Upload Real_Time_Traffic_CCTV_Instance_Segmentation.ipynb
Browse files
Real_Time_Traffic_CCTV_Instance_Segmentation.ipynb
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/"
|
23 |
+
},
|
24 |
+
"id": "7vLYqOipDn7J",
|
25 |
+
"outputId": "d0995580-9b7a-40cd-8147-7fdf58f148fe"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"output_type": "stream",
|
30 |
+
"name": "stdout",
|
31 |
+
"text": [
|
32 |
+
"Cloning into 'Smart-Traffic'...\n",
|
33 |
+
"remote: Enumerating objects: 12, done.\u001b[K\n",
|
34 |
+
"remote: Counting objects: 100% (9/9), done.\u001b[K\n",
|
35 |
+
"remote: Compressing objects: 100% (9/9), done.\u001b[K\n",
|
36 |
+
"remote: Total 12 (delta 2), reused 0 (delta 0), pack-reused 3\u001b[K\n",
|
37 |
+
"Unpacking objects: 100% (12/12), 199.01 KiB | 939.00 KiB/s, done.\n",
|
38 |
+
"Filtering content: 100% (2/2), 57.18 MiB | 19.07 MiB/s, done.\n"
|
39 |
+
]
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"source": [
|
43 |
+
"!git clone https://huggingface.co/ottoykh/Smart-Traffic"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"source": [
|
49 |
+
"!pip install ultralytics"
|
50 |
+
],
|
51 |
+
"metadata": {
|
52 |
+
"colab": {
|
53 |
+
"base_uri": "https://localhost:8080/"
|
54 |
+
},
|
55 |
+
"id": "ku7viwceDrF-",
|
56 |
+
"outputId": "b6246bc3-2849-4c1e-f6bc-b3bc7860bf78"
|
57 |
+
},
|
58 |
+
"execution_count": 4,
|
59 |
+
"outputs": [
|
60 |
+
{
|
61 |
+
"output_type": "stream",
|
62 |
+
"name": "stdout",
|
63 |
+
"text": [
|
64 |
+
"Collecting ultralytics\n",
|
65 |
+
" Downloading ultralytics-8.1.18-py3-none-any.whl (716 kB)\n",
|
66 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m716.0/716.0 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
67 |
+
"\u001b[?25hRequirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (3.7.1)\n",
|
68 |
+
"Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (4.8.0.76)\n",
|
69 |
+
"Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (9.4.0)\n",
|
70 |
+
"Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (6.0.1)\n",
|
71 |
+
"Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.31.0)\n",
|
72 |
+
"Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (1.11.4)\n",
|
73 |
+
"Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (2.1.0+cu121)\n",
|
74 |
+
"Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (0.16.0+cu121)\n",
|
75 |
+
"Requirement already satisfied: tqdm>=4.64.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (4.66.2)\n",
|
76 |
+
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from ultralytics) (5.9.5)\n",
|
77 |
+
"Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from ultralytics) (9.0.0)\n",
|
78 |
+
"Collecting thop>=0.1.1 (from ultralytics)\n",
|
79 |
+
" Downloading thop-0.1.1.post2209072238-py3-none-any.whl (15 kB)\n",
|
80 |
+
"Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (1.5.3)\n",
|
81 |
+
"Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics) (0.13.1)\n",
|
82 |
+
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.2.0)\n",
|
83 |
+
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)\n",
|
84 |
+
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (4.49.0)\n",
|
85 |
+
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.4.5)\n",
|
86 |
+
"Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (1.25.2)\n",
|
87 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (23.2)\n",
|
88 |
+
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (3.1.1)\n",
|
89 |
+
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics) (2.8.2)\n",
|
90 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.4->ultralytics) (2023.4)\n",
|
91 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (3.3.2)\n",
|
92 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (3.6)\n",
|
93 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (2.0.7)\n",
|
94 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics) (2024.2.2)\n",
|
95 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (3.13.1)\n",
|
96 |
+
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (4.9.0)\n",
|
97 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (1.12)\n",
|
98 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (3.2.1)\n",
|
99 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (3.1.3)\n",
|
100 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (2023.6.0)\n",
|
101 |
+
"Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics) (2.1.0)\n",
|
102 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)\n",
|
103 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)\n",
|
104 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8.0->ultralytics) (1.3.0)\n",
|
105 |
+
"Installing collected packages: thop, ultralytics\n",
|
106 |
+
"Successfully installed thop-0.1.1.post2209072238 ultralytics-8.1.18\n"
|
107 |
+
]
|
108 |
+
}
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"source": [
|
114 |
+
"from ultralytics import YOLO\n",
|
115 |
+
"\n",
|
116 |
+
"from IPython.display import display, Image\n",
|
117 |
+
"import requests\n",
|
118 |
+
"from PIL import Image\n",
|
119 |
+
"import time\n",
|
120 |
+
"import datetime\n",
|
121 |
+
"import os"
|
122 |
+
],
|
123 |
+
"metadata": {
|
124 |
+
"id": "tjNmyigvEPut"
|
125 |
+
},
|
126 |
+
"execution_count": 5,
|
127 |
+
"outputs": []
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"source": [
|
132 |
+
"image_urls = [\n",
|
133 |
+
" \"https://tdcctv.data.one.gov.hk/AID01217.JPG\",\n",
|
134 |
+
" \"https://tdcctv.data.one.gov.hk/AID01216.JPG\",\n",
|
135 |
+
" \"https://tdcctv.data.one.gov.hk/AID01215.JPG\",\n",
|
136 |
+
" \"https://tdcctv.data.one.gov.hk/AID01214.JPG\",\n",
|
137 |
+
" \"https://tdcctv.data.one.gov.hk/AID01213.JPG\",\n",
|
138 |
+
" \"https://tdcctv.data.one.gov.hk/AID01212.JPG\",\n",
|
139 |
+
" \"https://tdcctv.data.one.gov.hk/AID01211.JPG\",\n",
|
140 |
+
" \"https://tdcctv.data.one.gov.hk/AID01210.JPG\",\n",
|
141 |
+
" \"https://tdcctv.data.one.gov.hk/AID01209.JPG\"\n",
|
142 |
+
"]\n"
|
143 |
+
],
|
144 |
+
"metadata": {
|
145 |
+
"id": "NxP8UKN4EUh3"
|
146 |
+
},
|
147 |
+
"execution_count": 14,
|
148 |
+
"outputs": []
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"source": [
|
153 |
+
"import pytz\n",
|
154 |
+
"from urllib.parse import urlparse\n",
|
155 |
+
"import json\n",
|
156 |
+
"\n",
|
157 |
+
"hong_kong_timezone = pytz.timezone('Asia/Hong_Kong')\n",
|
158 |
+
"\n",
|
159 |
+
"while True:\n",
|
160 |
+
" current_time = datetime.datetime.now(tz=hong_kong_timezone).strftime(\"%Y%m%d%H%M%S\")\n",
|
161 |
+
" folder_name = f\"/content/{current_time}\"\n",
|
162 |
+
" print(folder_name)\n",
|
163 |
+
" os.makedirs(folder_name, exist_ok=True)\n",
|
164 |
+
"\n",
|
165 |
+
" for image_url in image_urls:\n",
|
166 |
+
" response = requests.get(image_url)\n",
|
167 |
+
" image_data = response.content\n",
|
168 |
+
" parsed_url = urlparse(image_url)\n",
|
169 |
+
" image_name = os.path.basename(parsed_url.path)\n",
|
170 |
+
" file_name = os.path.join(folder_name, image_name)\n",
|
171 |
+
" with open(file_name, \"wb\") as file:\n",
|
172 |
+
" file.write(image_data)\n",
|
173 |
+
" print(file_name)\n",
|
174 |
+
" folder_name_formatted = f\"'{folder_name}'\"\n",
|
175 |
+
"\n",
|
176 |
+
" !yolo task=segment mode=predict model='/content/Smart-Traffic/best.pt' conf=0.45 source={folder_name_formatted} save=true save_txt=true\n",
|
177 |
+
"\n",
|
178 |
+
" time.sleep(120)"
|
179 |
+
],
|
180 |
+
"metadata": {
|
181 |
+
"colab": {
|
182 |
+
"base_uri": "https://localhost:8080/",
|
183 |
+
"height": 1000
|
184 |
+
},
|
185 |
+
"id": "iNxB2wbrEa5q",
|
186 |
+
"outputId": "7854ac0b-c652-4660-bd03-356bc0cbff0c"
|
187 |
+
},
|
188 |
+
"execution_count": 19,
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"output_type": "stream",
|
192 |
+
"name": "stdout",
|
193 |
+
"text": [
|
194 |
+
"/content/20240223165431\n",
|
195 |
+
"/content/20240223165431/AID01217.JPG\n",
|
196 |
+
"/content/20240223165431/AID01216.JPG\n",
|
197 |
+
"/content/20240223165431/AID01215.JPG\n",
|
198 |
+
"/content/20240223165431/AID01214.JPG\n",
|
199 |
+
"/content/20240223165431/AID01213.JPG\n",
|
200 |
+
"/content/20240223165431/AID01212.JPG\n",
|
201 |
+
"/content/20240223165431/AID01211.JPG\n",
|
202 |
+
"/content/20240223165431/AID01210.JPG\n",
|
203 |
+
"/content/20240223165431/AID01209.JPG\n",
|
204 |
+
"Ultralytics YOLOv8.1.18 π Python-3.10.12 torch-2.1.0+cu121 CPU (Intel Xeon 2.20GHz)\n",
|
205 |
+
"YOLOv8s-seg summary (fused): 195 layers, 11782309 parameters, 0 gradients, 42.5 GFLOPs\n",
|
206 |
+
"\n",
|
207 |
+
"image 1/9 /content/20240223165431/AID01209.JPG: 480x640 (no detections), 750.7ms\n",
|
208 |
+
"image 2/9 /content/20240223165431/AID01210.JPG: 480x640 2 Private-cars, 813.9ms\n",
|
209 |
+
"image 3/9 /content/20240223165431/AID01211.JPG: 480x640 1 Minibus, 3 Private-cars, 1039.4ms\n",
|
210 |
+
"image 4/9 /content/20240223165431/AID01212.JPG: 480x640 (no detections), 996.6ms\n",
|
211 |
+
"image 5/9 /content/20240223165431/AID01213.JPG: 480x640 1 Bus, 2 Private-cars, 1 Taxi, 652.4ms\n",
|
212 |
+
"image 6/9 /content/20240223165431/AID01214.JPG: 480x640 2 Private-cars, 2 Taxis, 1 Truck, 661.9ms\n",
|
213 |
+
"image 7/9 /content/20240223165431/AID01215.JPG: 480x640 2 Private-cars, 1 Taxi, 626.7ms\n",
|
214 |
+
"image 8/9 /content/20240223165431/AID01216.JPG: 480x640 1 Minibus, 5 Private-cars, 639.9ms\n",
|
215 |
+
"image 9/9 /content/20240223165431/AID01217.JPG: 480x640 3 Private-cars, 619.7ms\n",
|
216 |
+
"Speed: 3.2ms preprocess, 755.7ms inference, 13.1ms postprocess per image at shape (1, 3, 480, 640)\n",
|
217 |
+
"Results saved to \u001b[1mruns/segment/predict4\u001b[0m\n",
|
218 |
+
"7 labels saved to runs/segment/predict4/labels\n",
|
219 |
+
"π‘ Learn more at https://docs.ultralytics.com/modes/predict\n",
|
220 |
+
"/content/20240223165647\n",
|
221 |
+
"/content/20240223165647/AID01217.JPG\n",
|
222 |
+
"/content/20240223165647/AID01216.JPG\n",
|
223 |
+
"/content/20240223165647/AID01215.JPG\n",
|
224 |
+
"/content/20240223165647/AID01214.JPG\n",
|
225 |
+
"/content/20240223165647/AID01213.JPG\n",
|
226 |
+
"/content/20240223165647/AID01212.JPG\n",
|
227 |
+
"/content/20240223165647/AID01211.JPG\n",
|
228 |
+
"/content/20240223165647/AID01210.JPG\n",
|
229 |
+
"/content/20240223165647/AID01209.JPG\n",
|
230 |
+
"Ultralytics YOLOv8.1.18 π Python-3.10.12 torch-2.1.0+cu121 CPU (Intel Xeon 2.20GHz)\n",
|
231 |
+
"YOLOv8s-seg summary (fused): 195 layers, 11782309 parameters, 0 gradients, 42.5 GFLOPs\n",
|
232 |
+
"\n",
|
233 |
+
"image 1/9 /content/20240223165647/AID01209.JPG: 480x640 2 Private-cars, 1 Taxi, 733.2ms\n",
|
234 |
+
"image 2/9 /content/20240223165647/AID01210.JPG: 480x640 2 Private-cars, 628.8ms\n",
|
235 |
+
"image 3/9 /content/20240223165647/AID01211.JPG: 480x640 (no detections), 648.8ms\n",
|
236 |
+
"image 4/9 /content/20240223165647/AID01212.JPG: 480x640 2 Private-cars, 1 Taxi, 650.8ms\n",
|
237 |
+
"image 5/9 /content/20240223165647/AID01213.JPG: 480x640 4 Private-cars, 1 Truck, 642.1ms\n",
|
238 |
+
"image 6/9 /content/20240223165647/AID01214.JPG: 480x640 1 Bus, 3 Private-cars, 625.7ms\n",
|
239 |
+
"image 7/9 /content/20240223165647/AID01215.JPG: 480x640 4 Private-cars, 1 Truck, 839.4ms\n",
|
240 |
+
"image 8/9 /content/20240223165647/AID01216.JPG: 480x640 2 Private-cars, 995.4ms\n",
|
241 |
+
"image 9/9 /content/20240223165647/AID01217.JPG: 480x640 4 Private-cars, 970.9ms\n",
|
242 |
+
"Speed: 3.2ms preprocess, 748.4ms inference, 12.3ms postprocess per image at shape (1, 3, 480, 640)\n",
|
243 |
+
"Results saved to \u001b[1mruns/segment/predict5\u001b[0m\n",
|
244 |
+
"8 labels saved to runs/segment/predict5/labels\n",
|
245 |
+
"π‘ Learn more at https://docs.ultralytics.com/modes/predict\n",
|
246 |
+
"/content/20240223165903\n",
|
247 |
+
"/content/20240223165903/AID01217.JPG\n",
|
248 |
+
"/content/20240223165903/AID01216.JPG\n",
|
249 |
+
"/content/20240223165903/AID01215.JPG\n",
|
250 |
+
"/content/20240223165903/AID01214.JPG\n",
|
251 |
+
"/content/20240223165903/AID01213.JPG\n",
|
252 |
+
"/content/20240223165903/AID01212.JPG\n",
|
253 |
+
"/content/20240223165903/AID01211.JPG\n",
|
254 |
+
"/content/20240223165903/AID01210.JPG\n",
|
255 |
+
"/content/20240223165903/AID01209.JPG\n",
|
256 |
+
"Ultralytics YOLOv8.1.18 π Python-3.10.12 torch-2.1.0+cu121 CPU (Intel Xeon 2.20GHz)\n",
|
257 |
+
"YOLOv8s-seg summary (fused): 195 layers, 11782309 parameters, 0 gradients, 42.5 GFLOPs\n",
|
258 |
+
"\n",
|
259 |
+
"image 1/9 /content/20240223165903/AID01209.JPG: 480x640 2 Private-cars, 1 Taxi, 755.6ms\n",
|
260 |
+
"image 2/9 /content/20240223165903/AID01210.JPG: 480x640 1 Bus, 3 Private-cars, 649.8ms\n",
|
261 |
+
"image 3/9 /content/20240223165903/AID01211.JPG: 480x640 (no detections), 627.9ms\n",
|
262 |
+
"image 4/9 /content/20240223165903/AID01212.JPG: 480x640 2 Private-cars, 1 Taxi, 639.2ms\n",
|
263 |
+
"image 5/9 /content/20240223165903/AID01213.JPG: 480x640 4 Private-cars, 1 Truck, 662.7ms\n",
|
264 |
+
"image 6/9 /content/20240223165903/AID01214.JPG: 480x640 1 Bus, 3 Private-cars, 632.2ms\n",
|
265 |
+
"image 7/9 /content/20240223165903/AID01215.JPG: 480x640 4 Private-cars, 1 Truck, 612.9ms\n",
|
266 |
+
"image 8/9 /content/20240223165903/AID01216.JPG: 480x640 2 Private-cars, 638.8ms\n",
|
267 |
+
"image 9/9 /content/20240223165903/AID01217.JPG: 480x640 4 Private-cars, 623.8ms\n",
|
268 |
+
"Speed: 3.0ms preprocess, 649.2ms inference, 11.9ms postprocess per image at shape (1, 3, 480, 640)\n",
|
269 |
+
"Results saved to \u001b[1mruns/segment/predict6\u001b[0m\n",
|
270 |
+
"8 labels saved to runs/segment/predict6/labels\n",
|
271 |
+
"π‘ Learn more at https://docs.ultralytics.com/modes/predict\n",
|
272 |
+
"/content/20240223170118\n",
|
273 |
+
"/content/20240223170118/AID01217.JPG\n",
|
274 |
+
"/content/20240223170118/AID01216.JPG\n",
|
275 |
+
"/content/20240223170118/AID01215.JPG\n",
|
276 |
+
"/content/20240223170118/AID01214.JPG\n",
|
277 |
+
"/content/20240223170118/AID01213.JPG\n",
|
278 |
+
"/content/20240223170118/AID01212.JPG\n",
|
279 |
+
"/content/20240223170118/AID01211.JPG\n",
|
280 |
+
"/content/20240223170118/AID01210.JPG\n",
|
281 |
+
"/content/20240223170118/AID01209.JPG\n",
|
282 |
+
"Ultralytics YOLOv8.1.18 π Python-3.10.12 torch-2.1.0+cu121 CPU (Intel Xeon 2.20GHz)\n",
|
283 |
+
"YOLOv8s-seg summary (fused): 195 layers, 11782309 parameters, 0 gradients, 42.5 GFLOPs\n",
|
284 |
+
"\n",
|
285 |
+
"image 1/9 /content/20240223170118/AID01209.JPG: 480x640 1 Bus, 1 Taxi, 807.7ms\n",
|
286 |
+
"image 2/9 /content/20240223170118/AID01210.JPG: 480x640 3 Private-cars, 668.4ms\n",
|
287 |
+
"image 3/9 /content/20240223170118/AID01211.JPG: 480x640 (no detections), 654.9ms\n",
|
288 |
+
"image 4/9 /content/20240223170118/AID01212.JPG: 480x640 2 Private-cars, 1 Taxi, 660.6ms\n",
|
289 |
+
"image 5/9 /content/20240223170118/AID01213.JPG: 480x640 1 Bus, 2 Private-cars, 659.2ms\n",
|
290 |
+
"image 6/9 /content/20240223170118/AID01214.JPG: 480x640 1 Minibus, 6 Private-cars, 1 Taxi, 642.2ms\n",
|
291 |
+
"image 7/9 /content/20240223170118/AID01215.JPG: 480x640 3 Private-cars, 620.5ms\n",
|
292 |
+
"image 8/9 /content/20240223170118/AID01216.JPG: 480x640 4 Private-cars, 1 Taxi, 634.2ms\n",
|
293 |
+
"image 9/9 /content/20240223170118/AID01217.JPG: 480x640 2 Private-cars, 1 Taxi, 607.3ms\n",
|
294 |
+
"Speed: 3.9ms preprocess, 661.7ms inference, 14.4ms postprocess per image at shape (1, 3, 480, 640)\n",
|
295 |
+
"Results saved to \u001b[1mruns/segment/predict7\u001b[0m\n",
|
296 |
+
"8 labels saved to runs/segment/predict7/labels\n",
|
297 |
+
"π‘ Learn more at https://docs.ultralytics.com/modes/predict\n",
|
298 |
+
"/content/20240223170334\n",
|
299 |
+
"/content/20240223170334/AID01217.JPG\n",
|
300 |
+
"/content/20240223170334/AID01216.JPG\n",
|
301 |
+
"/content/20240223170334/AID01215.JPG\n",
|
302 |
+
"/content/20240223170334/AID01214.JPG\n",
|
303 |
+
"/content/20240223170334/AID01213.JPG\n",
|
304 |
+
"/content/20240223170334/AID01212.JPG\n",
|
305 |
+
"/content/20240223170334/AID01211.JPG\n",
|
306 |
+
"/content/20240223170334/AID01210.JPG\n",
|
307 |
+
"/content/20240223170334/AID01209.JPG\n",
|
308 |
+
"Ultralytics YOLOv8.1.18 π Python-3.10.12 torch-2.1.0+cu121 CPU (Intel Xeon 2.20GHz)\n",
|
309 |
+
"YOLOv8s-seg summary (fused): 195 layers, 11782309 parameters, 0 gradients, 42.5 GFLOPs\n",
|
310 |
+
"\n",
|
311 |
+
"image 1/9 /content/20240223170334/AID01209.JPG: 480x640 7 Private-cars, 1 Taxi, 1209.1ms\n",
|
312 |
+
"image 2/9 /content/20240223170334/AID01210.JPG: 480x640 (no detections), 643.8ms\n",
|
313 |
+
"image 3/9 /content/20240223170334/AID01211.JPG: 480x640 1 Private-car, 615.6ms\n",
|
314 |
+
"image 4/9 /content/20240223170334/AID01212.JPG: 480x640 2 Private-cars, 1 Taxi, 625.5ms\n",
|
315 |
+
"image 5/9 /content/20240223170334/AID01213.JPG: 480x640 1 Taxi, 628.4ms\n",
|
316 |
+
"image 6/9 /content/20240223170334/AID01214.JPG: 480x640 1 Private-car, 1 Taxi, 616.1ms\n",
|
317 |
+
"image 7/9 /content/20240223170334/AID01215.JPG: 480x640 2 Private-cars, 623.7ms\n",
|
318 |
+
"image 8/9 /content/20240223170334/AID01216.JPG: 480x640 1 Bus, 611.1ms\n",
|
319 |
+
"image 9/9 /content/20240223170334/AID01217.JPG: 480x640 1 Private-car, 630.6ms\n",
|
320 |
+
"Speed: 3.1ms preprocess, 689.3ms inference, 9.7ms postprocess per image at shape (1, 3, 480, 640)\n",
|
321 |
+
"Results saved to \u001b[1mruns/segment/predict8\u001b[0m\n",
|
322 |
+
"8 labels saved to runs/segment/predict8/labels\n",
|
323 |
+
"π‘ Learn more at https://docs.ultralytics.com/modes/predict\n",
|
324 |
+
"/content/20240223170552\n",
|
325 |
+
"/content/20240223170552/AID01217.JPG\n",
|
326 |
+
"/content/20240223170552/AID01216.JPG\n",
|
327 |
+
"/content/20240223170552/AID01215.JPG\n",
|
328 |
+
"/content/20240223170552/AID01214.JPG\n",
|
329 |
+
"/content/20240223170552/AID01213.JPG\n",
|
330 |
+
"/content/20240223170552/AID01212.JPG\n",
|
331 |
+
"/content/20240223170552/AID01211.JPG\n",
|
332 |
+
"/content/20240223170552/AID01210.JPG\n",
|
333 |
+
"/content/20240223170552/AID01209.JPG\n",
|
334 |
+
"Ultralytics YOLOv8.1.18 π Python-3.10.12 torch-2.1.0+cu121 CPU (Intel Xeon 2.20GHz)\n",
|
335 |
+
"YOLOv8s-seg summary (fused): 195 layers, 11782309 parameters, 0 gradients, 42.5 GFLOPs\n",
|
336 |
+
"\n",
|
337 |
+
"image 1/9 /content/20240223170552/AID01209.JPG: 480x640 7 Private-cars, 1 Taxi, 892.9ms\n",
|
338 |
+
"image 2/9 /content/20240223170552/AID01210.JPG: 480x640 2 Private-cars, 974.9ms\n",
|
339 |
+
"image 3/9 /content/20240223170552/AID01211.JPG: 480x640 4 Private-cars, 976.1ms\n",
|
340 |
+
"image 4/9 /content/20240223170552/AID01212.JPG: 480x640 4 Private-cars, 1 Taxi, 612.6ms\n",
|
341 |
+
"image 5/9 /content/20240223170552/AID01213.JPG: 480x640 2 Private-cars, 1 Taxi, 614.1ms\n",
|
342 |
+
"image 6/9 /content/20240223170552/AID01214.JPG: 480x640 1 Minibus, 6 Private-cars, 1 Taxi, 609.9ms\n",
|
343 |
+
"image 7/9 /content/20240223170552/AID01215.JPG: 480x640 2 Private-cars, 621.7ms\n",
|
344 |
+
"image 8/9 /content/20240223170552/AID01216.JPG: 480x640 (no detections), 624.3ms\n",
|
345 |
+
"image 9/9 /content/20240223170552/AID01217.JPG: 480x640 2 Private-cars, 605.0ms\n",
|
346 |
+
"Speed: 3.4ms preprocess, 725.7ms inference, 15.1ms postprocess per image at shape (1, 3, 480, 640)\n",
|
347 |
+
"Results saved to \u001b[1mruns/segment/predict9\u001b[0m\n",
|
348 |
+
"8 labels saved to runs/segment/predict9/labels\n",
|
349 |
+
"π‘ Learn more at https://docs.ultralytics.com/modes/predict\n",
|
350 |
+
"/content/20240223170810\n",
|
351 |
+
"/content/20240223170810/AID01217.JPG\n",
|
352 |
+
"/content/20240223170810/AID01216.JPG\n",
|
353 |
+
"/content/20240223170810/AID01215.JPG\n",
|
354 |
+
"/content/20240223170810/AID01214.JPG\n",
|
355 |
+
"/content/20240223170810/AID01213.JPG\n",
|
356 |
+
"/content/20240223170810/AID01212.JPG\n",
|
357 |
+
"/content/20240223170810/AID01211.JPG\n",
|
358 |
+
"/content/20240223170810/AID01210.JPG\n",
|
359 |
+
"/content/20240223170810/AID01209.JPG\n",
|
360 |
+
"Ultralytics YOLOv8.1.18 π Python-3.10.12 torch-2.1.0+cu121 CPU (Intel Xeon 2.20GHz)\n",
|
361 |
+
"YOLOv8s-seg summary (fused): 195 layers, 11782309 parameters, 0 gradients, 42.5 GFLOPs\n",
|
362 |
+
"\n",
|
363 |
+
"image 1/9 /content/20240223170810/AID01209.JPG: 480x640 1 Minibus, 4 Private-cars, 1 Taxi, 746.6ms\n",
|
364 |
+
"image 2/9 /content/20240223170810/AID01210.JPG: 480x640 2 Private-cars, 624.7ms\n",
|
365 |
+
"image 3/9 /content/20240223170810/AID01211.JPG: 480x640 4 Private-cars, 639.6ms\n",
|
366 |
+
"image 4/9 /content/20240223170810/AID01212.JPG: 480x640 4 Private-cars, 1 Taxi, 828.6ms\n",
|
367 |
+
"image 5/9 /content/20240223170810/AID01213.JPG: 480x640 2 Private-cars, 1 Taxi, 987.7ms\n",
|
368 |
+
"image 6/9 /content/20240223170810/AID01214.JPG: 480x640 2 Private-cars, 1 Taxi, 975.8ms\n",
|
369 |
+
"image 7/9 /content/20240223170810/AID01215.JPG: 480x640 1 Minibus, 2 Private-cars, 1 Taxi, 629.0ms\n",
|
370 |
+
"image 8/9 /content/20240223170810/AID01216.JPG: 480x640 (no detections), 618.1ms\n",
|
371 |
+
"image 9/9 /content/20240223170810/AID01217.JPG: 480x640 2 Private-cars, 639.6ms\n",
|
372 |
+
"Speed: 3.1ms preprocess, 743.3ms inference, 13.4ms postprocess per image at shape (1, 3, 480, 640)\n",
|
373 |
+
"Results saved to \u001b[1mruns/segment/predict10\u001b[0m\n",
|
374 |
+
"8 labels saved to runs/segment/predict10/labels\n",
|
375 |
+
"π‘ Learn more at https://docs.ultralytics.com/modes/predict\n"
|
376 |
+
]
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"output_type": "error",
|
380 |
+
"ename": "KeyboardInterrupt",
|
381 |
+
"evalue": "",
|
382 |
+
"traceback": [
|
383 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
384 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
385 |
+
"\u001b[0;32m<ipython-input-19-eb142f4ed618>\u001b[0m in \u001b[0;36m<cell line: 7>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msystem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"yolo task=segment mode=predict model='/content/Smart-Traffic/best.pt' conf=0.45 source={folder_name_formatted} save=true save_txt=true\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 26\u001b[0;31m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msleep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m120\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
386 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
387 |
+
]
|
388 |
+
}
|
389 |
+
]
|
390 |
+
}
|
391 |
+
]
|
392 |
+
}
|