File size: 2,422 Bytes
78365bd
 
 
 
d1ff7de
 
 
78365bd
 
 
 
 
 
 
 
 
 
 
d1ff7de
 
 
 
78365bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1ff7de
 
78365bd
 
 
d1ff7de
78365bd
 
 
d1ff7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78365bd
 
 
 
ad6d12b
 
 
78365bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: BT5153-kaggle-sentiment-model-3000-samples
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BT5153-kaggle-sentiment-model-3000-samples

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6160
- Accuracy: 0.9270
- F1: 0.9288

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2851        | 1.0   | 625  | 0.2058          | 0.9216   | 0.9231 |
| 0.1735        | 2.0   | 1250 | 0.2257          | 0.9244   | 0.9258 |
| 0.121         | 3.0   | 1875 | 0.2907          | 0.9232   | 0.9251 |
| 0.0525        | 4.0   | 2500 | 0.3607          | 0.9194   | 0.9219 |
| 0.0381        | 5.0   | 3125 | 0.4109          | 0.9216   | 0.9233 |
| 0.0257        | 6.0   | 3750 | 0.4142          | 0.9232   | 0.9244 |
| 0.0192        | 7.0   | 4375 | 0.4321          | 0.9230   | 0.9233 |
| 0.0126        | 8.0   | 5000 | 0.4745          | 0.9250   | 0.9278 |
| 0.01          | 9.0   | 5625 | 0.5053          | 0.9240   | 0.9246 |
| 0.0091        | 10.0  | 6250 | 0.5256          | 0.9240   | 0.9267 |
| 0.0062        | 11.0  | 6875 | 0.5798          | 0.9246   | 0.9255 |
| 0.0033        | 12.0  | 7500 | 0.5935          | 0.9242   | 0.9262 |
| 0.0019        | 13.0  | 8125 | 0.5891          | 0.9286   | 0.9303 |
| 0.0018        | 14.0  | 8750 | 0.6176          | 0.9266   | 0.9287 |
| 0.0001        | 15.0  | 9375 | 0.6160          | 0.9270   | 0.9288 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2