File size: 2,521 Bytes
994b129
 
e062cd5
 
994b129
e062cd5
 
 
 
 
 
 
70c9ee8
e062cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b477f3
 
f02e7a0
e062cd5
 
f02e7a0
e062cd5
 
f02e7a0
e062cd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
language:
- it
---
--------------------------------------------------------------------------------------------------

<body>
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"></span>
<br>
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
<br>
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DistilUSE</span>
<br>
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
<br>
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
<br>
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"></span>
</body>

--------------------------------------------------------------------------------------------------

<h3>Model description</h3>

This is a <b>Universal Sentence Encoder</b> <b>[1]</b> model for the <b>Italian</b> language, obtained using <b>mDistilUSE</b> ([distiluse-base-multilingual-cased-v1](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1)) as a starting point and focusing it on the Italian language by modifying the embedding layer 
(as in <b>[2]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset)

The resulting model has 67M parameters, a vocabulary of 30.785 tokens, and a size of ~270 MB.

It can be used to encode Italian texts and compute similarities between them.

<h3>Quick usage</h3>

```python
from transformers import AutoTokenizer, AutoModel
import numpy as np

tokenizer = AutoTokenizer.from_pretrained("osiria/distiluse-base-italian")
model = AutoModel.from_pretrained("osiria/distiluse-base-italian")

text1 = "Alessandro Manzoni è stato uno scrittore italiano"
text2 = "Giacomo Leopardi è stato un poeta italiano"

vec1 = model(tokenizer.encode(text1, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy()
vec2 = model(tokenizer.encode(text2, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy()

cosine_similarity = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2))
print("COSINE SIMILARITY:", cosine_similarity)

# COSINE SIMILARITY: 0.734292
```

<h3>References</h3>

[1] https://arxiv.org/abs/1907.04307

[2] https://arxiv.org/abs/2010.05609

<h3>License</h3>

The model is released under <b>Apache-2.0</b> license