File size: 1,092 Bytes
7b19e90 1f5f7ac 7b19e90 89eeb15 7b19e90 6766081 89eeb15 008d4a3 6766081 008d4a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
base_model: cognitivecomputations/dolphin-2.9.3-llama-3-8b
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---
# Uploaded model
- **Developed by:** AashishKumar
- **License:** apache-2.0
- **Finetuned from model :** cognitivecomputations/dolphin-2.9.3-llama-3-8b
```
from transformers import AutoTokenizer, LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained("otonomy/Cn_2_9_3_Hinglish_llama3_7b_8kAk")
tokenizer = AutoTokenizer.from_pretrained("otonomy/Cn_2_9_3_Hinglish_llama3_7b_8kAK")
prompt = "ky tumhe la la land pasand hai?"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```
```
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="otonomy/Cn_2_9_3_Hinglish_llama3_7b_8kAk")
pipe(messages)
```
|