osiria commited on
Commit
46723fe
1 Parent(s): ead3fac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md CHANGED
@@ -1,3 +1,78 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - it
5
+ widget:
6
+ - text: "mi chiamo marco rossi, vivo a roma e lavoro per l'agenzia spaziale italiana"
7
+ example_title: "Example 1"
8
  ---
9
+
10
+ --------------------------------------------------------------------------------------------------
11
+
12
+ <body>
13
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
14
+ <br>
15
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">    Task: Named Entity Recognition</span>
16
+ <br>
17
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: BERT</span>
18
+ <br>
19
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
20
+ <br>
21
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  Type: Uncased</span>
22
+ <br>
23
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
24
+ </body>
25
+
26
+ --------------------------------------------------------------------------------------------------
27
+
28
+ <h3>Model description</h3>
29
+
30
+ This is a <b>BERT</b> <b>[1]</b> uncased model for the <b>Italian</b> language, fine-tuned for <b>Named Entity Recognition</b> (<b>Person</b>, <b>Location</b>, <b>Organization</b> and <b>Miscellanea</b> classes) on the [WikiNER](https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) dataset <b>[2]</b>, using the uncased <b>BERT-ITALIAN</b> ([bert-base-italian-uncased](https://huggingface.co/osiria/bert-base-italian-uncased)) as a pre-trained model.
31
+
32
+ <h3>Training and Performances</h3>
33
+
34
+ The model is trained to perform entity recognition over 4 classes: <b>PER</b> (persons), <b>LOC</b> (locations), <b>ORG</b> (organizations), <b>MISC</b> (miscellanea, mainly events, products and services). It has been fine-tuned for Named Entity Recognition, using the WikiNER Italian dataset plus an additional custom dataset of manually annotated Wikipedia paragraphs.
35
+ The WikiNER dataset has been splitted in 102.352 training instances and 25.588 test instances.
36
+
37
+ The performances on the test set are reported in the following table:
38
+
39
+ | Recall | Precision | F1 |
40
+ | ------ | ------ | ------ |
41
+ | | | |
42
+
43
+ The metrics have been computed at the token level and then macro-averaged over the 4 classes.
44
+
45
+ Then, since WikiNER is an automatically annotated (silver standard) dataset, which sometimes contains imperfect annotations, an additional fine-tuning on ~3.500 manually annotated paragraphs has been performed.
46
+
47
+ <h3>Quick usage</h3>
48
+
49
+ ```python
50
+ from transformers import BertTokenizerFast, BertForTokenClassification
51
+
52
+ tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-italian-uncased-ner")
53
+ model = BertForTokenClassification.from_pretrained("osiria/bert-italian-uncased-ner")
54
+
55
+ from transformers import pipeline
56
+ ner = pipeline("ner", model = model, tokenizer = tokenizer, aggregation_strategy="first")
57
+
58
+ ner("mi chiamo marco rossi, vivo a roma e lavoro per l'agenzia spaziale italiana nella missione prisma")
59
+
60
+ ```
61
+
62
+ You can also try the model online using this web app: https://huggingface.co/spaces/osiria/bert-italian-uncased-ner
63
+
64
+ <h3>References</h3>
65
+
66
+ [1] https://arxiv.org/abs/1810.04805
67
+
68
+ [2] https://www.sciencedirect.com/science/article/pii/S0004370212000276
69
+
70
+ <h3>Limitations</h3>
71
+
72
+ This model is mainly trained on Wikipedia, so it's particularly suitable for natively digital text from the world wide web, written in a correct and fluent form (like wikis, web pages, news, etc.). However, it may show limitations when it comes to chaotic text, containing errors and slang expressions
73
+ (like social media posts) or when it comes to domain-specific text (like medical, financial or legal content).
74
+
75
+ <h3>License</h3>
76
+
77
+ The model is released under <b>Apache-2.0</b> license
78
+