pabloyesteb commited on
Commit
a78d769
1 Parent(s): 9c69dce

Unit 1 push.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.81 +/- 24.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efbbebee310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efbbebee3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efbbebee430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efbbebee4c0>", "_build": "<function ActorCriticPolicy._build at 0x7efbbebee550>", "forward": "<function ActorCriticPolicy.forward at 0x7efbbebee5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efbbebee670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efbbebee700>", "_predict": "<function ActorCriticPolicy._predict at 0x7efbbebee790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efbbebee820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efbbebee8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efbbebee940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efbbebef3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680606184147528895, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbIQL1XNxg8Kl5TPstUBr60egk9aIr5uwAAAAAAAAAAa9vBvuhx9j429YY+Cwlwvs0vir1W8hI8AAAAAAAAAAAd4YW+lCkxvdzyxLu7e1u6zlqbPimwHjsAAIA/AACAP6YyZb7TX4k/NkWhvjts6b7zPiu+lM8LPQAAAAAAAAAATSbNvcUMZD61SZM9LFI8vjiXRz3O/Eu9AAAAAAAAAABmBZW8KaBJukJA5Ttu6PCwrvMAuugH27MAAIA/AACAP836Yz5w+SE/HTByvsm2x757lHA9ZJQCvgAAAAAAAAAAABQgvEwXsz8gOfq+V52MvtYeGzz595k9AAAAAAAAAADq2aq+0XTrPntdxj2jr7O+RFQ2visVbT0AAAAAAAAAAJrhZLvX8306vU9Qu5s5hL1gQG48LaJrvgAAAAAAAIA/Zo5mvXuQiLo+xYQ8/UUkPfgcGzv0xQo+AACAPwAAgD8zHmu9w6lhug0sADslapw24X1RO4aQlTUAAIA/AAAAALqWAj5bmqo/poicPqGRv77fJlI+/zcvPgAAAAAAAAAADUGdPXSvqbyyQko9S4pMuwY+Fb6WBCG8AACAPwAAgD/NlsG86tgyPsZ7ab3SBYK+oF7JvQaLcj0AAAAAAAAAAJqhwDzsR9u7lf3NPbFv5zwryCC9qMy/PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbJbLRufXcUCUhpRSlIwBbJRNBgGMAXSUR0CVls92X9iudX2UKGgGaAloD0MIPWGJBxSncUCUhpRSlGgVTTYBaBZHQJWW2curZJ11fZQoaAZoCWgPQwjGwaVjjjNwQJSGlFKUaBVN1QFoFkdAlZeChN/OMXV9lChoBmgJaA9DCNTRcTWy1UxAlIaUUpRoFUviaBZHQJWYXlMh5gR1fZQoaAZoCWgPQwj9n8N8OfBxQJSGlFKUaBVNMAFoFkdAlZh1eruIAXV9lChoBmgJaA9DCN2yQ/zDC3BAlIaUUpRoFU1sAWgWR0CVmKFpwjt5dX2UKGgGaAloD0MIZcVwdYASb0CUhpRSlGgVTSkBaBZHQJWY9ygf2bp1fZQoaAZoCWgPQwhl3xXB/ydtQJSGlFKUaBVNIQFoFkdAlZmDX8O09nV9lChoBmgJaA9DCLvQXKcRr3FAlIaUUpRoFU0ZAWgWR0CVmobR4QjEdX2UKGgGaAloD0MInKIjufwMbkCUhpRSlGgVTVsBaBZHQJWblSl3yI51fZQoaAZoCWgPQwhBSYEFsGhwQJSGlFKUaBVNNwFoFkdAlZwcf7rLQ3V9lChoBmgJaA9DCNxj6UPXQXFAlIaUUpRoFU0gAWgWR0CVnExqO939dX2UKGgGaAloD0MIvvVhvdHVbECUhpRSlGgVTRMBaBZHQJWcWJWNm191fZQoaAZoCWgPQwivIqMDkitwQJSGlFKUaBVNCwFoFkdAlZ2zSkTHsHV9lChoBmgJaA9DCMpskEkGxHJAlIaUUpRoFU0HAWgWR0CVnmDMNc4YdX2UKGgGaAloD0MInN7F+/Fab0CUhpRSlGgVTQsBaBZHQJWeeCXhOxl1fZQoaAZoCWgPQwjuXu6To+RvQJSGlFKUaBVNFgFoFkdAlZ91kxyn1nV9lChoBmgJaA9DCLA6cqSzPHFAlIaUUpRoFU1IAWgWR0CVn7Heaa1DdX2UKGgGaAloD0MIAB3mywvdcECUhpRSlGgVTSQBaBZHQJWgxkQPI4l1fZQoaAZoCWgPQwg1fuGVpO9tQJSGlFKUaBVNKwFoFkdAlaDnYQJ5V3V9lChoBmgJaA9DCHUhVn/EmHBAlIaUUpRoFU3JAWgWR0CVoRiD/VAidX2UKGgGaAloD0MIrWu0HOhJbECUhpRSlGgVTSABaBZHQJWhMG4ZuQ91fZQoaAZoCWgPQwhPBHEejiFxQJSGlFKUaBVNCwFoFkdAlaE4h6jWTXV9lChoBmgJaA9DCMy1aAHaLm9AlIaUUpRoFU03AWgWR0CVoXRuTA32dX2UKGgGaAloD0MINqypLEpCcUCUhpRSlGgVTSYBaBZHQJWi0mD15B11fZQoaAZoCWgPQwi6oSk7fe5tQJSGlFKUaBVNEAFoFkdAlaO8s+V1OnV9lChoBmgJaA9DCB4y5UPQB3BAlIaUUpRoFU0yAWgWR0CVpCtcv/R3dX2UKGgGaAloD0MIlzyelp/IbkCUhpRSlGgVTRwBaBZHQJWkQS7GvOh1fZQoaAZoCWgPQwg6eZEJOM9wQJSGlFKUaBVNIgFoFkdAlaRcSkCV8nV9lChoBmgJaA9DCB5wXTEja25AlIaUUpRoFU0nAWgWR0CVpbrP+n63dX2UKGgGaAloD0MIrimQ2dmAb0CUhpRSlGgVTRsBaBZHQJWmBaLXL/11fZQoaAZoCWgPQwgP1CmP7uxwQJSGlFKUaBVNHAFoFkdAlaYntrsSkHV9lChoBmgJaA9DCNKNsKiIwG9AlIaUUpRoFU0TAWgWR0CVpyBkqc3EdX2UKGgGaAloD0MIyRzLuyrEcECUhpRSlGgVTR4BaBZHQJWnNyEL6UJ1fZQoaAZoCWgPQwh5AfbRKXByQJSGlFKUaBVNFQFoFkdAlahf8dgfEHV9lChoBmgJaA9DCPCnxks3j29AlIaUUpRoFU0jAWgWR0CVqK4Ia99MdX2UKGgGaAloD0MIMCk+PqElckCUhpRSlGgVTRoBaBZHQJWo2T/yXld1fZQoaAZoCWgPQwj1EfjDTxhyQJSGlFKUaBVNMgFoFkdAlalq33Hq/3V9lChoBmgJaA9DCFSNXg3QUm9AlIaUUpRoFU0xAWgWR0CVqcK9PDYRdX2UKGgGaAloD0MINPeQ8H37cECUhpRSlGgVTTkBaBZHQJWroDJU5uJ1fZQoaAZoCWgPQwgAAtaqXWdzQJSGlFKUaBVNCQFoFkdAlautP1tfonV9lChoBmgJaA9DCDnRrkLKLmxAlIaUUpRoFU0zAWgWR0CVrHYeDFqBdX2UKGgGaAloD0MIdCSX/1CbckCUhpRSlGgVTSEBaBZHQJWsgoH9m6J1fZQoaAZoCWgPQwh6bMuAsydvQJSGlFKUaBVNJQFoFkdAlay+6d1+zHV9lChoBmgJaA9DCHQMyF5vCW5AlIaUUpRoFUv7aBZHQJWtb3dsSCh1fZQoaAZoCWgPQwhiFASPb2twQJSGlFKUaBVNCAFoFkdAla2z2OAAhnV9lChoBmgJaA9DCOG4jJsa429AlIaUUpRoFU0gAWgWR0CVrhtzjm0WdX2UKGgGaAloD0MIgsZMot6FbkCUhpRSlGgVTQEBaBZHQJWusZKnNxF1fZQoaAZoCWgPQwhiZTTyuYBwQJSGlFKUaBVNLAFoFkdAla/p1V5rxnV9lChoBmgJaA9DCEmD29rCDXNAlIaUUpRoFU0YAWgWR0CVxtDL8rI6dX2UKGgGaAloD0MIbHh6pazAcECUhpRSlGgVTSgBaBZHQJXHoogFHJ91fZQoaAZoCWgPQwixGHWt/Q5xQJSGlFKUaBVNGAFoFkdAlcf34TK1X3V9lChoBmgJaA9DCET67esAfXFAlIaUUpRoFU0UAWgWR0CVyDwgkka/dX2UKGgGaAloD0MIzCbAsHzYcECUhpRSlGgVTUABaBZHQJXIisgdOqN1fZQoaAZoCWgPQwjfbkkOWMJuQJSGlFKUaBVL/mgWR0CVyW+fh/AkdX2UKGgGaAloD0MI6WFodXI9UkCUhpRSlGgVS9ZoFkdAlcoKGDcuanV9lChoBmgJaA9DCM8Tz9nCznFAlIaUUpRoFU0iAWgWR0CVymqLS/j9dX2UKGgGaAloD0MIK4VALvEYb0CUhpRSlGgVTQ8BaBZHQJXK+gM+eOJ1fZQoaAZoCWgPQwjAywwbZZNwQJSGlFKUaBVNKwFoFkdAlcuI9cKPXHV9lChoBmgJaA9DCHL6er4mbHBAlIaUUpRoFU0xAWgWR0CVy649X9zfdX2UKGgGaAloD0MIqAGDpE+hb0CUhpRSlGgVTRABaBZHQJXMVs3yZrp1fZQoaAZoCWgPQwh9Ik+SLlByQJSGlFKUaBVNIgFoFkdAlcxzXjENv3V9lChoBmgJaA9DCF2j5UAPXGxAlIaUUpRoFU0KAWgWR0CVzK1b7j1gdX2UKGgGaAloD0MIUprN4zAAc0CUhpRSlGgVTRYBaBZHQJXN/bj94u91fZQoaAZoCWgPQwiM+E7MeqpyQJSGlFKUaBVNEwFoFkdAlc6GhAWznnV9lChoBmgJaA9DCFNCsKredm5AlIaUUpRoFU0FAWgWR0CV0RophF3IdX2UKGgGaAloD0MIMbJkjqUNcECUhpRSlGgVTT0BaBZHQJXRPkLhJiB1fZQoaAZoCWgPQwiH4SNiCp5xQJSGlFKUaBVNQAFoFkdAldGktqYZ23V9lChoBmgJaA9DCIAsRIfAKnFAlIaUUpRoFU03AWgWR0CV0bVX3g1ndX2UKGgGaAloD0MInDQNiuYocUCUhpRSlGgVTRwBaBZHQJXShEKE3851fZQoaAZoCWgPQwgpBHKJ43VxQJSGlFKUaBVL+2gWR0CV00hqTKT0dX2UKGgGaAloD0MI9+l4zACbcECUhpRSlGgVTR0BaBZHQJXTmxzJZGN1fZQoaAZoCWgPQwgBUMWNm/pxQJSGlFKUaBVNPQFoFkdAldQG4EwFknV9lChoBmgJaA9DCNeEtMZgAHBAlIaUUpRoFU0fAWgWR0CV1EUm2LHddX2UKGgGaAloD0MIW18ktOXTYECUhpRSlGgVTegDaBZHQJXUbhYNiH91fZQoaAZoCWgPQwi0HykigztwQJSGlFKUaBVNLAFoFkdAldVxP9DQaHV9lChoBmgJaA9DCMgMVMY/9HJAlIaUUpRoFU0uAWgWR0CV1eBCD28JdX2UKGgGaAloD0MIAg02dR69bECUhpRSlGgVTQgBaBZHQJXW/GKhtch1fZQoaAZoCWgPQwibBG9IIzRyQJSGlFKUaBVNJQFoFkdAlddMbaRISXV9lChoBmgJaA9DCKIpO/2ggXFAlIaUUpRoFU2TAWgWR0CV2MziS7oTdX2UKGgGaAloD0MIstR6v1ECc0CUhpRSlGgVS/ZoFkdAldlKFM7EHnV9lChoBmgJaA9DCA37PbFOrnJAlIaUUpRoFU0KAWgWR0CV2VqNp/PPdX2UKGgGaAloD0MID39N1qiHb0CUhpRSlGgVTRwBaBZHQJXaaeZof0V1fZQoaAZoCWgPQwj+R6ZDZ+5xQJSGlFKUaBVL4WgWR0CV2ya4MF2WdX2UKGgGaAloD0MIBdzz/CkjckCUhpRSlGgVTSIBaBZHQJXbhlFtsN51fZQoaAZoCWgPQwjDgvsBD8ZvQJSGlFKUaBVNYAFoFkdAldwy6cy31HV9lChoBmgJaA9DCAZlGk0uj3FAlIaUUpRoFU0oAWgWR0CV3GikwevIdX2UKGgGaAloD0MIdOygEheeckCUhpRSlGgVTRgBaBZHQJXdDR6Ww/x1fZQoaAZoCWgPQwj1FDlE3IdwQJSGlFKUaBVNOAFoFkdAld0xsZYPoXV9lChoBmgJaA9DCMQHdvzXuHJAlIaUUpRoFU0sAWgWR0CV3TvNNahYdX2UKGgGaAloD0MIqI3qdCBOcECUhpRSlGgVTR4BaBZHQJXeJdhRZU11fZQoaAZoCWgPQwiob5nTZWZyQJSGlFKUaBVNJgFoFkdAld7Dgdfb9XV9lChoBmgJaA9DCGggls2cYnJAlIaUUpRoFU0iAWgWR0CV3+GQ0XP7dX2UKGgGaAloD0MIUIpW7oU0bkCUhpRSlGgVTTQBaBZHQJXgI4//vOR1fZQoaAZoCWgPQwgn3ZbIxYtxQJSGlFKUaBVNEwFoFkdAleDY5ggHNXV9lChoBmgJaA9DCLfSa7MxnnBAlIaUUpRoFU0ZAWgWR0CV4XgUlAu7dX2UKGgGaAloD0MIUu3T8RiOckCUhpRSlGgVTSIBaBZHQJXhzvUjLSx1fZQoaAZoCWgPQwhVh9wMd5BwQJSGlFKUaBVNNAFoFkdAleNhF3IMjXV9lChoBmgJaA9DCBUfn5BdKnJAlIaUUpRoFU0nAWgWR0CV471b7j1gdX2UKGgGaAloD0MIOMDMdzBxcUCUhpRSlGgVTSEBaBZHQJXk2XeFcpt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81ed076afdace0c514e8c63cb3d3e294631fe5cba85a57c9c1eaa7919f0372bb
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efbbebee310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efbbebee3a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efbbebee430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efbbebee4c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efbbebee550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efbbebee5e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efbbebee670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efbbebee700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efbbebee790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efbbebee820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efbbebee8b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efbbebee940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efbbebef3c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680606184147528895,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbIQL1XNxg8Kl5TPstUBr60egk9aIr5uwAAAAAAAAAAa9vBvuhx9j429YY+Cwlwvs0vir1W8hI8AAAAAAAAAAAd4YW+lCkxvdzyxLu7e1u6zlqbPimwHjsAAIA/AACAP6YyZb7TX4k/NkWhvjts6b7zPiu+lM8LPQAAAAAAAAAATSbNvcUMZD61SZM9LFI8vjiXRz3O/Eu9AAAAAAAAAABmBZW8KaBJukJA5Ttu6PCwrvMAuugH27MAAIA/AACAP836Yz5w+SE/HTByvsm2x757lHA9ZJQCvgAAAAAAAAAAABQgvEwXsz8gOfq+V52MvtYeGzz595k9AAAAAAAAAADq2aq+0XTrPntdxj2jr7O+RFQ2visVbT0AAAAAAAAAAJrhZLvX8306vU9Qu5s5hL1gQG48LaJrvgAAAAAAAIA/Zo5mvXuQiLo+xYQ8/UUkPfgcGzv0xQo+AACAPwAAgD8zHmu9w6lhug0sADslapw24X1RO4aQlTUAAIA/AAAAALqWAj5bmqo/poicPqGRv77fJlI+/zcvPgAAAAAAAAAADUGdPXSvqbyyQko9S4pMuwY+Fb6WBCG8AACAPwAAgD/NlsG86tgyPsZ7ab3SBYK+oF7JvQaLcj0AAAAAAAAAAJqhwDzsR9u7lf3NPbFv5zwryCC9qMy/PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbJbLRufXcUCUhpRSlIwBbJRNBgGMAXSUR0CVls92X9iudX2UKGgGaAloD0MIPWGJBxSncUCUhpRSlGgVTTYBaBZHQJWW2curZJ11fZQoaAZoCWgPQwjGwaVjjjNwQJSGlFKUaBVN1QFoFkdAlZeChN/OMXV9lChoBmgJaA9DCNTRcTWy1UxAlIaUUpRoFUviaBZHQJWYXlMh5gR1fZQoaAZoCWgPQwj9n8N8OfBxQJSGlFKUaBVNMAFoFkdAlZh1eruIAXV9lChoBmgJaA9DCN2yQ/zDC3BAlIaUUpRoFU1sAWgWR0CVmKFpwjt5dX2UKGgGaAloD0MIZcVwdYASb0CUhpRSlGgVTSkBaBZHQJWY9ygf2bp1fZQoaAZoCWgPQwhl3xXB/ydtQJSGlFKUaBVNIQFoFkdAlZmDX8O09nV9lChoBmgJaA9DCLvQXKcRr3FAlIaUUpRoFU0ZAWgWR0CVmobR4QjEdX2UKGgGaAloD0MInKIjufwMbkCUhpRSlGgVTVsBaBZHQJWblSl3yI51fZQoaAZoCWgPQwhBSYEFsGhwQJSGlFKUaBVNNwFoFkdAlZwcf7rLQ3V9lChoBmgJaA9DCNxj6UPXQXFAlIaUUpRoFU0gAWgWR0CVnExqO939dX2UKGgGaAloD0MIvvVhvdHVbECUhpRSlGgVTRMBaBZHQJWcWJWNm191fZQoaAZoCWgPQwivIqMDkitwQJSGlFKUaBVNCwFoFkdAlZ2zSkTHsHV9lChoBmgJaA9DCMpskEkGxHJAlIaUUpRoFU0HAWgWR0CVnmDMNc4YdX2UKGgGaAloD0MInN7F+/Fab0CUhpRSlGgVTQsBaBZHQJWeeCXhOxl1fZQoaAZoCWgPQwjuXu6To+RvQJSGlFKUaBVNFgFoFkdAlZ91kxyn1nV9lChoBmgJaA9DCLA6cqSzPHFAlIaUUpRoFU1IAWgWR0CVn7Heaa1DdX2UKGgGaAloD0MIAB3mywvdcECUhpRSlGgVTSQBaBZHQJWgxkQPI4l1fZQoaAZoCWgPQwg1fuGVpO9tQJSGlFKUaBVNKwFoFkdAlaDnYQJ5V3V9lChoBmgJaA9DCHUhVn/EmHBAlIaUUpRoFU3JAWgWR0CVoRiD/VAidX2UKGgGaAloD0MIrWu0HOhJbECUhpRSlGgVTSABaBZHQJWhMG4ZuQ91fZQoaAZoCWgPQwhPBHEejiFxQJSGlFKUaBVNCwFoFkdAlaE4h6jWTXV9lChoBmgJaA9DCMy1aAHaLm9AlIaUUpRoFU03AWgWR0CVoXRuTA32dX2UKGgGaAloD0MINqypLEpCcUCUhpRSlGgVTSYBaBZHQJWi0mD15B11fZQoaAZoCWgPQwi6oSk7fe5tQJSGlFKUaBVNEAFoFkdAlaO8s+V1OnV9lChoBmgJaA9DCB4y5UPQB3BAlIaUUpRoFU0yAWgWR0CVpCtcv/R3dX2UKGgGaAloD0MIlzyelp/IbkCUhpRSlGgVTRwBaBZHQJWkQS7GvOh1fZQoaAZoCWgPQwg6eZEJOM9wQJSGlFKUaBVNIgFoFkdAlaRcSkCV8nV9lChoBmgJaA9DCB5wXTEja25AlIaUUpRoFU0nAWgWR0CVpbrP+n63dX2UKGgGaAloD0MIrimQ2dmAb0CUhpRSlGgVTRsBaBZHQJWmBaLXL/11fZQoaAZoCWgPQwgP1CmP7uxwQJSGlFKUaBVNHAFoFkdAlaYntrsSkHV9lChoBmgJaA9DCNKNsKiIwG9AlIaUUpRoFU0TAWgWR0CVpyBkqc3EdX2UKGgGaAloD0MIyRzLuyrEcECUhpRSlGgVTR4BaBZHQJWnNyEL6UJ1fZQoaAZoCWgPQwh5AfbRKXByQJSGlFKUaBVNFQFoFkdAlahf8dgfEHV9lChoBmgJaA9DCPCnxks3j29AlIaUUpRoFU0jAWgWR0CVqK4Ia99MdX2UKGgGaAloD0MIMCk+PqElckCUhpRSlGgVTRoBaBZHQJWo2T/yXld1fZQoaAZoCWgPQwj1EfjDTxhyQJSGlFKUaBVNMgFoFkdAlalq33Hq/3V9lChoBmgJaA9DCFSNXg3QUm9AlIaUUpRoFU0xAWgWR0CVqcK9PDYRdX2UKGgGaAloD0MINPeQ8H37cECUhpRSlGgVTTkBaBZHQJWroDJU5uJ1fZQoaAZoCWgPQwgAAtaqXWdzQJSGlFKUaBVNCQFoFkdAlautP1tfonV9lChoBmgJaA9DCDnRrkLKLmxAlIaUUpRoFU0zAWgWR0CVrHYeDFqBdX2UKGgGaAloD0MIdCSX/1CbckCUhpRSlGgVTSEBaBZHQJWsgoH9m6J1fZQoaAZoCWgPQwh6bMuAsydvQJSGlFKUaBVNJQFoFkdAlay+6d1+zHV9lChoBmgJaA9DCHQMyF5vCW5AlIaUUpRoFUv7aBZHQJWtb3dsSCh1fZQoaAZoCWgPQwhiFASPb2twQJSGlFKUaBVNCAFoFkdAla2z2OAAhnV9lChoBmgJaA9DCOG4jJsa429AlIaUUpRoFU0gAWgWR0CVrhtzjm0WdX2UKGgGaAloD0MIgsZMot6FbkCUhpRSlGgVTQEBaBZHQJWusZKnNxF1fZQoaAZoCWgPQwhiZTTyuYBwQJSGlFKUaBVNLAFoFkdAla/p1V5rxnV9lChoBmgJaA9DCEmD29rCDXNAlIaUUpRoFU0YAWgWR0CVxtDL8rI6dX2UKGgGaAloD0MIbHh6pazAcECUhpRSlGgVTSgBaBZHQJXHoogFHJ91fZQoaAZoCWgPQwixGHWt/Q5xQJSGlFKUaBVNGAFoFkdAlcf34TK1X3V9lChoBmgJaA9DCET67esAfXFAlIaUUpRoFU0UAWgWR0CVyDwgkka/dX2UKGgGaAloD0MIzCbAsHzYcECUhpRSlGgVTUABaBZHQJXIisgdOqN1fZQoaAZoCWgPQwjfbkkOWMJuQJSGlFKUaBVL/mgWR0CVyW+fh/AkdX2UKGgGaAloD0MI6WFodXI9UkCUhpRSlGgVS9ZoFkdAlcoKGDcuanV9lChoBmgJaA9DCM8Tz9nCznFAlIaUUpRoFU0iAWgWR0CVymqLS/j9dX2UKGgGaAloD0MIK4VALvEYb0CUhpRSlGgVTQ8BaBZHQJXK+gM+eOJ1fZQoaAZoCWgPQwjAywwbZZNwQJSGlFKUaBVNKwFoFkdAlcuI9cKPXHV9lChoBmgJaA9DCHL6er4mbHBAlIaUUpRoFU0xAWgWR0CVy649X9zfdX2UKGgGaAloD0MIqAGDpE+hb0CUhpRSlGgVTRABaBZHQJXMVs3yZrp1fZQoaAZoCWgPQwh9Ik+SLlByQJSGlFKUaBVNIgFoFkdAlcxzXjENv3V9lChoBmgJaA9DCF2j5UAPXGxAlIaUUpRoFU0KAWgWR0CVzK1b7j1gdX2UKGgGaAloD0MIUprN4zAAc0CUhpRSlGgVTRYBaBZHQJXN/bj94u91fZQoaAZoCWgPQwiM+E7MeqpyQJSGlFKUaBVNEwFoFkdAlc6GhAWznnV9lChoBmgJaA9DCFNCsKredm5AlIaUUpRoFU0FAWgWR0CV0RophF3IdX2UKGgGaAloD0MIMbJkjqUNcECUhpRSlGgVTT0BaBZHQJXRPkLhJiB1fZQoaAZoCWgPQwiH4SNiCp5xQJSGlFKUaBVNQAFoFkdAldGktqYZ23V9lChoBmgJaA9DCIAsRIfAKnFAlIaUUpRoFU03AWgWR0CV0bVX3g1ndX2UKGgGaAloD0MInDQNiuYocUCUhpRSlGgVTRwBaBZHQJXShEKE3851fZQoaAZoCWgPQwgpBHKJ43VxQJSGlFKUaBVL+2gWR0CV00hqTKT0dX2UKGgGaAloD0MI9+l4zACbcECUhpRSlGgVTR0BaBZHQJXTmxzJZGN1fZQoaAZoCWgPQwgBUMWNm/pxQJSGlFKUaBVNPQFoFkdAldQG4EwFknV9lChoBmgJaA9DCNeEtMZgAHBAlIaUUpRoFU0fAWgWR0CV1EUm2LHddX2UKGgGaAloD0MIW18ktOXTYECUhpRSlGgVTegDaBZHQJXUbhYNiH91fZQoaAZoCWgPQwi0HykigztwQJSGlFKUaBVNLAFoFkdAldVxP9DQaHV9lChoBmgJaA9DCMgMVMY/9HJAlIaUUpRoFU0uAWgWR0CV1eBCD28JdX2UKGgGaAloD0MIAg02dR69bECUhpRSlGgVTQgBaBZHQJXW/GKhtch1fZQoaAZoCWgPQwibBG9IIzRyQJSGlFKUaBVNJQFoFkdAlddMbaRISXV9lChoBmgJaA9DCKIpO/2ggXFAlIaUUpRoFU2TAWgWR0CV2MziS7oTdX2UKGgGaAloD0MIstR6v1ECc0CUhpRSlGgVS/ZoFkdAldlKFM7EHnV9lChoBmgJaA9DCA37PbFOrnJAlIaUUpRoFU0KAWgWR0CV2VqNp/PPdX2UKGgGaAloD0MID39N1qiHb0CUhpRSlGgVTRwBaBZHQJXaaeZof0V1fZQoaAZoCWgPQwj+R6ZDZ+5xQJSGlFKUaBVL4WgWR0CV2ya4MF2WdX2UKGgGaAloD0MIBdzz/CkjckCUhpRSlGgVTSIBaBZHQJXbhlFtsN51fZQoaAZoCWgPQwjDgvsBD8ZvQJSGlFKUaBVNYAFoFkdAldwy6cy31HV9lChoBmgJaA9DCAZlGk0uj3FAlIaUUpRoFU0oAWgWR0CV3GikwevIdX2UKGgGaAloD0MIdOygEheeckCUhpRSlGgVTRgBaBZHQJXdDR6Ww/x1fZQoaAZoCWgPQwj1FDlE3IdwQJSGlFKUaBVNOAFoFkdAld0xsZYPoXV9lChoBmgJaA9DCMQHdvzXuHJAlIaUUpRoFU0sAWgWR0CV3TvNNahYdX2UKGgGaAloD0MIqI3qdCBOcECUhpRSlGgVTR4BaBZHQJXeJdhRZU11fZQoaAZoCWgPQwiob5nTZWZyQJSGlFKUaBVNJgFoFkdAld7Dgdfb9XV9lChoBmgJaA9DCGggls2cYnJAlIaUUpRoFU0iAWgWR0CV3+GQ0XP7dX2UKGgGaAloD0MIUIpW7oU0bkCUhpRSlGgVTTQBaBZHQJXgI4//vOR1fZQoaAZoCWgPQwgn3ZbIxYtxQJSGlFKUaBVNEwFoFkdAleDY5ggHNXV9lChoBmgJaA9DCLfSa7MxnnBAlIaUUpRoFU0ZAWgWR0CV4XgUlAu7dX2UKGgGaAloD0MIUu3T8RiOckCUhpRSlGgVTSIBaBZHQJXhzvUjLSx1fZQoaAZoCWgPQwhVh9wMd5BwQJSGlFKUaBVNNAFoFkdAleNhF3IMjXV9lChoBmgJaA9DCBUfn5BdKnJAlIaUUpRoFU0nAWgWR0CV471b7j1gdX2UKGgGaAloD0MIOMDMdzBxcUCUhpRSlGgVTSEBaBZHQJXk2XeFcpt1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c5c07859de99d650c957687ff1c096c26bae51462f9cde0b8d482554725fcc6
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6261e3cba1fee6c8864847e1fee7a77b436957057cf32d3862fdf13dc1c395f2
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (213 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.81150878458726, "std_reward": 24.54465055440794, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T11:22:43.510546"}