Upload folder using huggingface_hub (#2)
Browse files- Upload folder using huggingface_hub (afa42f283b86f2abd2366a30e7cbd034b57d6780)
Co-authored-by: L_Ai_n <[email protected]>
- CustomPipe.py +59 -0
- config.json +10 -0
- model.safetensors +2 -2
CustomPipe.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from transformers import (
|
5 |
+
AutoModelForImageClassification,
|
6 |
+
AutoImageProcessor,
|
7 |
+
Pipeline,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from typing import Union
|
12 |
+
|
13 |
+
class SiglipTaggerPipe(Pipeline):
|
14 |
+
def __init__(self,**kwargs):
|
15 |
+
self.processor = AutoImageProcessor.from_pretrained("p1atdev/siglip-tagger-test-3")
|
16 |
+
if "torch_dtype" not in kwargs :
|
17 |
+
kwargs["torch_dtype"] = torch.bfloat16
|
18 |
+
Pipeline.__init__(self,**kwargs)
|
19 |
+
def _sanitize_parameters(self, **kwargs):
|
20 |
+
postprocess_kwargs = {}
|
21 |
+
if "threshold" in kwargs :
|
22 |
+
# if threshold parameter is present
|
23 |
+
# we pass it to the postprocess method
|
24 |
+
postprocess_kwargs["threshold"] = kwargs["threshold"]
|
25 |
+
if "return_scores" in kwargs :
|
26 |
+
postprocess_kwargs["return_scores"] = kwargs["return_scores"]
|
27 |
+
return {},{},postprocess_kwargs
|
28 |
+
|
29 |
+
def preprocess(self,inputs: Union[str,Image.Image,np.ndarray]):
|
30 |
+
if isinstance(inputs,str) :
|
31 |
+
img = Image.open(inputs)
|
32 |
+
elif isinstance(inputs,Image.Image) :
|
33 |
+
img = inputs
|
34 |
+
else :
|
35 |
+
# TODO: double check this implementation
|
36 |
+
# consider adding try except
|
37 |
+
# maybe add url checker too
|
38 |
+
img = Image.fromarray(inputs)
|
39 |
+
|
40 |
+
inputs = self.processor(img, return_tensors="pt").to(self.model.device, self.model.dtype)
|
41 |
+
return inputs
|
42 |
+
|
43 |
+
def _forward(self,inputs):
|
44 |
+
logits = self.model(**inputs).logits.detach().cpu().float()[0]
|
45 |
+
logits = np.clip(logits, 0.0, 1.0)
|
46 |
+
return logits
|
47 |
+
def postprocess(self,logits,threshold:float=0,return_scores=False):
|
48 |
+
results = {
|
49 |
+
self.model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0
|
50 |
+
}
|
51 |
+
results = sorted(results.items(), key=lambda x: x[1], reverse=True)
|
52 |
+
out = {}
|
53 |
+
for tag, score in results:
|
54 |
+
if score >= threshold :
|
55 |
+
out[tag] = f"{score*100:.2f}"
|
56 |
+
if return_scores == True :
|
57 |
+
return out
|
58 |
+
else :
|
59 |
+
return ", ".join(list(out.keys()))
|
config.json
CHANGED
@@ -4,6 +4,16 @@
|
|
4 |
"auto_map": {
|
5 |
"AutoModelForImageClassification": "modeling_siglip.SiglipForImageClassification"
|
6 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"attention_dropout": 0.0,
|
8 |
"hidden_act": "gelu_pytorch_tanh",
|
9 |
"hidden_size": 1152,
|
|
|
4 |
"auto_map": {
|
5 |
"AutoModelForImageClassification": "modeling_siglip.SiglipForImageClassification"
|
6 |
},
|
7 |
+
"custom_pipelines": {
|
8 |
+
"image-classification": {
|
9 |
+
"impl": "CustomPipe.SiglipTaggerPipe",
|
10 |
+
"pt": [
|
11 |
+
"AutoModelForImageClassification"
|
12 |
+
],
|
13 |
+
"tf": [],
|
14 |
+
"type": "image"
|
15 |
+
}
|
16 |
+
},
|
17 |
"attention_dropout": 0.0,
|
18 |
"hidden_act": "gelu_pytorch_tanh",
|
19 |
"hidden_size": 1152,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c57dce403a3fbb0b10dd311cd84cc12ecbf884ae444f54aa6f941f5fb3e06f7
|
3 |
+
size 1756853084
|