Update README.md
Browse files
README.md
CHANGED
@@ -22,10 +22,10 @@ model-index:
|
|
22 |
type: squad_it
|
23 |
metrics:
|
24 |
- type: exact-match
|
25 |
-
value: 0.
|
26 |
name: Exact Match
|
27 |
- type: f1
|
28 |
-
value: 0.
|
29 |
name: F1
|
30 |
pipeline_tag: question-answering
|
31 |
---
|
@@ -37,7 +37,7 @@ pipeline_tag: question-answering
|
|
37 |
<br>
|
38 |
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;"> Task: Question Answering</span>
|
39 |
<br>
|
40 |
-
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;"> Model:
|
41 |
<br>
|
42 |
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;"> Lang: IT</span>
|
43 |
<br>
|
@@ -63,15 +63,28 @@ The 2.0 version further improves the performances by exploiting a 2-phases fine-
|
|
63 |
|
64 |
In order to maximize the benefits of the multilingual procedure, [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) is used as a pre-trained model. When the double fine-tuning is completed, the embedding layer is then compressed as in [deberta-base-italian](https://huggingface.co/osiria/deberta-base-italian) to obtain a mono-lingual model size
|
65 |
|
|
|
|
|
|
|
|
|
|
|
66 |
The performances on the test set are reported in the following table:
|
67 |
|
68 |
-
(<b>version
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
| EM | F1 |
|
71 |
| ------ | ------ |
|
72 |
-
|
|
73 |
|
74 |
-
Testing notebook: https://huggingface.co/osiria/deberta-italian-question-answering/blob/
|
75 |
|
76 |
<h3>Quick usage</h3>
|
77 |
|
|
|
22 |
type: squad_it
|
23 |
metrics:
|
24 |
- type: exact-match
|
25 |
+
value: 0.7019
|
26 |
name: Exact Match
|
27 |
- type: f1
|
28 |
+
value: 0.8101
|
29 |
name: F1
|
30 |
pipeline_tag: question-answering
|
31 |
---
|
|
|
37 |
<br>
|
38 |
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;"> Task: Question Answering</span>
|
39 |
<br>
|
40 |
+
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;"> Model: LITEQA</span>
|
41 |
<br>
|
42 |
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;"> Lang: IT</span>
|
43 |
<br>
|
|
|
63 |
|
64 |
In order to maximize the benefits of the multilingual procedure, [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) is used as a pre-trained model. When the double fine-tuning is completed, the embedding layer is then compressed as in [deberta-base-italian](https://huggingface.co/osiria/deberta-base-italian) to obtain a mono-lingual model size
|
65 |
|
66 |
+
<b>update: version 3.0 (LITEQA)</b>
|
67 |
+
|
68 |
+
The 3.0 version, with the nickname LITEQA, further improves the performances by exploiting a 3-phases fine-tuning strategy: the model is first fine-tuned on the English SQuAD v2 (1 epoch, 20% warmup ratio, and max learning rate of 3e-5) then further fine-tuned on the Italian SQuAD (2 epochs, no warmup, initial learning rate of 3e-5) and lastly fine-tuned on the lowercase Italian SQuAD (1 epochs, no warmup, initial learning rate of 3e-5)
|
69 |
+
This helps making the model generally more robust, but particularly in uncased settings.
|
70 |
+
|
71 |
The performances on the test set are reported in the following table:
|
72 |
|
73 |
+
(<b>version 3.0</b> performances)
|
74 |
+
|
75 |
+
<b>Cased setting:</b>
|
76 |
+
|
77 |
+
| EM | F1 |
|
78 |
+
| ------ | ------ |
|
79 |
+
| 70.19 | 81.01 |
|
80 |
+
|
81 |
+
<b>Uncased setting:</b>
|
82 |
|
83 |
| EM | F1 |
|
84 |
| ------ | ------ |
|
85 |
+
| 69.60 | 80.74 |
|
86 |
|
87 |
+
Testing notebook: https://huggingface.co/osiria/deberta-italian-question-answering/blob/liteqa/osiria_liteqa_evaluation.ipynb
|
88 |
|
89 |
<h3>Quick usage</h3>
|
90 |
|