pEpOo commited on
Commit
0fb3555
1 Parent(s): 5f59897

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: The best thing about this is it drowned out the call from the guy angry cause
12
+ he hadn't gotten a tracking number... http://t.co/QYu8grOrQ1
13
+ - text: 'http://t.co/a0v1ybySOD Its the best time of day!! åÊ @Siren_Voice is #liveonstreamate!'
14
+ - text: 16yr old PKK suicide bomber who detonated bomb in Turkey Army trench released
15
+ http://t.co/mMkLapX2ok
16
+ - text: '#hot Reddit''s new content policy goes into effect many horrible subreddits
17
+ banned or quarantined http://t.co/HqdCZzdmbN #prebreak #best'
18
+ - text: Heat wave warning aa? Ayyo dei. Just when I plan to visit friends after a
19
+ year.
20
+ pipeline_tag: text-classification
21
+ inference: true
22
+ base_model: sentence-transformers/all-mpnet-base-v2
23
+ model-index:
24
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.8098990736900318
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with sentence-transformers/all-mpnet-base-v2
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 384 tokens
55
+ - **Number of Classes:** 2 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 0 | <ul><li>'peanut butter cookie dough blizzard is ??????????????????????'</li><li>'Free Ebay Sniping RT? http://t.co/B231Ul1O1K Lumbar Extender Back Stretcher Excellent Condition!! ?Please Favorite &amp; Share'</li><li>"'13 M. Chapoutier Crozes Hermitage so much purple violets slate crushed gravel white pepper. Yum #france #wine #DC http://t.co/skvWN38HZ7"</li></ul> |
70
+ | 1 | <ul><li>'DUST IN THE WIND: @82ndABNDIV paratroopers move to a loading zone during a dust storm in support of Operation Fury: http://t.co/uGesKLCn8M'</li><li>'Delhi Government to Provide Free Treatment to Acid Attack Victims in Private Hospitals http://t.co/H6PM1W7elL'</li><li>'National Briefing | West: California: Spring Oil Spill Estimate Grows: Documents released on Wednesday disclos... http://t.co/wBi7Laq18E'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 0.8099 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("pEpOo/catastrophy")
96
+ # Run inference
97
+ preds = model("Heat wave warning aa? Ayyo dei. Just when I plan to visit friends after a year.")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:--------|:----|
129
+ | Word count | 2 | 15.3737 | 31 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------|:----------------------|
133
+ | 0 | 222 |
134
+ | 1 | 158 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (8, 8)
138
+ - num_epochs: (1, 1)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - num_iterations: 20
142
+ - body_learning_rate: (2e-05, 2e-05)
143
+ - head_learning_rate: 2e-05
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:------:|:----:|:-------------:|:---------------:|
157
+ | 0.0005 | 1 | 0.3038 | - |
158
+ | 0.0263 | 50 | 0.1867 | - |
159
+ | 0.0526 | 100 | 0.2578 | - |
160
+ | 0.0789 | 150 | 0.2298 | - |
161
+ | 0.1053 | 200 | 0.1253 | - |
162
+ | 0.1316 | 250 | 0.0446 | - |
163
+ | 0.1579 | 300 | 0.1624 | - |
164
+ | 0.1842 | 350 | 0.0028 | - |
165
+ | 0.2105 | 400 | 0.0059 | - |
166
+ | 0.2368 | 450 | 0.0006 | - |
167
+ | 0.2632 | 500 | 0.0287 | - |
168
+ | 0.2895 | 550 | 0.003 | - |
169
+ | 0.3158 | 600 | 0.0004 | - |
170
+ | 0.3421 | 650 | 0.0014 | - |
171
+ | 0.3684 | 700 | 0.0002 | - |
172
+ | 0.3947 | 750 | 0.0001 | - |
173
+ | 0.4211 | 800 | 0.0002 | - |
174
+ | 0.4474 | 850 | 0.0002 | - |
175
+ | 0.4737 | 900 | 0.0002 | - |
176
+ | 0.5 | 950 | 0.0826 | - |
177
+ | 0.5263 | 1000 | 0.0002 | - |
178
+ | 0.5526 | 1050 | 0.0001 | - |
179
+ | 0.5789 | 1100 | 0.0003 | - |
180
+ | 0.6053 | 1150 | 0.0303 | - |
181
+ | 0.6316 | 1200 | 0.0001 | - |
182
+ | 0.6579 | 1250 | 0.0 | - |
183
+ | 0.6842 | 1300 | 0.0001 | - |
184
+ | 0.7105 | 1350 | 0.0 | - |
185
+ | 0.7368 | 1400 | 0.0001 | - |
186
+ | 0.7632 | 1450 | 0.0002 | - |
187
+ | 0.7895 | 1500 | 0.0434 | - |
188
+ | 0.8158 | 1550 | 0.0001 | - |
189
+ | 0.8421 | 1600 | 0.0 | - |
190
+ | 0.8684 | 1650 | 0.0001 | - |
191
+ | 0.8947 | 1700 | 0.0001 | - |
192
+ | 0.9211 | 1750 | 0.0001 | - |
193
+ | 0.9474 | 1800 | 0.0001 | - |
194
+ | 0.9737 | 1850 | 0.0001 | - |
195
+ | 1.0 | 1900 | 0.0 | - |
196
+
197
+ ### Framework Versions
198
+ - Python: 3.10.12
199
+ - SetFit: 1.0.1
200
+ - Sentence Transformers: 2.2.2
201
+ - Transformers: 4.35.2
202
+ - PyTorch: 2.1.0+cu121
203
+ - Datasets: 2.15.0
204
+ - Tokenizers: 0.15.0
205
+
206
+ ## Citation
207
+
208
+ ### BibTeX
209
+ ```bibtex
210
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
211
+ doi = {10.48550/ARXIV.2209.11055},
212
+ url = {https://arxiv.org/abs/2209.11055},
213
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
214
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
215
+ title = {Efficient Few-Shot Learning Without Prompts},
216
+ publisher = {arXiv},
217
+ year = {2022},
218
+ copyright = {Creative Commons Attribution 4.0 International}
219
+ }
220
+ ```
221
+
222
+ <!--
223
+ ## Glossary
224
+
225
+ *Clearly define terms in order to be accessible across audiences.*
226
+ -->
227
+
228
+ <!--
229
+ ## Model Card Authors
230
+
231
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
232
+ -->
233
+
234
+ <!--
235
+ ## Model Card Contact
236
+
237
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
238
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38152c30108d49af6d21ea9347475f1b42f10e49ed1dc5a604a6a7fcef606eef
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08e6758b8a09a53c176d8e57298eacdf04b1ffe98feacc052a709a5450c5dcb7
3
+ size 6991
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff