osiria commited on
Commit
bacda33
1 Parent(s): c1a304e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - it
5
+ widget:
6
+ - text: "una fantastica [MASK] di #calcio! grande prestazione del mister e della squadra"
7
+ example_title: "Example 1"
8
+ - text: "il governo [MASK] dovrebbe fare politica, non soltanto propaganda! #vergogna"
9
+ example_title: "Example 2"
10
+ - text: "che serata da sogno sul #redcarpet! grazie a tutti gli attori e registi del [MASK] italiano #oscar #awards"
11
+ example_title: "Example 3"
12
  ---
13
+
14
+ --------------------------------------------------------------------------------------------------
15
+
16
+ <body>
17
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
18
+ <br>
19
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span>
20
+ <br>
21
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: BERT-TWEET</span>
22
+ <br>
23
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
24
+ <br>
25
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span>
26
+ <br>
27
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
28
+ </body>
29
+
30
+ --------------------------------------------------------------------------------------------------
31
+
32
+ <h3>Model description</h3>
33
+
34
+ This is a <b>BERT</b> <b>[1]</b> uncased model for the <b>Italian</b> language, obtained using <b>TwHIN-BERT</b> <b>[2]</b> ([twhin-bert-base](https://huggingface.co/Twitter/twhin-bert-base)) as a starting point and focusing it on the Italian language by modifying the embedding layer
35
+ (as in <b>[3]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset)
36
+
37
+ The resulting model has 110M parameters, a vocabulary of 30.520 tokens, and a size of ~440 MB.
38
+
39
+ <h3>Quick usage</h3>
40
+
41
+ ```python
42
+ from transformers import BertTokenizerFast, BertModel
43
+
44
+ tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-tweet-base-italian-uncased")
45
+ model = BertModel.from_pretrained("osiria/bert-tweet-base-italian-uncased")
46
+ ```
47
+
48
+ Here you can find the find the model already fine-tuned on Sentiment Analysis: https://huggingface.co/osiria/bert-tweet-italian-uncased-sentiment
49
+
50
+ <h3>References</h3>
51
+
52
+ [1] https://arxiv.org/abs/1810.04805
53
+
54
+ [2] https://arxiv.org/abs/2209.07562
55
+
56
+ [3] https://arxiv.org/abs/2010.05609
57
+
58
+ <h3>Limitations</h3>
59
+
60
+ This model was trained on tweets, so it's mainly suitable for general-purpose social media text processing, involving short texts written in a social network style.
61
+ It might show limitations when it comes to longer and more structured text, or domain-specific text.
62
+
63
+ <h3>License</h3>
64
+
65
+ The model is released under <b>Apache-2.0</b> license
66
+