Upload 32 files
Browse files- result/BoxF1_curve.png +0 -0
- result/BoxPR_curve.png +0 -0
- result/BoxP_curve.png +0 -0
- result/BoxR_curve.png +0 -0
- result/MaskF1_curve.png +0 -0
- result/MaskPR_curve.png +0 -0
- result/MaskP_curve.png +0 -0
- result/MaskR_curve.png +0 -0
- result/args.yaml +98 -0
- result/confusion_matrix.png +0 -0
- result/confusion_matrix_normalized.png +0 -0
- result/events.out.tfevents.1708667748.a7a67d10a0c5.875.0 +3 -0
- result/labels.jpg +0 -0
- result/labels_correlogram.jpg +0 -0
- result/model_artifacts.json +1 -0
- result/results.csv +101 -0
- result/results.png +0 -0
- result/state_dict.pt +3 -0
- result/train_batch0.jpg +0 -0
- result/train_batch1.jpg +0 -0
- result/train_batch10620.jpg +0 -0
- result/train_batch10621.jpg +0 -0
- result/train_batch10622.jpg +0 -0
- result/train_batch2.jpg +0 -0
- result/val_batch0_labels.jpg +0 -0
- result/val_batch0_pred.jpg +0 -0
- result/val_batch1_labels.jpg +0 -0
- result/val_batch1_pred.jpg +0 -0
- result/val_batch2_labels.jpg +0 -0
- result/val_batch2_pred.jpg +0 -0
- trafficImage/Trace.py +34 -0
- trafficImage/__init__.py +0 -0
result/BoxF1_curve.png
ADDED
result/BoxPR_curve.png
ADDED
result/BoxP_curve.png
ADDED
result/BoxR_curve.png
ADDED
result/MaskF1_curve.png
ADDED
result/MaskPR_curve.png
ADDED
result/MaskP_curve.png
ADDED
result/MaskR_curve.png
ADDED
result/args.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task: segment
|
2 |
+
mode: train
|
3 |
+
model: yolov8s-seg.pt
|
4 |
+
data: /content/Road-Traffic-4/data.yaml
|
5 |
+
epochs: 100
|
6 |
+
patience: 50
|
7 |
+
batch: 16
|
8 |
+
imgsz: 640
|
9 |
+
save: true
|
10 |
+
save_period: -1
|
11 |
+
cache: false
|
12 |
+
device: null
|
13 |
+
workers: 8
|
14 |
+
project: null
|
15 |
+
name: null
|
16 |
+
exist_ok: false
|
17 |
+
pretrained: true
|
18 |
+
optimizer: auto
|
19 |
+
verbose: true
|
20 |
+
seed: 0
|
21 |
+
deterministic: true
|
22 |
+
single_cls: false
|
23 |
+
rect: false
|
24 |
+
cos_lr: false
|
25 |
+
close_mosaic: 10
|
26 |
+
resume: false
|
27 |
+
amp: true
|
28 |
+
fraction: 1.0
|
29 |
+
profile: false
|
30 |
+
freeze: null
|
31 |
+
overlap_mask: true
|
32 |
+
mask_ratio: 4
|
33 |
+
dropout: 0.0
|
34 |
+
val: true
|
35 |
+
split: val
|
36 |
+
save_json: false
|
37 |
+
save_hybrid: false
|
38 |
+
conf: null
|
39 |
+
iou: 0.7
|
40 |
+
max_det: 300
|
41 |
+
half: false
|
42 |
+
dnn: false
|
43 |
+
plots: true
|
44 |
+
source: null
|
45 |
+
show: false
|
46 |
+
save_txt: false
|
47 |
+
save_conf: false
|
48 |
+
save_crop: false
|
49 |
+
show_labels: true
|
50 |
+
show_conf: true
|
51 |
+
vid_stride: 1
|
52 |
+
stream_buffer: false
|
53 |
+
line_width: null
|
54 |
+
visualize: false
|
55 |
+
augment: false
|
56 |
+
agnostic_nms: false
|
57 |
+
classes: null
|
58 |
+
retina_masks: false
|
59 |
+
boxes: true
|
60 |
+
format: torchscript
|
61 |
+
keras: false
|
62 |
+
optimize: false
|
63 |
+
int8: false
|
64 |
+
dynamic: false
|
65 |
+
simplify: false
|
66 |
+
opset: null
|
67 |
+
workspace: 4
|
68 |
+
nms: false
|
69 |
+
lr0: 0.01
|
70 |
+
lrf: 0.01
|
71 |
+
momentum: 0.937
|
72 |
+
weight_decay: 0.0005
|
73 |
+
warmup_epochs: 3.0
|
74 |
+
warmup_momentum: 0.8
|
75 |
+
warmup_bias_lr: 0.1
|
76 |
+
box: 7.5
|
77 |
+
cls: 0.5
|
78 |
+
dfl: 1.5
|
79 |
+
pose: 12.0
|
80 |
+
kobj: 1.0
|
81 |
+
label_smoothing: 0.0
|
82 |
+
nbs: 64
|
83 |
+
hsv_h: 0.015
|
84 |
+
hsv_s: 0.7
|
85 |
+
hsv_v: 0.4
|
86 |
+
degrees: 0.0
|
87 |
+
translate: 0.1
|
88 |
+
scale: 0.5
|
89 |
+
shear: 0.0
|
90 |
+
perspective: 0.0
|
91 |
+
flipud: 0.0
|
92 |
+
fliplr: 0.5
|
93 |
+
mosaic: 1.0
|
94 |
+
mixup: 0.0
|
95 |
+
copy_paste: 0.0
|
96 |
+
cfg: null
|
97 |
+
tracker: botsort.yaml
|
98 |
+
save_dir: runs/segment/train
|
result/confusion_matrix.png
ADDED
result/confusion_matrix_normalized.png
ADDED
result/events.out.tfevents.1708667748.a7a67d10a0c5.875.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97baa8a87178945867dc5ed8dc0f9feffcf3ba508e0c3941421414eb052d2a18
|
3 |
+
size 2908551
|
result/labels.jpg
ADDED
result/labels_correlogram.jpg
ADDED
result/model_artifacts.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"names": ["Bus", "Government-car", "Minibus", "Motorbike", "Private-car", "Taxi", "Truck"], "yaml": {"nc": 7, "depth_multiple": 0.33, "width_multiple": 0.5, "backbone": [[-1, 1, "Conv", [64, 3, 2]], [-1, 1, "Conv", [128, 3, 2]], [-1, 3, "C2f", [128, true]], [-1, 1, "Conv", [256, 3, 2]], [-1, 6, "C2f", [256, true]], [-1, 1, "Conv", [512, 3, 2]], [-1, 6, "C2f", [512, true]], [-1, 1, "Conv", [1024, 3, 2]], [-1, 3, "C2f", [1024, true]], [-1, 1, "SPPF", [1024, 5]]], "head": [[-1, 1, "nn.Upsample", ["None", 2, "nearest"]], [[-1, 6], 1, "Concat", [1]], [-1, 3, "C2f", [512]], [-1, 1, "nn.Upsample", ["None", 2, "nearest"]], [[-1, 4], 1, "Concat", [1]], [-1, 3, "C2f", [256]], [-1, 1, "Conv", [256, 3, 2]], [[-1, 12], 1, "Concat", [1]], [-1, 3, "C2f", [512]], [-1, 1, "Conv", [512, 3, 2]], [[-1, 9], 1, "Concat", [1]], [-1, 3, "C2f", [1024]], [[15, 18, 21], 1, "Segment", ["nc", 32, 256]]], "yaml_file": "/usr/src/app/ultralytics/yolo/v8/models/seg/yolov8s-seg.yaml", "ch": 3}, "nc": 7, "args": {"model": "yolov8s-seg.pt", "batch": 16, "imgsz": 640}, "ultralytics_version": "8.0.196", "model_type": "yolov8-seg"}
|
result/results.csv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch, train/box_loss, train/seg_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), metrics/precision(M), metrics/recall(M), metrics/mAP50(M), metrics/mAP50-95(M), val/box_loss, val/seg_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
|
2 |
+
1, 1.1187, 1.5358, 1.9155, 1.0129, 0.62464, 0.57767, 0.54653, 0.38766, 0.61838, 0.57051, 0.53316, 0.34094, 0.93286, 1.3951, 1.0029, 0.97906, 0.00030043, 0.00030043, 0.00030043
|
3 |
+
2, 0.96694, 1.3048, 0.93421, 0.95016, 0.73743, 0.57061, 0.60706, 0.40315, 0.72149, 0.56136, 0.58492, 0.35681, 1.0582, 1.6436, 0.90751, 1.0115, 0.00059746, 0.00059746, 0.00059746
|
4 |
+
3, 0.95109, 1.2673, 0.85243, 0.94432, 0.69392, 0.56974, 0.59716, 0.43064, 0.68559, 0.56574, 0.58366, 0.36553, 0.93507, 1.3778, 0.87236, 0.97773, 0.00088848, 0.00088848, 0.00088848
|
5 |
+
4, 0.93722, 1.2403, 0.81901, 0.93869, 0.56883, 0.75852, 0.73723, 0.52374, 0.54956, 0.73817, 0.71037, 0.48378, 0.94563, 1.3551, 0.79262, 0.98747, 0.000882, 0.000882, 0.000882
|
6 |
+
5, 0.92279, 1.2322, 0.75341, 0.938, 0.75336, 0.59226, 0.66224, 0.4709, 0.74767, 0.58409, 0.64096, 0.44394, 0.96253, 1.4133, 0.78909, 1.0067, 0.000882, 0.000882, 0.000882
|
7 |
+
6, 0.896, 1.1872, 0.72028, 0.92812, 0.57829, 0.77468, 0.70742, 0.50826, 0.55953, 0.76091, 0.6856, 0.47808, 0.90667, 1.3244, 0.72156, 0.98779, 0.000873, 0.000873, 0.000873
|
8 |
+
7, 0.88787, 1.1931, 0.71553, 0.92406, 0.6544, 0.75833, 0.71646, 0.50888, 0.62737, 0.74158, 0.69166, 0.45809, 0.91675, 1.2831, 0.7096, 0.98512, 0.000864, 0.000864, 0.000864
|
9 |
+
8, 0.87315, 1.1475, 0.67427, 0.91902, 0.67891, 0.66721, 0.68936, 0.50022, 0.65837, 0.64792, 0.65603, 0.45719, 0.90871, 1.3106, 0.71451, 0.97737, 0.00085501, 0.00085501, 0.00085501
|
10 |
+
9, 0.8606, 1.1338, 0.65872, 0.91696, 0.6732, 0.67242, 0.67868, 0.48357, 0.65129, 0.64654, 0.65052, 0.41238, 0.91241, 1.3041, 0.73111, 0.98833, 0.00084601, 0.00084601, 0.00084601
|
11 |
+
10, 0.84951, 1.1207, 0.6454, 0.91189, 0.58991, 0.76725, 0.74573, 0.55046, 0.71093, 0.61621, 0.73217, 0.51377, 0.86829, 1.2637, 0.65981, 0.96248, 0.00083701, 0.00083701, 0.00083701
|
12 |
+
11, 0.84095, 1.114, 0.62909, 0.90646, 0.87076, 0.58774, 0.72522, 0.5307, 0.84617, 0.57342, 0.69346, 0.47715, 0.87545, 1.272, 0.65927, 0.97326, 0.00082801, 0.00082801, 0.00082801
|
13 |
+
12, 0.82382, 1.097, 0.6226, 0.90556, 0.71945, 0.62247, 0.70731, 0.53198, 0.69506, 0.61023, 0.67698, 0.47802, 0.86105, 1.2675, 0.65995, 0.9625, 0.00081901, 0.00081901, 0.00081901
|
14 |
+
13, 0.82742, 1.0903, 0.60087, 0.90251, 0.65511, 0.75318, 0.71995, 0.5386, 0.6401, 0.73973, 0.70308, 0.48797, 0.86739, 1.2577, 0.64529, 0.96499, 0.00081001, 0.00081001, 0.00081001
|
15 |
+
14, 0.81202, 1.0868, 0.59631, 0.89811, 0.79218, 0.74128, 0.79798, 0.59701, 0.7682, 0.71782, 0.76612, 0.54513, 0.86945, 1.2686, 0.63204, 0.96742, 0.00080101, 0.00080101, 0.00080101
|
16 |
+
15, 0.80192, 1.0558, 0.58995, 0.89634, 0.6729, 0.64301, 0.68694, 0.51465, 0.6719, 0.64052, 0.67688, 0.46334, 0.86075, 1.2735, 0.67441, 0.96573, 0.00079201, 0.00079201, 0.00079201
|
17 |
+
16, 0.80714, 1.0851, 0.587, 0.89438, 0.67431, 0.65808, 0.72239, 0.54616, 0.6538, 0.63594, 0.69231, 0.48261, 0.86558, 1.2498, 0.66599, 0.97003, 0.00078301, 0.00078301, 0.00078301
|
18 |
+
17, 0.80085, 1.0502, 0.56712, 0.89836, 0.63518, 0.65753, 0.70195, 0.52898, 0.66581, 0.60943, 0.69055, 0.47454, 0.86531, 1.2433, 0.65032, 0.97313, 0.00077401, 0.00077401, 0.00077401
|
19 |
+
18, 0.78545, 1.0268, 0.54929, 0.89438, 0.81411, 0.64226, 0.70266, 0.52202, 0.79013, 0.62612, 0.66999, 0.46969, 0.85063, 1.2623, 0.63382, 0.96831, 0.00076501, 0.00076501, 0.00076501
|
20 |
+
19, 0.79472, 1.0421, 0.55397, 0.88911, 0.68994, 0.62988, 0.702, 0.53244, 0.68978, 0.6265, 0.68993, 0.49494, 0.86709, 1.2953, 0.64627, 0.96235, 0.00075602, 0.00075602, 0.00075602
|
21 |
+
20, 0.77421, 1.0334, 0.53708, 0.88548, 0.6942, 0.74846, 0.7304, 0.55406, 0.67769, 0.73205, 0.70848, 0.48971, 0.82069, 1.2541, 0.61426, 0.95724, 0.00074702, 0.00074702, 0.00074702
|
22 |
+
21, 0.76161, 1.0045, 0.52215, 0.88147, 0.7291, 0.81427, 0.81705, 0.62848, 0.7002, 0.78171, 0.78353, 0.56531, 0.83953, 1.2686, 0.60448, 0.95396, 0.00073802, 0.00073802, 0.00073802
|
23 |
+
22, 0.76172, 1.019, 0.52048, 0.88482, 0.59198, 0.78358, 0.71267, 0.54339, 0.5747, 0.76468, 0.69719, 0.49616, 0.83707, 1.2124, 0.62377, 0.96283, 0.00072902, 0.00072902, 0.00072902
|
24 |
+
23, 0.76399, 0.99148, 0.51713, 0.8797, 0.66868, 0.83504, 0.74551, 0.56229, 0.62416, 0.80497, 0.7017, 0.4848, 0.85512, 1.2667, 0.62634, 0.96681, 0.00072002, 0.00072002, 0.00072002
|
25 |
+
24, 0.75222, 1.0071, 0.50765, 0.87614, 0.61122, 0.76835, 0.73581, 0.55095, 0.59641, 0.7449, 0.71666, 0.50037, 0.84917, 1.2893, 0.61609, 0.96672, 0.00071102, 0.00071102, 0.00071102
|
26 |
+
25, 0.75156, 0.99125, 0.50152, 0.87921, 0.59836, 0.78754, 0.73459, 0.55024, 0.57767, 0.76553, 0.70602, 0.4841, 0.85535, 1.2771, 0.62236, 0.96331, 0.00070202, 0.00070202, 0.00070202
|
27 |
+
26, 0.7357, 0.96876, 0.48326, 0.87516, 0.71204, 0.73563, 0.73333, 0.55497, 0.71156, 0.68018, 0.6978, 0.49529, 0.8306, 1.271, 0.62178, 0.96202, 0.00069302, 0.00069302, 0.00069302
|
28 |
+
27, 0.73672, 0.9802, 0.48912, 0.87383, 0.65937, 0.86853, 0.80617, 0.61564, 0.63464, 0.83886, 0.77068, 0.55925, 0.83018, 1.2242, 0.59272, 0.96444, 0.00068402, 0.00068402, 0.00068402
|
29 |
+
28, 0.73431, 0.9751, 0.49572, 0.87464, 0.59894, 0.77746, 0.76085, 0.57955, 0.58355, 0.76202, 0.74573, 0.52443, 0.82819, 1.2712, 0.60927, 0.95603, 0.00067502, 0.00067502, 0.00067502
|
30 |
+
29, 0.71759, 0.97066, 0.47717, 0.87131, 0.67258, 0.68884, 0.73518, 0.55696, 0.65764, 0.65897, 0.70779, 0.49751, 0.83131, 1.2557, 0.61514, 0.96002, 0.00066602, 0.00066602, 0.00066602
|
31 |
+
30, 0.72097, 0.95247, 0.47856, 0.86936, 0.64472, 0.80924, 0.75184, 0.57166, 0.63213, 0.79214, 0.73965, 0.52712, 0.82497, 1.252, 0.60537, 0.95818, 0.00065703, 0.00065703, 0.00065703
|
32 |
+
31, 0.71756, 0.95765, 0.4639, 0.86958, 0.86197, 0.64421, 0.7387, 0.56879, 0.84844, 0.63804, 0.72476, 0.51253, 0.82204, 1.2326, 0.58063, 0.95573, 0.00064803, 0.00064803, 0.00064803
|
33 |
+
32, 0.71111, 0.95111, 0.46523, 0.86731, 0.74793, 0.73035, 0.78303, 0.61593, 0.73295, 0.70372, 0.75637, 0.54529, 0.81592, 1.2493, 0.58034, 0.96005, 0.00063903, 0.00063903, 0.00063903
|
34 |
+
33, 0.70889, 0.94444, 0.4625, 0.86709, 0.68882, 0.84363, 0.76005, 0.59033, 0.67658, 0.8306, 0.74869, 0.53718, 0.827, 1.2698, 0.59089, 0.96476, 0.00063003, 0.00063003, 0.00063003
|
35 |
+
34, 0.70805, 0.94503, 0.45549, 0.86972, 0.6988, 0.74989, 0.75538, 0.57497, 0.67828, 0.73055, 0.73079, 0.51878, 0.81984, 1.2386, 0.58532, 0.95872, 0.00062103, 0.00062103, 0.00062103
|
36 |
+
35, 0.69347, 0.91079, 0.44252, 0.86171, 0.64829, 0.78059, 0.73544, 0.5645, 0.6276, 0.75809, 0.71467, 0.50064, 0.82178, 1.2745, 0.59703, 0.95793, 0.00061203, 0.00061203, 0.00061203
|
37 |
+
36, 0.68502, 0.91416, 0.43384, 0.85953, 0.66941, 0.74818, 0.73954, 0.56631, 0.65152, 0.72951, 0.72407, 0.50717, 0.81924, 1.2584, 0.60472, 0.95486, 0.00060303, 0.00060303, 0.00060303
|
38 |
+
37, 0.6908, 0.92938, 0.43956, 0.86027, 0.69747, 0.76214, 0.748, 0.5699, 0.68095, 0.74531, 0.72591, 0.51196, 0.81457, 1.2733, 0.58669, 0.95322, 0.00059403, 0.00059403, 0.00059403
|
39 |
+
38, 0.68448, 0.91458, 0.43352, 0.85882, 0.67345, 0.699, 0.73978, 0.56124, 0.70351, 0.66163, 0.72745, 0.50855, 0.82826, 1.2692, 0.58771, 0.96384, 0.00058503, 0.00058503, 0.00058503
|
40 |
+
39, 0.67878, 0.91258, 0.43441, 0.85941, 0.69172, 0.739, 0.74378, 0.57044, 0.6738, 0.7227, 0.71844, 0.49819, 0.81815, 1.2646, 0.59645, 0.95059, 0.00057603, 0.00057603, 0.00057603
|
41 |
+
40, 0.67537, 0.926, 0.42201, 0.85423, 0.73462, 0.75428, 0.80871, 0.63075, 0.7161, 0.72875, 0.77994, 0.57915, 0.816, 1.2827, 0.5777, 0.95467, 0.00056703, 0.00056703, 0.00056703
|
42 |
+
41, 0.67156, 0.89489, 0.42121, 0.85732, 0.77112, 0.74499, 0.7805, 0.60131, 0.763, 0.74062, 0.77367, 0.55357, 0.82157, 1.2589, 0.58455, 0.95394, 0.00055804, 0.00055804, 0.00055804
|
43 |
+
42, 0.67849, 0.91392, 0.4184, 0.85968, 0.82577, 0.73247, 0.80106, 0.6282, 0.83306, 0.71257, 0.78219, 0.57766, 0.81065, 1.291, 0.57952, 0.95957, 0.00054904, 0.00054904, 0.00054904
|
44 |
+
43, 0.66065, 0.88944, 0.41158, 0.85335, 0.75757, 0.74741, 0.76036, 0.59326, 0.74293, 0.73131, 0.73621, 0.53457, 0.81691, 1.2648, 0.56774, 0.95476, 0.00054004, 0.00054004, 0.00054004
|
45 |
+
44, 0.65676, 0.88816, 0.40686, 0.854, 0.72192, 0.76516, 0.76913, 0.59675, 0.70854, 0.75246, 0.75445, 0.54047, 0.81796, 1.2925, 0.58683, 0.95683, 0.00053104, 0.00053104, 0.00053104
|
46 |
+
45, 0.64892, 0.88196, 0.40419, 0.85127, 0.74202, 0.74527, 0.79493, 0.6366, 0.76049, 0.68162, 0.76963, 0.57909, 0.80849, 1.2423, 0.57951, 0.9555, 0.00052204, 0.00052204, 0.00052204
|
47 |
+
46, 0.64976, 0.87449, 0.4053, 0.85168, 0.78667, 0.7458, 0.80703, 0.64109, 0.77011, 0.72277, 0.78288, 0.57513, 0.81959, 1.2446, 0.57857, 0.96121, 0.00051304, 0.00051304, 0.00051304
|
48 |
+
47, 0.64858, 0.87916, 0.40149, 0.85066, 0.79527, 0.72473, 0.78971, 0.61126, 0.78691, 0.7102, 0.76624, 0.5548, 0.81348, 1.2874, 0.57292, 0.95765, 0.00050404, 0.00050404, 0.00050404
|
49 |
+
48, 0.62686, 0.85734, 0.3894, 0.84539, 0.81425, 0.71502, 0.77863, 0.601, 0.80901, 0.68446, 0.75316, 0.53637, 0.8108, 1.3048, 0.57547, 0.96245, 0.00049504, 0.00049504, 0.00049504
|
50 |
+
49, 0.63194, 0.84272, 0.38668, 0.84573, 0.69215, 0.84306, 0.7805, 0.6075, 0.7805, 0.69544, 0.75467, 0.55618, 0.80459, 1.3151, 0.58863, 0.95786, 0.00048604, 0.00048604, 0.00048604
|
51 |
+
50, 0.62965, 0.85759, 0.39086, 0.84255, 0.77348, 0.73073, 0.81371, 0.64369, 0.81228, 0.68456, 0.80148, 0.59009, 0.81044, 1.2953, 0.59355, 0.94933, 0.00047704, 0.00047704, 0.00047704
|
52 |
+
51, 0.6297, 0.83731, 0.38203, 0.84526, 0.76669, 0.78086, 0.7731, 0.6018, 0.74346, 0.7579, 0.74794, 0.54122, 0.81387, 1.3443, 0.57017, 0.9538, 0.00046804, 0.00046804, 0.00046804
|
53 |
+
52, 0.62606, 0.8465, 0.38519, 0.84916, 0.7328, 0.74501, 0.76891, 0.59879, 0.71547, 0.72769, 0.75378, 0.54254, 0.80831, 1.3081, 0.5716, 0.95479, 0.00045904, 0.00045904, 0.00045904
|
54 |
+
53, 0.62409, 0.84514, 0.37958, 0.84321, 0.69358, 0.87715, 0.81116, 0.62873, 0.66828, 0.84636, 0.78026, 0.58063, 0.81092, 1.3023, 0.5495, 0.96116, 0.00045005, 0.00045005, 0.00045005
|
55 |
+
54, 0.60862, 0.81444, 0.37115, 0.84289, 0.61352, 0.88521, 0.76087, 0.5855, 0.59645, 0.86197, 0.73949, 0.5397, 0.81142, 1.3233, 0.58227, 0.95858, 0.00044105, 0.00044105, 0.00044105
|
56 |
+
55, 0.61522, 0.83848, 0.37611, 0.84185, 0.78011, 0.74783, 0.77713, 0.60643, 0.7682, 0.73648, 0.76374, 0.55806, 0.81707, 1.3298, 0.57063, 0.95621, 0.00043205, 0.00043205, 0.00043205
|
57 |
+
56, 0.6083, 0.82732, 0.37115, 0.83866, 0.80912, 0.73091, 0.80408, 0.64383, 0.81903, 0.70005, 0.7833, 0.58258, 0.80621, 1.3195, 0.56157, 0.95684, 0.00042305, 0.00042305, 0.00042305
|
58 |
+
57, 0.60629, 0.81038, 0.36868, 0.84134, 0.71815, 0.82747, 0.81221, 0.63972, 0.82589, 0.66468, 0.78699, 0.57704, 0.8163, 1.3465, 0.58707, 0.95852, 0.00041405, 0.00041405, 0.00041405
|
59 |
+
58, 0.59583, 0.81144, 0.36431, 0.83814, 0.79999, 0.72277, 0.79956, 0.62612, 0.77737, 0.70526, 0.77812, 0.57877, 0.81434, 1.3106, 0.57835, 0.9565, 0.00040505, 0.00040505, 0.00040505
|
60 |
+
59, 0.60049, 0.81735, 0.3651, 0.83887, 0.88486, 0.66532, 0.74656, 0.58359, 0.85782, 0.64051, 0.71882, 0.51969, 0.81721, 1.3745, 0.57476, 0.95956, 0.00039605, 0.00039605, 0.00039605
|
61 |
+
60, 0.58886, 0.80576, 0.36217, 0.83746, 0.86584, 0.72156, 0.8219, 0.65015, 0.87786, 0.69047, 0.80346, 0.59025, 0.811, 1.3655, 0.55624, 0.95889, 0.00038705, 0.00038705, 0.00038705
|
62 |
+
61, 0.59028, 0.80618, 0.36011, 0.8347, 0.81184, 0.75381, 0.81108, 0.64567, 0.79267, 0.73641, 0.794, 0.58753, 0.80527, 1.3403, 0.56498, 0.96013, 0.00037805, 0.00037805, 0.00037805
|
63 |
+
62, 0.59387, 0.79833, 0.35668, 0.83771, 0.6663, 0.81048, 0.76426, 0.59741, 0.64479, 0.7846, 0.74317, 0.54311, 0.81204, 1.365, 0.56855, 0.95912, 0.00036905, 0.00036905, 0.00036905
|
64 |
+
63, 0.57891, 0.79451, 0.35082, 0.83479, 0.86317, 0.70461, 0.80495, 0.64406, 0.85551, 0.69761, 0.7941, 0.5902, 0.81663, 1.3475, 0.57394, 0.95929, 0.00036005, 0.00036005, 0.00036005
|
65 |
+
64, 0.57885, 0.78853, 0.35214, 0.83152, 0.759, 0.74678, 0.76065, 0.60552, 0.73791, 0.72796, 0.73771, 0.54923, 0.81835, 1.3586, 0.56338, 0.95704, 0.00035106, 0.00035106, 0.00035106
|
66 |
+
65, 0.56638, 0.77292, 0.34685, 0.83231, 0.84031, 0.7203, 0.79936, 0.64111, 0.81925, 0.70357, 0.77055, 0.56736, 0.79941, 1.3951, 0.57134, 0.95513, 0.00034206, 0.00034206, 0.00034206
|
67 |
+
66, 0.56616, 0.78851, 0.34173, 0.83039, 0.70109, 0.67162, 0.74394, 0.59373, 0.68556, 0.65133, 0.72344, 0.53581, 0.80349, 1.3912, 0.5577, 0.95638, 0.00033306, 0.00033306, 0.00033306
|
68 |
+
67, 0.56732, 0.78062, 0.33983, 0.8317, 0.77179, 0.72827, 0.7677, 0.61439, 0.75142, 0.71164, 0.74291, 0.54822, 0.80806, 1.3651, 0.55822, 0.95723, 0.00032406, 0.00032406, 0.00032406
|
69 |
+
68, 0.56095, 0.7762, 0.36706, 0.82881, 0.69404, 0.77097, 0.76427, 0.60977, 0.67391, 0.75037, 0.74033, 0.54665, 0.8057, 1.3906, 0.57319, 0.95657, 0.00031506, 0.00031506, 0.00031506
|
70 |
+
69, 0.55536, 0.77229, 0.3368, 0.82914, 0.69365, 0.76207, 0.76087, 0.60264, 0.67145, 0.74189, 0.73331, 0.54857, 0.80133, 1.3994, 0.58117, 0.95565, 0.00030606, 0.00030606, 0.00030606
|
71 |
+
70, 0.54743, 0.7729, 0.33749, 0.83151, 0.8373, 0.71216, 0.79506, 0.65227, 0.82023, 0.69198, 0.77218, 0.59237, 0.80051, 1.3476, 0.56394, 0.9548, 0.00029706, 0.00029706, 0.00029706
|
72 |
+
71, 0.54997, 0.75721, 0.32825, 0.82995, 0.82106, 0.7163, 0.80457, 0.6537, 0.83981, 0.67901, 0.7761, 0.58391, 0.80402, 1.3472, 0.56776, 0.95913, 0.00028806, 0.00028806, 0.00028806
|
73 |
+
72, 0.54305, 0.74596, 0.32968, 0.82866, 0.8293, 0.69662, 0.81236, 0.65757, 0.82414, 0.68028, 0.78236, 0.59373, 0.80448, 1.3768, 0.54911, 0.95795, 0.00027906, 0.00027906, 0.00027906
|
74 |
+
73, 0.54014, 0.74852, 0.32947, 0.82546, 0.81267, 0.7231, 0.80523, 0.64966, 0.83653, 0.68237, 0.77707, 0.57785, 0.80299, 1.3685, 0.55379, 0.95352, 0.00027006, 0.00027006, 0.00027006
|
75 |
+
74, 0.53922, 0.74497, 0.32548, 0.82507, 0.79918, 0.74561, 0.80089, 0.63968, 0.78544, 0.73317, 0.78357, 0.57407, 0.81351, 1.3922, 0.55817, 0.96458, 0.00026106, 0.00026106, 0.00026106
|
76 |
+
75, 0.53062, 0.74054, 0.32073, 0.82576, 0.68415, 0.80599, 0.75324, 0.59677, 0.65665, 0.77555, 0.72227, 0.53303, 0.8047, 1.3891, 0.55462, 0.95978, 0.00025207, 0.00025207, 0.00025207
|
77 |
+
76, 0.52086, 0.7243, 0.31425, 0.82186, 0.63119, 0.80672, 0.74517, 0.59187, 0.69808, 0.65529, 0.72488, 0.53748, 0.80322, 1.4015, 0.55531, 0.95701, 0.00024307, 0.00024307, 0.00024307
|
78 |
+
77, 0.52114, 0.73126, 0.31502, 0.82132, 0.72446, 0.68029, 0.74773, 0.59118, 0.68957, 0.651, 0.72075, 0.5338, 0.8016, 1.4074, 0.55154, 0.95825, 0.00023407, 0.00023407, 0.00023407
|
79 |
+
78, 0.52019, 0.72205, 0.31224, 0.82104, 0.68519, 0.77949, 0.76514, 0.60951, 0.65542, 0.74962, 0.7361, 0.54917, 0.80407, 1.4286, 0.55442, 0.9612, 0.00022507, 0.00022507, 0.00022507
|
80 |
+
79, 0.52355, 0.72569, 0.31315, 0.82264, 0.7294, 0.68295, 0.76398, 0.59888, 0.68056, 0.65817, 0.72849, 0.53399, 0.80901, 1.4521, 0.5599, 0.96588, 0.00021607, 0.00021607, 0.00021607
|
81 |
+
80, 0.51894, 0.71568, 0.31234, 0.82238, 0.76087, 0.79835, 0.8134, 0.65616, 0.72987, 0.76534, 0.78255, 0.59648, 0.8036, 1.4161, 0.5577, 0.96259, 0.00020707, 0.00020707, 0.00020707
|
82 |
+
81, 0.51389, 0.71878, 0.30829, 0.82266, 0.78944, 0.75054, 0.78478, 0.62801, 0.76857, 0.71976, 0.75666, 0.56391, 0.80701, 1.4382, 0.55192, 0.96427, 0.00019807, 0.00019807, 0.00019807
|
83 |
+
82, 0.51181, 0.7114, 0.30813, 0.82387, 0.72337, 0.78169, 0.8154, 0.66272, 0.70718, 0.7654, 0.79611, 0.5994, 0.80667, 1.4388, 0.55919, 0.96339, 0.00018907, 0.00018907, 0.00018907
|
84 |
+
83, 0.50737, 0.70627, 0.30782, 0.81874, 0.71125, 0.71064, 0.75156, 0.59727, 0.69908, 0.69716, 0.74038, 0.53154, 0.80147, 1.4387, 0.55836, 0.96116, 0.00018007, 0.00018007, 0.00018007
|
85 |
+
84, 0.49792, 0.69238, 0.29751, 0.81804, 0.73516, 0.69581, 0.769, 0.60885, 0.67228, 0.69994, 0.73873, 0.54528, 0.80304, 1.4544, 0.54934, 0.96, 0.00017107, 0.00017107, 0.00017107
|
86 |
+
85, 0.49451, 0.69645, 0.29818, 0.82053, 0.70733, 0.71281, 0.76666, 0.60991, 0.67534, 0.69518, 0.73672, 0.54476, 0.80437, 1.4656, 0.55328, 0.9614, 0.00016207, 0.00016207, 0.00016207
|
87 |
+
86, 0.49599, 0.70279, 0.30017, 0.81913, 0.72683, 0.78242, 0.77015, 0.61612, 0.69955, 0.75336, 0.74101, 0.55056, 0.80207, 1.4503, 0.55955, 0.96008, 0.00015308, 0.00015308, 0.00015308
|
88 |
+
87, 0.49304, 0.69447, 0.29684, 0.81727, 0.65968, 0.79186, 0.76086, 0.60272, 0.63962, 0.77063, 0.74039, 0.54311, 0.80331, 1.4685, 0.54979, 0.96292, 0.00014408, 0.00014408, 0.00014408
|
89 |
+
88, 0.49306, 0.69399, 0.29729, 0.81831, 0.67819, 0.72079, 0.76682, 0.60715, 0.65047, 0.69414, 0.74149, 0.54613, 0.80315, 1.4687, 0.54764, 0.96322, 0.00013508, 0.00013508, 0.00013508
|
90 |
+
89, 0.48287, 0.67137, 0.28864, 0.81597, 0.72594, 0.78834, 0.78094, 0.62154, 0.69894, 0.76037, 0.75545, 0.56241, 0.80354, 1.4696, 0.5531, 0.96513, 0.00012608, 0.00012608, 0.00012608
|
91 |
+
90, 0.48185, 0.68242, 0.2898, 0.81642, 0.73901, 0.7834, 0.78096, 0.61954, 0.70636, 0.75143, 0.75255, 0.55938, 0.79605, 1.4637, 0.55406, 0.96108, 0.00011708, 0.00011708, 0.00011708
|
92 |
+
91, 0.45078, 0.67671, 0.25929, 0.80333, 0.71147, 0.79471, 0.78207, 0.61535, 0.68094, 0.76312, 0.75044, 0.55572, 0.80143, 1.5125, 0.55954, 0.96307, 0.00010808, 0.00010808, 0.00010808
|
93 |
+
92, 0.44462, 0.66587, 0.25821, 0.79648, 0.63981, 0.81374, 0.77407, 0.61318, 0.6189, 0.78938, 0.75256, 0.55354, 0.80296, 1.5094, 0.55872, 0.96256, 9.9081e-05, 9.9081e-05, 9.9081e-05
|
94 |
+
93, 0.43212, 0.65368, 0.25116, 0.79911, 0.71197, 0.68647, 0.75752, 0.60519, 0.68608, 0.65812, 0.73196, 0.54064, 0.79927, 1.5142, 0.55862, 0.96095, 9.0082e-05, 9.0082e-05, 9.0082e-05
|
95 |
+
94, 0.42456, 0.64661, 0.24873, 0.79885, 0.69258, 0.80521, 0.76697, 0.61427, 0.66743, 0.77881, 0.74174, 0.54952, 0.79729, 1.5107, 0.5496, 0.96, 8.1083e-05, 8.1083e-05, 8.1083e-05
|
96 |
+
95, 0.42338, 0.64361, 0.24775, 0.79742, 0.73377, 0.78735, 0.76888, 0.61223, 0.70272, 0.75642, 0.74011, 0.54855, 0.80374, 1.5256, 0.55423, 0.9659, 7.2084e-05, 7.2084e-05, 7.2084e-05
|
97 |
+
96, 0.42345, 0.64606, 0.24458, 0.79588, 0.6621, 0.80102, 0.76084, 0.6012, 0.64209, 0.77794, 0.73891, 0.5454, 0.80108, 1.5389, 0.55329, 0.96299, 6.3085e-05, 6.3085e-05, 6.3085e-05
|
98 |
+
97, 0.41508, 0.63926, 0.23922, 0.79539, 0.66245, 0.8099, 0.76572, 0.60719, 0.63791, 0.78369, 0.74262, 0.54731, 0.80228, 1.5399, 0.5574, 0.96233, 5.4086e-05, 5.4086e-05, 5.4086e-05
|
99 |
+
98, 0.41318, 0.63601, 0.24238, 0.79455, 0.70145, 0.79929, 0.76388, 0.61245, 0.68155, 0.77692, 0.74458, 0.55428, 0.80106, 1.5393, 0.55176, 0.96291, 4.5086e-05, 4.5086e-05, 4.5086e-05
|
100 |
+
99, 0.41171, 0.61932, 0.23721, 0.79716, 0.6897, 0.80326, 0.77061, 0.61438, 0.66598, 0.7772, 0.74692, 0.55639, 0.80343, 1.5552, 0.55588, 0.96399, 3.6087e-05, 3.6087e-05, 3.6087e-05
|
101 |
+
100, 0.41172, 0.63064, 0.24084, 0.79362, 0.84702, 0.71843, 0.77213, 0.61109, 0.82633, 0.69789, 0.75114, 0.55645, 0.80413, 1.558, 0.55538, 0.96335, 2.7088e-05, 2.7088e-05, 2.7088e-05
|
result/results.png
ADDED
result/state_dict.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:428024acedacbbacf005ebe03e00951a68fd3b317adf3a84628f643105e685bd
|
3 |
+
size 23767263
|
result/train_batch0.jpg
ADDED
result/train_batch1.jpg
ADDED
result/train_batch10620.jpg
ADDED
result/train_batch10621.jpg
ADDED
result/train_batch10622.jpg
ADDED
result/train_batch2.jpg
ADDED
result/val_batch0_labels.jpg
ADDED
result/val_batch0_pred.jpg
ADDED
result/val_batch1_labels.jpg
ADDED
result/val_batch1_pred.jpg
ADDED
result/val_batch2_labels.jpg
ADDED
result/val_batch2_pred.jpg
ADDED
trafficImage/Trace.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytz
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
from urllib.parse import urlparse
|
6 |
+
import time
|
7 |
+
from ultralytics import YOLO
|
8 |
+
|
9 |
+
def process_images(image_urls):
|
10 |
+
hong_kong_timezone = pytz.timezone('Asia/Hong_Kong')
|
11 |
+
|
12 |
+
while True:
|
13 |
+
current_time = datetime.datetime.now(tz=hong_kong_timezone).strftime("%Y%m%d%H%M%S")
|
14 |
+
folder_name = f"/content/{current_time}"
|
15 |
+
print(folder_name)
|
16 |
+
os.makedirs(folder_name, exist_ok=True)
|
17 |
+
|
18 |
+
for image_url in image_urls:
|
19 |
+
response = requests.get(image_url)
|
20 |
+
image_data = response.content
|
21 |
+
parsed_url = urlparse(image_url)
|
22 |
+
image_name = os.path.basename(parsed_url.path)
|
23 |
+
file_name = os.path.join(folder_name, image_name)
|
24 |
+
with open(file_name, "wb") as file:
|
25 |
+
file.write(image_data)
|
26 |
+
print(file_name)
|
27 |
+
|
28 |
+
folder_name_formatted = f"'{folder_name}'"
|
29 |
+
|
30 |
+
yolo = YOLO('/content/Smart-Traffic/best.pt')
|
31 |
+
yolo.set_conf(0.45)
|
32 |
+
yolo.predict(source=folder_name_formatted, save=True, save_txt=True)
|
33 |
+
|
34 |
+
time.sleep(120)
|
trafficImage/__init__.py
ADDED
File without changes
|