File size: 5,707 Bytes
d239e81
fc10a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6140382
fc10a48
 
6140382
fc10a48
 
d239e81
fc10a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af05cf4
fc10a48
59c9591
 
49b5e5b
59c9591
fc10a48
 
 
 
 
 
 
aad6fb9
59c9591
fc10a48
 
59c9591
fc10a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ffe37
fc10a48
 
 
 
 
 
 
 
 
 
1cd7ee5
fc10a48
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: mit
language:
- it
datasets:
- squad_it
widget:
- text: Quale libro fu scritto da Alessandro Manzoni?
  context: Alessandro Manzoni pubblicò la prima versione dei Promessi Sposi nel 1827
- text: In quali competizioni gareggia la Ferrari?
  context: La Scuderia Ferrari è una squadra corse italiana di Formula 1 con sede a Maranello
- text: Quale sport è riferito alla Serie A?
  context: Il campionato di Serie A è la massima divisione professionistica del campionato italiano di calcio maschile
model-index:
- name: osiria/deberta-italian-question-answering
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_it
      type: squad_it
    metrics:
    - type: exact-match
      value: 0.7004
      name: Exact Match
    - type: f1
      value: 0.8097
      name: F1
pipeline_tag: question-answering
---

--------------------------------------------------------------------------------------------------

<body>
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"></span>
<br>
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">    Task: Question Answering</span>
<br>
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DeBERTa</span>
<br>
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
<br>
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
<br>
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"></span>
</body>

--------------------------------------------------------------------------------------------------

<h3>Model description</h3>

This is a <b>DeBERTa</b> <b>[1]</b> model for the <b>Italian</b> language, fine-tuned for <b>Extractive Question Answering</b> on the [SQuAD-IT](https://huggingface.co/datasets/squad_it) dataset <b>[2]</b>, using <b>DeBERTa-ITALIAN</b> ([deberta-base-italian](https://huggingface.co/osiria/deberta-base-italian)) as a pre-trained model.

<b>Update: Version 2.0</b>

The 2.0 version further improves the performances by exploiting a 2-phases fine-tuning strategy: the model is first fine-tuned on the English SQuAD v2 (1 epoch, 20% warmup ratio, and max learning rate of 3e-5) then further fine-tuned on the Italian SQuAD (2 epochs, no warmup, initial learning rate of 3e-5)

<h3>Training and Performances</h3>

The model is trained to perform question answering, given a context and a question (under the assumption that the context contains the answer to the question). It has been fine-tuned for Extractive Question Answering, using the SQuAD-IT dataset, for 2 epochs with a linearly decaying learning rate starting from 3e-5, maximum sequence length of 384 and document stride of 128.
<br>The dataset includes 54.159 training instances and 7.609 test instances

The performances on the test set are reported in the following table:

(<b>version 2.0</b> performances)

| EM | F1 |
| ------ | ------ |
| 70.04 | 80.97 |

Testing notebook: https://huggingface.co/osiria/deberta-italian-question-answering/blob/main/osiria_deberta_italian_qa_evaluation.ipynb

<h3>Quick usage</h3>

In order to get the best possible outputs from the model, it is recommended to use the following pipeline

```python
from transformers import DebertaV2TokenizerFast, DebertaV2ForQuestionAnswering
import re
import string
from transformers.pipelines import QuestionAnsweringPipeline

tokenizer = DebertaV2TokenizerFast.from_pretrained("osiria/deberta-italian-question-answering")
model = DebertaV2ForQuestionAnswering.from_pretrained("osiria/deberta-italian-question-answering")

class osiria_qa(QuestionAnsweringPipeline):
    
    def __init__(self, punctuation = ',;.:!?()[\]{}', **kwargs):

        QuestionAnsweringPipeline.__init__(self, **kwargs)
        self.post_regex_left = "^[\s" + punctuation + "]+"
        self.post_regex_right = "[\s" + punctuation + "]+$"
    
    def postprocess(self, output):
        
        output = QuestionAnsweringPipeline.postprocess(self, model_outputs=output)
        output_length = len(output["answer"])
        output["answer"] = re.sub(self.post_regex_left, "", output["answer"])
        output["start"] = output["start"] + (output_length - len(output["answer"]))
        output_length = len(output["answer"])
        output["answer"] = re.sub(self.post_regex_right, "", output["answer"])
        output["end"] = output["end"] - (output_length - len(output["answer"]))
        
        return output
    
pipeline_qa = osiria_qa(model = model, tokenizer = tokenizer)
pipeline_qa(context = "Alessandro Manzoni è nato a Milano nel 1785",
            question = "Dove è nato Manzoni?")

# {'score': 0.9899800419807434, 'start': 28, 'end': 34, 'answer': 'Milano'}
```

<h3>References</h3>

[1] https://arxiv.org/abs/2006.03654

[2] https://link.springer.com/chapter/10.1007/978-3-030-03840-3_29

<h3>Limitations</h3>

This model was trained on the English SQuAD v2 and on SQuAD-IT, which is mainly a machine translated version of the original SQuAD v1.1. This means that the quality of the training set is limited by the machine translation.
Moreover, the model is meant to answer questions under the assumption that the required information is actually contained in the given context (which is the underlying assumption of SQuAD v1.1). 
If the assumption is violated, the model will try to return an answer in any case, which is going to be incorrect.

<h3>License</h3>

The model is released under <b>MIT</b> license