Model save
Browse files
README.md
CHANGED
@@ -21,13 +21,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Model Preparation Time: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
-
- F1: 0.
|
30 |
-
- Ratio: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -50,18 +50,15 @@ The following hyperparameters were used during training:
|
|
50 |
- train_batch_size: 8
|
51 |
- eval_batch_size: 8
|
52 |
- seed: 42
|
53 |
-
- gradient_accumulation_steps: 2
|
54 |
-
- total_train_batch_size: 16
|
55 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
- lr_scheduler_type: linear
|
57 |
- num_epochs: 1
|
58 |
-
- mixed_precision_training: Native AMP
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
-
| Training Loss | Epoch
|
63 |
-
|
64 |
-
| No log | 0
|
65 |
|
66 |
|
67 |
### Framework versions
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.9601
|
25 |
+
- Model Preparation Time: 0.0101
|
26 |
+
- Accuracy: 0.6358
|
27 |
+
- Precision: 0.6154
|
28 |
+
- Recall: 0.6254
|
29 |
+
- F1: 0.6161
|
30 |
+
- Ratio: 0.4969
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
50 |
- train_batch_size: 8
|
51 |
- eval_batch_size: 8
|
52 |
- seed: 42
|
|
|
|
|
53 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
55 |
- num_epochs: 1
|
|
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | Precision | Recall | F1 | Ratio |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:---------:|:------:|:------:|:------:|
|
61 |
+
| No log | 1.0 | 95 | 0.9601 | 0.0101 | 0.6358 | 0.6154 | 0.6254 | 0.6161 | 0.4969 |
|
62 |
|
63 |
|
64 |
### Framework versions
|