osman93 commited on
Commit
2f1c626
1 Parent(s): 2016053

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.05 +/- 0.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b18612275bc215d9eb7ca65334a76b3555aadf9209a5e1cf81a8894c8e23aeae
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f85fcb414c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f85fcb38cf0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674039290342428963,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAevzEPiYZyry42hc/evzEPiYZyry42hc/evzEPiYZyry42hc/evzEPiYZyry42hc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1reNP2avxj91jTs/pADKv8Zmib8Cys49Roylv5hXJD8FU5A/Jy2uv04ZhL629V0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjx6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjx6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjx6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.38473874 -0.02467019 0.59318113]\n [ 0.38473874 -0.02467019 0.59318113]\n [ 0.38473874 -0.02467019 0.59318113]\n [ 0.38473874 -0.02467019 0.59318113]]",
60
+ "desired_goal": "[[ 1.1071727 1.5522277 0.7326272 ]\n [-1.5781446 -1.0734489 0.10097124]\n [-1.2933433 0.6419616 1.1275336 ]\n [-1.3607529 -0.25800556 0.8670305 ]]",
61
+ "observation": "[[ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]\n [ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]\n [ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]\n [ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOlMQvZuRHj2T9289OnCzPCaDHj3dJ0M+NoWHPFFL+j3JJDo+qqymPeeBmz1WCRM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.03523562 0.03871308 0.05858571]\n [ 0.0219041 0.03869929 0.19058175]\n [ 0.01654301 0.12221397 0.18178095]\n [ 0.08138402 0.07593136 0.1435903 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoPtyZrsC8r+UhpRSlIwBbJRLMowBdJRHQKVgVgFX7tR1fZQoaAZoCWgPQwi1G33MBwTtv5SGlFKUaBVLMmgWR0ClYBeiSJTEdX2UKGgGaAloD0MItCJqos+nAsCUhpRSlGgVSzJoFkdApV/Apz90inV9lChoBmgJaA9DCLcIjPUNTPi/lIaUUpRoFUsyaBZHQKVfg3RXwLF1fZQoaAZoCWgPQwikNnFyv0P6v5SGlFKUaBVLMmgWR0ClYXSmZVn3dX2UKGgGaAloD0MItrsH6L7c9b+UhpRSlGgVSzJoFkdApWE2VRk3CXV9lChoBmgJaA9DCM+idyrgnu6/lIaUUpRoFUsyaBZHQKVg3rB0p3J1fZQoaAZoCWgPQwgXK2owDYP3v5SGlFKUaBVLMmgWR0ClYKFpGnXNdX2UKGgGaAloD0MItYe9UMD287+UhpRSlGgVSzJoFkdApWKlbHIZInV9lChoBmgJaA9DCOI8nMB0WvS/lIaUUpRoFUsyaBZHQKViZy5qdpZ1fZQoaAZoCWgPQwiiDcAGREjxv5SGlFKUaBVLMmgWR0ClYg+lbeMydX2UKGgGaAloD0MIoYMu4dCb+7+UhpRSlGgVSzJoFkdApWHSXv6TGHV9lChoBmgJaA9DCJCCp5Ar1QDAlIaUUpRoFUsyaBZHQKVjwAuqWC51fZQoaAZoCWgPQwjkafmBqzz5v5SGlFKUaBVLMmgWR0ClY4G47Rv4dX2UKGgGaAloD0MI4umVsgxxA8CUhpRSlGgVSzJoFkdApWMqab4Ju3V9lChoBmgJaA9DCNx++WTFMPq/lIaUUpRoFUsyaBZHQKVi7TWoWHl1fZQoaAZoCWgPQwjCMGDJVawAwJSGlFKUaBVLMmgWR0ClZM832mHhdX2UKGgGaAloD0MIHqSnyCHi/r+UhpRSlGgVSzJoFkdApWSQw9JSSHV9lChoBmgJaA9DCGXequtQDfW/lIaUUpRoFUsyaBZHQKVkORMewLV1fZQoaAZoCWgPQwhI+x9grToCwJSGlFKUaBVLMmgWR0ClY/vHtF8YdX2UKGgGaAloD0MIwvaTMT5M4L+UhpRSlGgVSzJoFkdApWYIUSIxg3V9lChoBmgJaA9DCMWNW8zPTfO/lIaUUpRoFUsyaBZHQKVlyuX/o7p1fZQoaAZoCWgPQwhvDAHAsSf6v5SGlFKUaBVLMmgWR0ClZXNFz+3pdX2UKGgGaAloD0MIvayJBb4i97+UhpRSlGgVSzJoFkdApWU2BWgezXV9lChoBmgJaA9DCNR+aydKQu2/lIaUUpRoFUsyaBZHQKVnTNi6QNl1fZQoaAZoCWgPQwhVFoVdFD3uv5SGlFKUaBVLMmgWR0ClZw6ouPFOdX2UKGgGaAloD0MIaVch5SeV87+UhpRSlGgVSzJoFkdApWa3/T9bYHV9lChoBmgJaA9DCP88DRgkfe6/lIaUUpRoFUsyaBZHQKVmetHQQcx1fZQoaAZoCWgPQwj6JeKt8y/zv5SGlFKUaBVLMmgWR0ClaGU6gdwOdX2UKGgGaAloD0MITpzc71AU6b+UhpRSlGgVSzJoFkdApWgm9Jz1b3V9lChoBmgJaA9DCDtWKT3Ty+m/lIaUUpRoFUsyaBZHQKVnz1X/5tZ1fZQoaAZoCWgPQwi/RSdLrRcBwJSGlFKUaBVLMmgWR0ClZ5Iq0+khdX2UKGgGaAloD0MIpyIVxhYiAcCUhpRSlGgVSzJoFkdApWmXe+Eh7nV9lChoBmgJaA9DCLqe6LrwowXAlIaUUpRoFUsyaBZHQKVpWT238XN1fZQoaAZoCWgPQwjLnZlgOHcKwJSGlFKUaBVLMmgWR0ClaQGp2ll9dX2UKGgGaAloD0MI/KVFfZK7+b+UhpRSlGgVSzJoFkdApWjEipvP1XV9lChoBmgJaA9DCJcbDHVY4f+/lIaUUpRoFUsyaBZHQKVqtZfUnXx1fZQoaAZoCWgPQwhl4etrXeoHwJSGlFKUaBVLMmgWR0Clanc8TzundX2UKGgGaAloD0MIJemayTfb2b+UhpRSlGgVSzJoFkdApWofhAGB4HV9lChoBmgJaA9DCPz89+C1qwfAlIaUUpRoFUsyaBZHQKVp4kFfReF1fZQoaAZoCWgPQwhoBYasbnX7v5SGlFKUaBVLMmgWR0Cla9+SjgyedX2UKGgGaAloD0MIv51EhH8RCMCUhpRSlGgVSzJoFkdApWuhOJtSAHV9lChoBmgJaA9DCOI+cmvSjQHAlIaUUpRoFUsyaBZHQKVrSYc/+sJ1fZQoaAZoCWgPQwjeyhKdZRbtv5SGlFKUaBVLMmgWR0ClawxsVLzxdX2UKGgGaAloD0MIQpjbvdzn+L+UhpRSlGgVSzJoFkdApW0cTJyQxXV9lChoBmgJaA9DCEKUL2ghgea/lIaUUpRoFUsyaBZHQKVs3ggHNX51fZQoaAZoCWgPQwjQ7/s3L07uv5SGlFKUaBVLMmgWR0ClbIZimVJMdX2UKGgGaAloD0MIqfsApDbx6b+UhpRSlGgVSzJoFkdApWxKDVYp2HV9lChoBmgJaA9DCOksswjFVvS/lIaUUpRoFUsyaBZHQKVuPRKpT/B1fZQoaAZoCWgPQwgvpMNDGH/zv5SGlFKUaBVLMmgWR0Clbf6AOJ+EdX2UKGgGaAloD0MIqFFIMqs39L+UhpRSlGgVSzJoFkdApW2mr6tT1nV9lChoBmgJaA9DCJXurrMh//6/lIaUUpRoFUsyaBZHQKVtaelKsdV1fZQoaAZoCWgPQwhKmj+mten3v5SGlFKUaBVLMmgWR0Clb0E8JUo8dX2UKGgGaAloD0MI5lsf1hv1BMCUhpRSlGgVSzJoFkdApW8DuQZGa3V9lChoBmgJaA9DCPeUnBN7SAHAlIaUUpRoFUsyaBZHQKVurDpC8e11fZQoaAZoCWgPQwjFAl/RrZf2v5SGlFKUaBVLMmgWR0Clbm8h9srNdX2UKGgGaAloD0MIldIzvcRY7r+UhpRSlGgVSzJoFkdApXBZF5OafHV9lChoBmgJaA9DCJp5ck2BTATAlIaUUpRoFUsyaBZHQKVwGt16mfp1fZQoaAZoCWgPQwgHswkwLJ8EwJSGlFKUaBVLMmgWR0Clb8M54nnddX2UKGgGaAloD0MIN1DgnXxaAMCUhpRSlGgVSzJoFkdApW+GBas6rHV9lChoBmgJaA9DCNi7P96rVgbAlIaUUpRoFUsyaBZHQKVxggg5imV1fZQoaAZoCWgPQwjXoC+9/Tn2v5SGlFKUaBVLMmgWR0ClcUO8K5TZdX2UKGgGaAloD0MI6pPcYRNZAsCUhpRSlGgVSzJoFkdApXDsKE3843V9lChoBmgJaA9DCPXZAdcVM/W/lIaUUpRoFUsyaBZHQKVwruLrHEN1fZQoaAZoCWgPQwieB3dn7bb9v5SGlFKUaBVLMmgWR0ClcsHzg/C7dX2UKGgGaAloD0MIEfxvJTv2AcCUhpRSlGgVSzJoFkdApXKDqjafz3V9lChoBmgJaA9DCDHqWnufave/lIaUUpRoFUsyaBZHQKVyLCb+cYt1fZQoaAZoCWgPQwiLpUi+EmgAwJSGlFKUaBVLMmgWR0Clce75/LDAdX2UKGgGaAloD0MILNUFvMzw+r+UhpRSlGgVSzJoFkdApXPs/W1+iXV9lChoBmgJaA9DCCB7vfvj/fu/lIaUUpRoFUsyaBZHQKVzruNxVAB1fZQoaAZoCWgPQwgmjGZl+7ABwJSGlFKUaBVLMmgWR0Clc1c/UvwmdX2UKGgGaAloD0MILNfbZirE9r+UhpRSlGgVSzJoFkdApXMaC17Y03V9lChoBmgJaA9DCE0Ttp+M8eq/lIaUUpRoFUsyaBZHQKV1COPNmlJ1fZQoaAZoCWgPQwhjDKzj+CEDwJSGlFKUaBVLMmgWR0CldMqeTV2BdX2UKGgGaAloD0MIPKQYINFkAcCUhpRSlGgVSzJoFkdApXRzGFSKnHV9lChoBmgJaA9DCEGC4seYO+q/lIaUUpRoFUsyaBZHQKV0NfG+9J11fZQoaAZoCWgPQwgF24gnu9n4v5SGlFKUaBVLMmgWR0CldhQXqJMydX2UKGgGaAloD0MIWwcHexMD/b+UhpRSlGgVSzJoFkdApXXV1SwW33V9lChoBmgJaA9DCDwwgPChBPm/lIaUUpRoFUsyaBZHQKV1fkZrHlx1fZQoaAZoCWgPQwjpKXKIuPn4v5SGlFKUaBVLMmgWR0CldUEJKJ2udX2UKGgGaAloD0MI8+SaApkd7r+UhpRSlGgVSzJoFkdApXctyvLX+XV9lChoBmgJaA9DCFNaf0sA/t2/lIaUUpRoFUsyaBZHQKV274Irvst1fZQoaAZoCWgPQwjFcHUAxN3sv5SGlFKUaBVLMmgWR0Cldpf6O5rhdX2UKGgGaAloD0MI3ncMj/2s7L+UhpRSlGgVSzJoFkdApXZawt8NQXV9lChoBmgJaA9DCI16iEZ3kO+/lIaUUpRoFUsyaBZHQKV4RH/95yF1fZQoaAZoCWgPQwh+Uu3T8Zjhv5SGlFKUaBVLMmgWR0CleAYzabnYdX2UKGgGaAloD0MIHHqLh/cc6b+UhpRSlGgVSzJoFkdApXeugezUqnV9lChoBmgJaA9DCPQVpBmLpty/lIaUUpRoFUsyaBZHQKV3cVrylN11fZQoaAZoCWgPQwiSIFwBhTr4v5SGlFKUaBVLMmgWR0CleY2IoE0SdX2UKGgGaAloD0MI0qsBSkMN7r+UhpRSlGgVSzJoFkdApXlPSa3I/HV9lChoBmgJaA9DCOFE9GvrZ/i/lIaUUpRoFUsyaBZHQKV496D5CWx1fZQoaAZoCWgPQwjSOqqaIGrsv5SGlFKUaBVLMmgWR0CleLqkuYhMdX2UKGgGaAloD0MIAWiULv2L+L+UhpRSlGgVSzJoFkdApXql3W4EwHV9lChoBmgJaA9DCOJXrOEid+O/lIaUUpRoFUsyaBZHQKV6Z73wkPd1fZQoaAZoCWgPQwg+BFWjV0Pxv5SGlFKUaBVLMmgWR0ClehBK15SndX2UKGgGaAloD0MIqWdBKO9j5r+UhpRSlGgVSzJoFkdApXnTJhfBvnV9lChoBmgJaA9DCExPWOIBJfW/lIaUUpRoFUsyaBZHQKV7zcqOLix1fZQoaAZoCWgPQwjAAwMIH0rkv5SGlFKUaBVLMmgWR0Cle4+g+QlsdX2UKGgGaAloD0MILpCg+DHm37+UhpRSlGgVSzJoFkdApXs4BBAv+XV9lChoBmgJaA9DCPG9v0F7tfC/lIaUUpRoFUsyaBZHQKV6+ucMEzR1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54187e7aac923a257c4fd63458cb17b511ff75134d14f7cc8da9a2de5d86215f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:662ad84f431e788714c8dd7471c46075c9b1b0a60fbb005e44f7cf4633ed3f75
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f85fcb414c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85fcb38cf0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674039290342428963, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAevzEPiYZyry42hc/evzEPiYZyry42hc/evzEPiYZyry42hc/evzEPiYZyry42hc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1reNP2avxj91jTs/pADKv8Zmib8Cys49Roylv5hXJD8FU5A/Jy2uv04ZhL629V0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjx6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjx6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjx6/MQ+JhnKvLjaFz8dU/I7CeeguyxULjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38473874 -0.02467019 0.59318113]\n [ 0.38473874 -0.02467019 0.59318113]\n [ 0.38473874 -0.02467019 0.59318113]\n [ 0.38473874 -0.02467019 0.59318113]]", "desired_goal": "[[ 1.1071727 1.5522277 0.7326272 ]\n [-1.5781446 -1.0734489 0.10097124]\n [-1.2933433 0.6419616 1.1275336 ]\n [-1.3607529 -0.25800556 0.8670305 ]]", "observation": "[[ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]\n [ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]\n [ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]\n [ 0.38473874 -0.02467019 0.59318113 0.00739516 -0.00491035 0.01064019]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOlMQvZuRHj2T9289OnCzPCaDHj3dJ0M+NoWHPFFL+j3JJDo+qqymPeeBmz1WCRM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03523562 0.03871308 0.05858571]\n [ 0.0219041 0.03869929 0.19058175]\n [ 0.01654301 0.12221397 0.18178095]\n [ 0.08138402 0.07593136 0.1435903 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoPtyZrsC8r+UhpRSlIwBbJRLMowBdJRHQKVgVgFX7tR1fZQoaAZoCWgPQwi1G33MBwTtv5SGlFKUaBVLMmgWR0ClYBeiSJTEdX2UKGgGaAloD0MItCJqos+nAsCUhpRSlGgVSzJoFkdApV/Apz90inV9lChoBmgJaA9DCLcIjPUNTPi/lIaUUpRoFUsyaBZHQKVfg3RXwLF1fZQoaAZoCWgPQwikNnFyv0P6v5SGlFKUaBVLMmgWR0ClYXSmZVn3dX2UKGgGaAloD0MItrsH6L7c9b+UhpRSlGgVSzJoFkdApWE2VRk3CXV9lChoBmgJaA9DCM+idyrgnu6/lIaUUpRoFUsyaBZHQKVg3rB0p3J1fZQoaAZoCWgPQwgXK2owDYP3v5SGlFKUaBVLMmgWR0ClYKFpGnXNdX2UKGgGaAloD0MItYe9UMD287+UhpRSlGgVSzJoFkdApWKlbHIZInV9lChoBmgJaA9DCOI8nMB0WvS/lIaUUpRoFUsyaBZHQKViZy5qdpZ1fZQoaAZoCWgPQwiiDcAGREjxv5SGlFKUaBVLMmgWR0ClYg+lbeMydX2UKGgGaAloD0MIoYMu4dCb+7+UhpRSlGgVSzJoFkdApWHSXv6TGHV9lChoBmgJaA9DCJCCp5Ar1QDAlIaUUpRoFUsyaBZHQKVjwAuqWC51fZQoaAZoCWgPQwjkafmBqzz5v5SGlFKUaBVLMmgWR0ClY4G47Rv4dX2UKGgGaAloD0MI4umVsgxxA8CUhpRSlGgVSzJoFkdApWMqab4Ju3V9lChoBmgJaA9DCNx++WTFMPq/lIaUUpRoFUsyaBZHQKVi7TWoWHl1fZQoaAZoCWgPQwjCMGDJVawAwJSGlFKUaBVLMmgWR0ClZM832mHhdX2UKGgGaAloD0MIHqSnyCHi/r+UhpRSlGgVSzJoFkdApWSQw9JSSHV9lChoBmgJaA9DCGXequtQDfW/lIaUUpRoFUsyaBZHQKVkORMewLV1fZQoaAZoCWgPQwhI+x9grToCwJSGlFKUaBVLMmgWR0ClY/vHtF8YdX2UKGgGaAloD0MIwvaTMT5M4L+UhpRSlGgVSzJoFkdApWYIUSIxg3V9lChoBmgJaA9DCMWNW8zPTfO/lIaUUpRoFUsyaBZHQKVlyuX/o7p1fZQoaAZoCWgPQwhvDAHAsSf6v5SGlFKUaBVLMmgWR0ClZXNFz+3pdX2UKGgGaAloD0MIvayJBb4i97+UhpRSlGgVSzJoFkdApWU2BWgezXV9lChoBmgJaA9DCNR+aydKQu2/lIaUUpRoFUsyaBZHQKVnTNi6QNl1fZQoaAZoCWgPQwhVFoVdFD3uv5SGlFKUaBVLMmgWR0ClZw6ouPFOdX2UKGgGaAloD0MIaVch5SeV87+UhpRSlGgVSzJoFkdApWa3/T9bYHV9lChoBmgJaA9DCP88DRgkfe6/lIaUUpRoFUsyaBZHQKVmetHQQcx1fZQoaAZoCWgPQwj6JeKt8y/zv5SGlFKUaBVLMmgWR0ClaGU6gdwOdX2UKGgGaAloD0MITpzc71AU6b+UhpRSlGgVSzJoFkdApWgm9Jz1b3V9lChoBmgJaA9DCDtWKT3Ty+m/lIaUUpRoFUsyaBZHQKVnz1X/5tZ1fZQoaAZoCWgPQwi/RSdLrRcBwJSGlFKUaBVLMmgWR0ClZ5Iq0+khdX2UKGgGaAloD0MIpyIVxhYiAcCUhpRSlGgVSzJoFkdApWmXe+Eh7nV9lChoBmgJaA9DCLqe6LrwowXAlIaUUpRoFUsyaBZHQKVpWT238XN1fZQoaAZoCWgPQwjLnZlgOHcKwJSGlFKUaBVLMmgWR0ClaQGp2ll9dX2UKGgGaAloD0MI/KVFfZK7+b+UhpRSlGgVSzJoFkdApWjEipvP1XV9lChoBmgJaA9DCJcbDHVY4f+/lIaUUpRoFUsyaBZHQKVqtZfUnXx1fZQoaAZoCWgPQwhl4etrXeoHwJSGlFKUaBVLMmgWR0Clanc8TzundX2UKGgGaAloD0MIJemayTfb2b+UhpRSlGgVSzJoFkdApWofhAGB4HV9lChoBmgJaA9DCPz89+C1qwfAlIaUUpRoFUsyaBZHQKVp4kFfReF1fZQoaAZoCWgPQwhoBYasbnX7v5SGlFKUaBVLMmgWR0Cla9+SjgyedX2UKGgGaAloD0MIv51EhH8RCMCUhpRSlGgVSzJoFkdApWuhOJtSAHV9lChoBmgJaA9DCOI+cmvSjQHAlIaUUpRoFUsyaBZHQKVrSYc/+sJ1fZQoaAZoCWgPQwjeyhKdZRbtv5SGlFKUaBVLMmgWR0ClawxsVLzxdX2UKGgGaAloD0MIQpjbvdzn+L+UhpRSlGgVSzJoFkdApW0cTJyQxXV9lChoBmgJaA9DCEKUL2ghgea/lIaUUpRoFUsyaBZHQKVs3ggHNX51fZQoaAZoCWgPQwjQ7/s3L07uv5SGlFKUaBVLMmgWR0ClbIZimVJMdX2UKGgGaAloD0MIqfsApDbx6b+UhpRSlGgVSzJoFkdApWxKDVYp2HV9lChoBmgJaA9DCOksswjFVvS/lIaUUpRoFUsyaBZHQKVuPRKpT/B1fZQoaAZoCWgPQwgvpMNDGH/zv5SGlFKUaBVLMmgWR0Clbf6AOJ+EdX2UKGgGaAloD0MIqFFIMqs39L+UhpRSlGgVSzJoFkdApW2mr6tT1nV9lChoBmgJaA9DCJXurrMh//6/lIaUUpRoFUsyaBZHQKVtaelKsdV1fZQoaAZoCWgPQwhKmj+mten3v5SGlFKUaBVLMmgWR0Clb0E8JUo8dX2UKGgGaAloD0MI5lsf1hv1BMCUhpRSlGgVSzJoFkdApW8DuQZGa3V9lChoBmgJaA9DCPeUnBN7SAHAlIaUUpRoFUsyaBZHQKVurDpC8e11fZQoaAZoCWgPQwjFAl/RrZf2v5SGlFKUaBVLMmgWR0Clbm8h9srNdX2UKGgGaAloD0MIldIzvcRY7r+UhpRSlGgVSzJoFkdApXBZF5OafHV9lChoBmgJaA9DCJp5ck2BTATAlIaUUpRoFUsyaBZHQKVwGt16mfp1fZQoaAZoCWgPQwgHswkwLJ8EwJSGlFKUaBVLMmgWR0Clb8M54nnddX2UKGgGaAloD0MIN1DgnXxaAMCUhpRSlGgVSzJoFkdApW+GBas6rHV9lChoBmgJaA9DCNi7P96rVgbAlIaUUpRoFUsyaBZHQKVxggg5imV1fZQoaAZoCWgPQwjXoC+9/Tn2v5SGlFKUaBVLMmgWR0ClcUO8K5TZdX2UKGgGaAloD0MI6pPcYRNZAsCUhpRSlGgVSzJoFkdApXDsKE3843V9lChoBmgJaA9DCPXZAdcVM/W/lIaUUpRoFUsyaBZHQKVwruLrHEN1fZQoaAZoCWgPQwieB3dn7bb9v5SGlFKUaBVLMmgWR0ClcsHzg/C7dX2UKGgGaAloD0MIEfxvJTv2AcCUhpRSlGgVSzJoFkdApXKDqjafz3V9lChoBmgJaA9DCDHqWnufave/lIaUUpRoFUsyaBZHQKVyLCb+cYt1fZQoaAZoCWgPQwiLpUi+EmgAwJSGlFKUaBVLMmgWR0Clce75/LDAdX2UKGgGaAloD0MILNUFvMzw+r+UhpRSlGgVSzJoFkdApXPs/W1+iXV9lChoBmgJaA9DCCB7vfvj/fu/lIaUUpRoFUsyaBZHQKVzruNxVAB1fZQoaAZoCWgPQwgmjGZl+7ABwJSGlFKUaBVLMmgWR0Clc1c/UvwmdX2UKGgGaAloD0MILNfbZirE9r+UhpRSlGgVSzJoFkdApXMaC17Y03V9lChoBmgJaA9DCE0Ttp+M8eq/lIaUUpRoFUsyaBZHQKV1COPNmlJ1fZQoaAZoCWgPQwhjDKzj+CEDwJSGlFKUaBVLMmgWR0CldMqeTV2BdX2UKGgGaAloD0MIPKQYINFkAcCUhpRSlGgVSzJoFkdApXRzGFSKnHV9lChoBmgJaA9DCEGC4seYO+q/lIaUUpRoFUsyaBZHQKV0NfG+9J11fZQoaAZoCWgPQwgF24gnu9n4v5SGlFKUaBVLMmgWR0CldhQXqJMydX2UKGgGaAloD0MIWwcHexMD/b+UhpRSlGgVSzJoFkdApXXV1SwW33V9lChoBmgJaA9DCDwwgPChBPm/lIaUUpRoFUsyaBZHQKV1fkZrHlx1fZQoaAZoCWgPQwjpKXKIuPn4v5SGlFKUaBVLMmgWR0CldUEJKJ2udX2UKGgGaAloD0MI8+SaApkd7r+UhpRSlGgVSzJoFkdApXctyvLX+XV9lChoBmgJaA9DCFNaf0sA/t2/lIaUUpRoFUsyaBZHQKV274Irvst1fZQoaAZoCWgPQwjFcHUAxN3sv5SGlFKUaBVLMmgWR0Cldpf6O5rhdX2UKGgGaAloD0MI3ncMj/2s7L+UhpRSlGgVSzJoFkdApXZawt8NQXV9lChoBmgJaA9DCI16iEZ3kO+/lIaUUpRoFUsyaBZHQKV4RH/95yF1fZQoaAZoCWgPQwh+Uu3T8Zjhv5SGlFKUaBVLMmgWR0CleAYzabnYdX2UKGgGaAloD0MIHHqLh/cc6b+UhpRSlGgVSzJoFkdApXeugezUqnV9lChoBmgJaA9DCPQVpBmLpty/lIaUUpRoFUsyaBZHQKV3cVrylN11fZQoaAZoCWgPQwiSIFwBhTr4v5SGlFKUaBVLMmgWR0CleY2IoE0SdX2UKGgGaAloD0MI0qsBSkMN7r+UhpRSlGgVSzJoFkdApXlPSa3I/HV9lChoBmgJaA9DCOFE9GvrZ/i/lIaUUpRoFUsyaBZHQKV496D5CWx1fZQoaAZoCWgPQwjSOqqaIGrsv5SGlFKUaBVLMmgWR0CleLqkuYhMdX2UKGgGaAloD0MIAWiULv2L+L+UhpRSlGgVSzJoFkdApXql3W4EwHV9lChoBmgJaA9DCOJXrOEid+O/lIaUUpRoFUsyaBZHQKV6Z73wkPd1fZQoaAZoCWgPQwg+BFWjV0Pxv5SGlFKUaBVLMmgWR0ClehBK15SndX2UKGgGaAloD0MIqWdBKO9j5r+UhpRSlGgVSzJoFkdApXnTJhfBvnV9lChoBmgJaA9DCExPWOIBJfW/lIaUUpRoFUsyaBZHQKV7zcqOLix1fZQoaAZoCWgPQwjAAwMIH0rkv5SGlFKUaBVLMmgWR0Cle4+g+QlsdX2UKGgGaAloD0MILpCg+DHm37+UhpRSlGgVSzJoFkdApXs4BBAv+XV9lChoBmgJaA9DCPG9v0F7tfC/lIaUUpRoFUsyaBZHQKV6+ucMEzR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (353 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.0545452514663338, "std_reward": 0.423625606128662, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T11:40:44.706032"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da2d1ce41f5361fbdb519c6f9596c7564d067736314c9ab5e66c8f19b8bfd383
3
+ size 3212