File size: 4,042 Bytes
012f8b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
import torch.nn as nn
from torchvision import transforms
from transformers import ViTModel, BertTokenizerFast, BertConfig, BertLMHeadModel
from PIL import Image
import os

# Check if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Define constants
VIT_MODEL_NAME = "google/vit-base-patch16-224"
BERT_MODEL_NAME = "dbmdz/bert-base-turkish-cased"
MAX_LENGTH = 128

class ImageCaptioningModel(nn.Module):
    def __init__(self, vit_model, bert_model):
        super(ImageCaptioningModel, self).__init__()
        self.vit = vit_model
        self.bert = bert_model
        self.linear = nn.Linear(self.vit.config.hidden_size, self.bert.config.hidden_size)

    def forward(self, pixel_values, input_ids, attention_mask, labels=None):
        image_features = self.vit(pixel_values).last_hidden_state
        image_features = self.linear(image_features)
        
        outputs = self.bert(input_ids=input_ids,
                            attention_mask=attention_mask,
                            encoder_hidden_states=image_features,
                            labels=labels,
                            return_dict=True)
        
        return outputs.loss, outputs.logits

def load_model(model_path):
    # Initialize the model components
    vit_model = ViTModel.from_pretrained(VIT_MODEL_NAME)
    bert_config = BertConfig.from_pretrained(BERT_MODEL_NAME)
    bert_config.is_decoder = True
    bert_config.add_cross_attention = True
    bert_model = BertLMHeadModel.from_pretrained(BERT_MODEL_NAME, config=bert_config)

    # Create the combined model
    model = ImageCaptioningModel(vit_model, bert_model)
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.to(device)
    model.eval()
    return model

def generate_caption(model, image_path, tokenizer):
    # Prepare the image
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    image = Image.open(image_path).convert('RGB')
    image = transform(image).unsqueeze(0).to(device)

    # Generate the caption
    with torch.no_grad():
        input_ids = torch.tensor([[tokenizer.cls_token_id]]).to(device)
        attention_mask = torch.tensor([[1]]).to(device)

        for _ in range(MAX_LENGTH):
            _, logits = model(image, input_ids, attention_mask)
            next_token = logits[:, -1, :].argmax(dim=-1)
            
            if next_token.item() == tokenizer.sep_token_id:
                break

            input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
            attention_mask = torch.cat([attention_mask, torch.tensor([[1]]).to(device)], dim=1)

    caption = tokenizer.decode(input_ids[0], skip_special_tokens=True)
    return caption

def main():
    model_path = "./models/TeLVE_v1.1.pth"
    tokenizer_path = "./tokenizer"
    
    # Check if the model and tokenizer exist
    if not os.path.exists(model_path) or not os.path.exists(tokenizer_path):
        print("Model or tokenizer not found. Please make sure you have trained the model and saved it correctly.")
        return

    # Load the model and tokenizer
    model = load_model(model_path)
    tokenizer = BertTokenizerFast.from_pretrained(tokenizer_path)

    # Generate captions for images in a specified directory
    image_dir = "./images"  # Change this to the directory containing your test images
    for image_file in os.listdir(image_dir):
        if image_file.lower().endswith(('.png', '.jpg', '.jpeg')):
            image_path = os.path.join(image_dir, image_file)
            caption = generate_caption(model, image_path, tokenizer)
            print(f"Image: {image_file}")
            print(f"Generated Caption: {caption}")
            print("---")

if __name__ == "__main__":
    main()