File size: 1,092 Bytes
7b19e90
 
 
 
 
 
 
 
 
 
 
1f5f7ac
7b19e90
 
 
 
 
 
 
 
89eeb15
 
7b19e90
6766081
 
89eeb15
 
 
 
 
 
 
 
008d4a3
 
 
 
 
 
 
 
 
6766081
008d4a3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
base_model: cognitivecomputations/dolphin-2.9.3-llama-3-8b
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---

# Uploaded  model

- **Developed by:** AashishKumar
- **License:** apache-2.0
- **Finetuned from model :** cognitivecomputations/dolphin-2.9.3-llama-3-8b

```
from transformers import AutoTokenizer, LlamaForCausalLM

model = LlamaForCausalLM.from_pretrained("otonomy/Cn_2_9_3_Hinglish_llama3_7b_8kAk")
tokenizer = AutoTokenizer.from_pretrained("otonomy/Cn_2_9_3_Hinglish_llama3_7b_8kAK")

prompt = "ky tumhe la la land pasand hai?"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```


```
# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="otonomy/Cn_2_9_3_Hinglish_llama3_7b_8kAk")
pipe(messages)
```