osiria commited on
Commit
09401b3
1 Parent(s): b6023bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -6
README.md CHANGED
@@ -22,10 +22,10 @@ model-index:
22
  type: squad_it
23
  metrics:
24
  - type: exact-match
25
- value: 0.7004
26
  name: Exact Match
27
  - type: f1
28
- value: 0.8097
29
  name: F1
30
  pipeline_tag: question-answering
31
  ---
@@ -37,7 +37,7 @@ pipeline_tag: question-answering
37
  <br>
38
  <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">    Task: Question Answering</span>
39
  <br>
40
- <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DeBERTa</span>
41
  <br>
42
  <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
43
  <br>
@@ -63,15 +63,28 @@ The 2.0 version further improves the performances by exploiting a 2-phases fine-
63
 
64
  In order to maximize the benefits of the multilingual procedure, [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) is used as a pre-trained model. When the double fine-tuning is completed, the embedding layer is then compressed as in [deberta-base-italian](https://huggingface.co/osiria/deberta-base-italian) to obtain a mono-lingual model size
65
 
 
 
 
 
 
66
  The performances on the test set are reported in the following table:
67
 
68
- (<b>version 2.0</b> performances)
 
 
 
 
 
 
 
 
69
 
70
  | EM | F1 |
71
  | ------ | ------ |
72
- | 70.04 | 80.97 |
73
 
74
- Testing notebook: https://huggingface.co/osiria/deberta-italian-question-answering/blob/main/osiria_deberta_italian_qa_evaluation.ipynb
75
 
76
  <h3>Quick usage</h3>
77
 
 
22
  type: squad_it
23
  metrics:
24
  - type: exact-match
25
+ value: 0.7019
26
  name: Exact Match
27
  - type: f1
28
+ value: 0.8101
29
  name: F1
30
  pipeline_tag: question-answering
31
  ---
 
37
  <br>
38
  <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">    Task: Question Answering</span>
39
  <br>
40
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: LITEQA</span>
41
  <br>
42
  <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
43
  <br>
 
63
 
64
  In order to maximize the benefits of the multilingual procedure, [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) is used as a pre-trained model. When the double fine-tuning is completed, the embedding layer is then compressed as in [deberta-base-italian](https://huggingface.co/osiria/deberta-base-italian) to obtain a mono-lingual model size
65
 
66
+ <b>update: version 3.0 (LITEQA)</b>
67
+
68
+ The 3.0 version, with the nickname LITEQA, further improves the performances by exploiting a 3-phases fine-tuning strategy: the model is first fine-tuned on the English SQuAD v2 (1 epoch, 20% warmup ratio, and max learning rate of 3e-5) then further fine-tuned on the Italian SQuAD (2 epochs, no warmup, initial learning rate of 3e-5) and lastly fine-tuned on the lowercase Italian SQuAD (1 epochs, no warmup, initial learning rate of 3e-5)
69
+ This helps making the model generally more robust, but particularly in uncased settings.
70
+
71
  The performances on the test set are reported in the following table:
72
 
73
+ (<b>version 3.0</b> performances)
74
+
75
+ <b>Cased setting:</b>
76
+
77
+ | EM | F1 |
78
+ | ------ | ------ |
79
+ | 70.19 | 81.01 |
80
+
81
+ <b>Uncased setting:</b>
82
 
83
  | EM | F1 |
84
  | ------ | ------ |
85
+ | 69.60 | 80.74 |
86
 
87
+ Testing notebook: https://huggingface.co/osiria/deberta-italian-question-answering/blob/liteqa/osiria_liteqa_evaluation.ipynb
88
 
89
  <h3>Quick usage</h3>
90