIR0Cqs8ExIre7dX2UKGgGR0Cb6AmseXAuaAdN6ANoCEdAqrQITIvJzXV9lChoBkdAmdQ1FUhmoWgHTegDaAhHQKq1v5Qgs9V1fZQoaAZHQJk5rBbfP5ZoB03oA2gIR0CqvcuskpqidX2UKGgGR0CTFqzwMH8kaAdN6ANoCEdAqr/tX7tRenV9lChoBkdAmwzs+mm+CmgHTegDaAhHQKrAOmEXcg11fZQoaAZHQKE+2KfnOjZoB03oA2gIR0CqwfxxkupTdX2UKGgGR0CbW5MYdhiLaAdN6ANoCEdAqsoQa3qiXnV9lChoBkdAnh519ORDC2gHTegDaAhHQKrMRERaouR1fZQoaAZHQKBFW36Q/5doB03oA2gIR0CqzInDJlredX2UKGgGR0CW5SBrvb48aAdN6ANoCEdAqs5I31jAi3V9lChoBkdAla3cPvrnkmgHTegDaAhHQKrWWE9Mbm51fZQoaAZHQJzvWkBS1mdoB03oA2gIR0Cq2HluejEfdX2UKGgGR0CbRjOIInjRaAdN6ANoCEdAqtjEjVx0dXV9lChoBkdAnS47y+YdAGgHTegDaAhHQKraetAcDKZ1fZQoaAZHQJ4/hhDw6QxoB03oA2gIR0Cq4ptQj2SMdX2UKGgGR0CSPdbn5i3HaAdN6ANoCEdAquSpOP/7znV9lChoBkdAm1RB1LamGmgHTegDaAhHQKrk8WuX/o91fZQoaAZHQJV2RCb+cYtoB03oA2gIR0Cq5qx2r4nGdX2UKGgGR0CVTH2OhkAhaAdN6ANoCEdAqu7Da24NJHV9lChoBkdAloULeqJdjWgHTegDaAhHQKrwzs3Q2Mt1fZQoaAZHQJosu7ZnL7poB03oA2gIR0Cq8Rmt6ol2dX2UKGgGR0CYFIjXWe6JaAdN6ANoCEdAqvLbSmZVn3V9lChoBkdAoEruGTLW7WgHTegDaAhHQKr62Xv6TGJ1fZQoaAZHQJ+VPvphWo5oB03oA2gIR0Cq/PB5X2dvdX2UKGgGR0CePf3m3fALaAdN6ANoCEdAqv01kUbkwXV9lChoBkdAnZXpD7ZWaWgHTegDaAhHQKr+2ya/h2p1fZQoaAZHQJaQL8KohpxoB03oA2gIR0CrBq2pIczZdX2UKGgGR0CWi7f8MuvmaAdN6ANoCEdAqwjcOy3TeHV9lChoBkdAmf+FefI0ZWgHTegDaAhHQKsJIGvfTCt1fZQoaAZHQJpdNo6CDmNoB03oA2gIR0CrCtUyYXwcdX2UKGgGR0CaGXNEgGKRaAdN6ANoCEdAqxLE0Jng53V9lChoBkdAoFUjURWcSWgHTegDaAhHQKsU1p8F6iV1fZQoaAZHQJ5yTSgGr0doB03oA2gIR0CrFR9roGILdX2UKGgGR0CXbC2sJY1YaAdN6ANoCEdAqxbVaOgg5nVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b5e32062605d5cac5d9f3fe72e4fc93c79bdf57a32e694002b97e57cd408578
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66f4c9390444fb0a92fbadb415da97987db843af5f469f55bde0392be240cc97
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7effacba1c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7effacba1ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7effacba1d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7effacba1dc0>", "_build": "<function ActorCriticPolicy._build at 0x7effacba1e50>", "forward": "<function ActorCriticPolicy.forward at 0x7effacba1ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7effacba1f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7effacba5040>", "_predict": "<function ActorCriticPolicy._predict at 0x7effacba50d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7effacba5160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7effacba51f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7effacba5280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7effacb9d8a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675029154726900961, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK/PLD9g2CQ/+JUQP4vc5D+KbeY/qR9rPxq4Dj/GATI+CEixviDnYr8lxTm/ZwfJP4qpmDzQYXa+K+FPv1eUDUA6/oY/5DPJvz04vL65iW0/EI8BP19mTMB3BLs+VeaXvYLPnr+14ts++wTav0uJcD+72Ew9jRgbvtyd/T75a5c/4gJjP8YiPT8Aam07mVmBv3ChAz+x83m/78hfv4ITij+9NQQ+lKpvvg9cYj9nA16+MJKaPzCMar+3QCa9UVlVPgSEJ7+7DIA9/3PGPimOyr6Cz56/teLbPvsE2r+aOoi/In5ivrBi7T0QbxE/jLZaPzLUJ74KBY+/Fvk+P/R8zz3VBCw/Nbl5vwL+KD27/+a/qyaTvw/pLT8w/zm/lkqRPiPeir1W3Cg/A1EjP4VLe72Uc9o9xAtKP0iPkL4mEnM/gs+ev+EFFcBrTBY/mjqIv2ScRD+pUGA+NyUVP+v6pD3bgh4+d14HP8PQ5z6XNy6/WIxAP0ZRKL/S6A1A9l4hv8VlnL+vjGE/pNJ6v4nfCsDykxI/qvtaP+MVGz5S3R4/HiUav0GuKj4Af0G/qOYUP3hVTj+14ts+a0wWP5o6iL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABQGgO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8zL6OwAAAACdCOS/AAAAALftrb0AAAAAtrcAQAAAAADNH2s6AAAAAKiI4z8AAAAA6m9guwAAAAC4nfO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAumKetgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLTAML0AAAAAwdjvvwAAAADf+8C9AAAAAPmb9z8AAAAAEMGYvQAAAADHieo/AAAAAKeZnj0AAAAAILPwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMm5qbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIABhAY+AAAAANxO4L8AAAAAfgwHvgAAAAC+RvI/AAAAAEtefr0AAAAAMR0AQAAAAABAadK9AAAAALrF278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSunM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAq4CevQAAAABdweC/AAAAAOBBjzwAAAAAR4rhPwAAAACwk4k9AAAAAO3KAEAAAAAAqByrOwAAAABx+/q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJj0iQvHtF+MAWyUTegDjAF0lEdAqfA5Ec81XXV9lChoBkdAmN61XJYDDGgHTegDaAhHQKnwgUDdP+J1fZQoaAZHQIRsbx9XtBxoB03oA2gIR0Cp8I0gr6LwdX2UKGgGR0CdgX6KLsKLaAdN6ANoCEdAqfJPIbOu73V9lChoBkdAnZlhl+Vkc2gHTegDaAhHQKn8pD8+A3F1fZQoaAZHQJ2ZTmV7hNxoB03oA2gIR0Cp/PCyprDZdX2UKGgGR0CbwKVy3kPuaAdN6ANoCEdAqfz8QmNR33V9lChoBkdAmC0R7Z39rGgHTegDaAhHQKn+sYMvysl1fZQoaAZHQJ7V4sK9f1JoB03oA2gIR0CqCNrd30PIdX2UKGgGR0CXwBU1yeZoaAdN6ANoCEdAqgkhNCZ4OnV9lChoBkdAnQGIuGsV+WgHTegDaAhHQKoJLOKO1fF1fZQoaAZHQKCyxS8an75oB03oA2gIR0CqCuN/4IrwdX2UKGgGR0CfTAofCAMEaAdN6ANoCEdAqhUlnAZbZHV9lChoBkdAnnKeMqBmPGgHTegDaAhHQKoVbomG/N91fZQoaAZHQKBBepH7P6doB03oA2gIR0CqFXrDQ7cPdX2UKGgGR0CgNnmKZUkwaAdN6ANoCEdAqhcsuL74z3V9lChoBkdAn7Cd6LOzIGgHTegDaAhHQKohXXIU8FJ1fZQoaAZHQKA3hcW0qpdoB03oA2gIR0CqIaTK9wm3dX2UKGgGR0CgN4VRLsa9aAdN6ANoCEdAqiGwKx9oe3V9lChoBkdAoIf2nn+yaGgHTegDaAhHQKojZBLPD511fZQoaAZHQJ41Z0OmR/5oB03oA2gIR0CqLZkjxCpndX2UKGgGR0CfLCCMPz4DaAdN6ANoCEdAqi3jZUT+N3V9lChoBkdAnKQRujynUGgHTegDaAhHQKot7vRZ2ZB1fZQoaAZHQKCQ8nMt9QZoB03oA2gIR0CqL57mEGqxdX2UKGgGR0CUxVw0O3DvaAdN6ANoCEdAqjmu4wyqMnV9lChoBkdAmqsLxy4nW2gHTegDaAhHQKo58uGKyfN1fZQoaAZHQJ5pivzOHFhoB03oA2gIR0CqOf4f4h2XdX2UKGgGR0CZ7XJmukk9aAdN6ANoCEdAqjuynJkoW3V9lChoBkdAmfdgw9JSSGgHTegDaAhHQKpF66e5Fw11fZQoaAZHQJfEizPa+N9oB03oA2gIR0CqRjKE384xdX2UKGgGR0Cbs8kMkQf7aAdN6ANoCEdAqkY+cQRPGnV9lChoBkdAgmAERradtmgHTegDaAhHQKpH9bhWHUN1fZQoaAZHQKDEYPkJa7poB03oA2gIR0CqUjksasIWdX2UKGgGR0CTzCGdI5HVaAdN6ANoCEdAqlKEHMUypXV9lChoBkdAnK/8JUo8ZGgHTegDaAhHQKpSj63y7PJ1fZQoaAZHQJ+1fdIoVmBoB03oA2gIR0CqVDPlMh5gdX2UKGgGR0Cg1p2ll9SdaAdN6ANoCEdAql54+fRNRHV9lChoBkdAnZrAnQY1pGgHTegDaAhHQKpewotL+P11fZQoaAZHQKDLUb1AZ89oB03oA2gIR0CqXs4BFNL2dX2UKGgGR0CfNlEFnqVyaAdN6ANoCEdAqmCO+0w8GXV9lChoBkdAkol65LAYYWgHTegDaAhHQKpqlJrcj7h1fZQoaAZHQKAq6qQRwqBoB03oA2gIR0Cqatel0o0AdX2UKGgGR0CeuEtzS1E3aAdN6ANoCEdAqmrjO7g883V9lChoBkdAoD7PwqiGnGgHTegDaAhHQKpsjmU4aP11fZQoaAZHQJePpGtp22ZoB03oA2gIR0CqdqpGe+VUdX2UKGgGR0CbJBeJ53TvaAdN6ANoCEdAqnbyiAUcn3V9lChoBkdAnmcXYQJ5V2gHTegDaAhHQKp2/gvUSZl1fZQoaAZHQJdLdFWn0kJoB03oA2gIR0CqeLgBLf1pdX2UKGgGR0CgX/65Gz8haAdN6ANoCEdAqoLDLyMDOnV9lChoBkdAoBudUIcBEWgHTegDaAhHQKqDBzJ6po91fZQoaAZHQJzql2MbWEtoB03oA2gIR0CqgxInjQzDdX2UKGgGR0CevDWAPNFCaAdN6ANoCEdAqoTI9V3ljnV9lChoBkdAnM+BsQ/X5GgHTegDaAhHQKqPGxPfsNV1fZQoaAZHQKBc5q1w5vNoB03oA2gIR0Cqj2SwfQrudX2UKGgGR0CgmRqR+z+naAdN6ANoCEdAqo9wNgBtDXV9lChoBkdAnzfiZOSGJ2gHTegDaAhHQKqRIsjmjj91fZQoaAZHQJ5jmJAMUh5oB03oA2gIR0Cqm080k4WDdX2UKGgGR0CdbKnXd0q6aAdN6ANoCEdAqpuTjPv8ZXV9lChoBkdAnS6YbGWD6GgHTegDaAhHQKqbnsLORkp1fZQoaAZHQJoG16zE74loB03oA2gIR0CqnVT3IuGsdX2UKGgGR0CfG7x2B8QaaAdN6ANoCEdAqqdi0D2alXV9lChoBkdAoOtSguh9LGgHTegDaAhHQKqnq8Swnpl1fZQoaAZHQJ8qcWi1y/9oB03oA2gIR0Cqp7eLvTgEdX2UKGgGR0CaUcLxI8QqaAdN6ANoCEdAqqllhw2l23V9lChoBkdAlLsd0JWvKWgHTSIDaAhHQKqxoEdvKlp1fZQoaAZHQJnyPHeaa1FoB03oA2gIR0Cqs8ExIre7dX2UKGgGR0Cb6AmseXAuaAdN6ANoCEdAqrQITIvJzXV9lChoBkdAmdQ1FUhmoWgHTegDaAhHQKq1v5Qgs9V1fZQoaAZHQJk5rBbfP5ZoB03oA2gIR0CqvcuskpqidX2UKGgGR0CTFqzwMH8kaAdN6ANoCEdAqr/tX7tRenV9lChoBkdAmwzs+mm+CmgHTegDaAhHQKrAOmEXcg11fZQoaAZHQKE+2KfnOjZoB03oA2gIR0CqwfxxkupTdX2UKGgGR0CbW5MYdhiLaAdN6ANoCEdAqsoQa3qiXnV9lChoBkdAnh519ORDC2gHTegDaAhHQKrMRERaouR1fZQoaAZHQKBFW36Q/5doB03oA2gIR0CqzInDJlredX2UKGgGR0CW5SBrvb48aAdN6ANoCEdAqs5I31jAi3V9lChoBkdAla3cPvrnkmgHTegDaAhHQKrWWE9Mbm51fZQoaAZHQJzvWkBS1mdoB03oA2gIR0Cq2HluejEfdX2UKGgGR0CbRjOIInjRaAdN6ANoCEdAqtjEjVx0dXV9lChoBkdAnS47y+YdAGgHTegDaAhHQKraetAcDKZ1fZQoaAZHQJ4/hhDw6QxoB03oA2gIR0Cq4ptQj2SMdX2UKGgGR0CSPdbn5i3HaAdN6ANoCEdAquSpOP/7znV9lChoBkdAm1RB1LamGmgHTegDaAhHQKrk8WuX/o91fZQoaAZHQJV2RCb+cYtoB03oA2gIR0Cq5qx2r4nGdX2UKGgGR0CVTH2OhkAhaAdN6ANoCEdAqu7Da24NJHV9lChoBkdAloULeqJdjWgHTegDaAhHQKrwzs3Q2Mt1fZQoaAZHQJosu7ZnL7poB03oA2gIR0Cq8Rmt6ol2dX2UKGgGR0CYFIjXWe6JaAdN6ANoCEdAqvLbSmZVn3V9lChoBkdAoEruGTLW7WgHTegDaAhHQKr62Xv6TGJ1fZQoaAZHQJ+VPvphWo5oB03oA2gIR0Cq/PB5X2dvdX2UKGgGR0CePf3m3fALaAdN6ANoCEdAqv01kUbkwXV9lChoBkdAnZXpD7ZWaWgHTegDaAhHQKr+2ya/h2p1fZQoaAZHQJaQL8KohpxoB03oA2gIR0CrBq2pIczZdX2UKGgGR0CWi7f8MuvmaAdN6ANoCEdAqwjcOy3TeHV9lChoBkdAmf+FefI0ZWgHTegDaAhHQKsJIGvfTCt1fZQoaAZHQJpdNo6CDmNoB03oA2gIR0CrCtUyYXwcdX2UKGgGR0CaGXNEgGKRaAdN6ANoCEdAqxLE0Jng53V9lChoBkdAoFUjURWcSWgHTegDaAhHQKsU1p8F6iV1fZQoaAZHQJ5yTSgGr0doB03oA2gIR0CrFR9roGILdX2UKGgGR0CXbC2sJY1YaAdN6ANoCEdAqxbVaOgg5nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cb33557e6a15da48e57b798323fa93e373853ba57b45415b62a26bfefcd61c3
3
+ size 1112173
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1874.809388019255, "std_reward": 215.82987021434187, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T22:55:13.869208"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9623aef55f7c63a8dd8a648745d1554f8c6e7befe8859ae08859a7f794a8b4
3
+ size 2136