osanseviero commited on
Commit
64269c2
1 Parent(s): d96237c

just a test

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -152.88 +/- 29.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc39cc31680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc39cc31710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc39cc317a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc39cc31830>", "_build": "<function ActorCriticPolicy._build at 0x7fc39cc318c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc39cc31950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc39cc319e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc39cc31a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc39cc31b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc39cc31b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc39cc31c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc39cc6cea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 500, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667960404165455596, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYGKr08ZrE/uvPJvkZSYr7sYmk89zGZvQAAAAAAAAAAvnfxvtRLrD+QCFy/hdkRvxDc2D7hNYk+AAAAAAAAAAAgAC6+UOm4P0K9J78SnDK+DbydPrmzgD4AAAAAAAAAABgTAT/LhCQ/cFhHP/K5nb/ulXC+fY2huwAAAAAAAAAA5tROPZWrlT/2GkU+Y7E0v2g7Xz02ujM9AAAAAAAAAAAaqtm+PVRHPtKHqL+hFra//tS8P77CrT4AAAAAAAAAADiQBj8ao4w/BV15P47dWb8paDW/lrA4vgAAAAAAAAAAmqdJPFSGoD+gtsg91icsv3KHbbt+zA49AAAAAAAAAAB2ekK/8seIP4oYyb8WG1S/5T+TP5ugzz4AAAAAAAAAAGZfjL0i/7o/Jl5Gv2U8Pj4Lfnc9LrTQPQAAAAAAAAAAAKOvvPAcpz/j/R6+ugEJv+am9D78RKo+AAAAAAAAAABN02u9RYK7P24vgb6FeJG9GBrAPAs63j0AAAAAAAAAAAPdLj9IKP87XXWYP9morb8ouTy/cOJvPgAAgD8AAAAAEM2NPjZBqj77Ntk+mu2evzItBr4I+NS9AAAAAAAAAACwY7M+DBfZPhulkD8fRI+/HQ6Vv4oqqL4AAAAAAAAAAGb+sby89q8/sbZKvvzibr7pXzk9oGxvPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -31.768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIje21oPf9X8CUhpRSlIwBbJRLVowBdJRHQCE0l/pdKNB1fZQoaAZoCWgPQwhinpW04jNMwJSGlFKUaBVLT2gWR0AhOCZnctXgdX2UKGgGaAloD0MISyGQS5xzdMCUhpRSlGgVS2loFkdAIUOyE+Pik3V9lChoBmgJaA9DCAucbAN39V7AlIaUUpRoFUtHaBZHQCFLcoH9m6J1fZQoaAZoCWgPQwhKJqd2BptqwJSGlFKUaBVLUWgWR0AhWKtPpIMCdX2UKGgGaAloD0MI0clS6/1NVMCUhpRSlGgVSzpoFkdAIb/h2nsLOXV9lChoBmgJaA9DCP4nf/eO+VnAlIaUUpRoFUtMaBZHQCHPIS13MZB1fZQoaAZoCWgPQwhjey3ovchqwJSGlFKUaBVLWWgWR0Ah2XyAhB7edX2UKGgGaAloD0MIb0ijAidJWsCUhpRSlGgVS2FoFkdAIe/TTfBN23V9lChoBmgJaA9DCPq19dM/hXjAlIaUUpRoFUtraBZHQCIDPQfIS151fZQoaAZoCWgPQwi/8iA9RVlewJSGlFKUaBVLa2gWR0AiGOpbUwztdX2UKGgGaAloD0MIiC09mupVYsCUhpRSlGgVS1FoFkdAIib1RLsa9HV9lChoBmgJaA9DCPLtXYO+qHHAlIaUUpRoFUtoaBZHQCIzy1/lQuV1fZQoaAZoCWgPQwhRpPs5BahkwJSGlFKUaBVLRGgWR0AiM1BMSK3vdX2UKGgGaAloD0MIB/AWSFAlW8CUhpRSlGgVS19oFkdAIjoOpbUwz3V9lChoBmgJaA9DCHglyXN9h1zAlIaUUpRoFUtEaBZHQCJIOvt+kQB1fZQoaAZoCWgPQwgzbJT1m5tPwJSGlFKUaBVLQmgWR0AiV0Dlo11odX2UKGgGaAloD0MIu9IyUu/2W8CUhpRSlGgVS2RoFkdAImH3UQTVUnV9lChoBmgJaA9DCBYwgVt3QVDAlIaUUpRoFUtNaBZHQCJqmEXcgyN1fZQoaAZoCWgPQwjz5QXYh9p5wJSGlFKUaBVLY2gWR0AindIGyHEddX2UKGgGaAloD0MIwcQfRZ3/WcCUhpRSlGgVS2BoFkdAIpxiobXHznV9lChoBmgJaA9DCJMcsKvJNmTAlIaUUpRoFUtGaBZHQCLNAcDKYAt1fZQoaAZoCWgPQwgHeT2YFJRewJSGlFKUaBVLOGgWR0Ai9gAp8WsSdX2UKGgGaAloD0MID3uhgG25bcCUhpRSlGgVS0loFkdAIv3BHkLhJnV9lChoBmgJaA9DCLaEfNBzRHnAlIaUUpRoFUtjaBZHQCMamVJL/S91fZQoaAZoCWgPQwjqymd5nnJ4wJSGlFKUaBVLZWgWR0AjL2fTTfBOdX2UKGgGaAloD0MILBA9KZOZX8CUhpRSlGgVS1JoFkdAIzU52hZha3V9lChoBmgJaA9DCEok0csoYVHAlIaUUpRoFUtHaBZHQCNH9Hc1wYN1fZQoaAZoCWgPQwgJ+3YSEcxbwJSGlFKUaBVLVWgWR0AjZoUSIxgzdX2UKGgGaAloD0MIzHucaUJJd8CUhpRSlGgVS1loFkdAI3Owosqaw3V9lChoBmgJaA9DCJTeN772omDAlIaUUpRoFUtAaBZHQCN4GwA2hqV1fZQoaAZoCWgPQwiGBIwurzV0wJSGlFKUaBVLXWgWR0AjdubZvkzXdX2UKGgGaAloD0MIEqJ8QQvjccCUhpRSlGgVS3hoFkdAI6CFK02LpHV9lChoBmgJaA9DCKLxRBAnLH/AlIaUUpRoFUtwaBZHQCPV2HLzPKN1fZQoaAZoCWgPQwhCWmPQiUFgwJSGlFKUaBVLRGgWR0AkGQiA2AG0dX2UKGgGaAloD0MIoOHNGjwda8CUhpRSlGgVS3VoFkdAJD65f+jubHV9lChoBmgJaA9DCNFY+zvboVbAlIaUUpRoFUtyaBZHQCQ9+5OJtSB1fZQoaAZoCWgPQwh9yjFZ3OxewJSGlFKUaBVLcWgWR0Akd0Fr2xptdX2UKGgGaAloD0MIbyu9NhtrYMCUhpRSlGgVS0hoFkdAJLV89fTkQ3V9lChoBmgJaA9DCA9j0t/LbHjAlIaUUpRoFUtiaBZHQCTHs5XEIgN1fZQoaAZoCWgPQwg1fAvrxvdDQJSGlFKUaBVLR2gWR0Akx8pkPMB7dX2UKGgGaAloD0MITDRIwVNwK8CUhpRSlGgVS3BoFkdAJMiNCJGe+XV9lChoBmgJaA9DCOJXrOGiIWHAlIaUUpRoFUtLaBZHQCTaCFsYVIt1fZQoaAZoCWgPQwiKdD+nYJ53wJSGlFKUaBVLUGgWR0Ak4Xrt3OfNdX2UKGgGaAloD0MIPQytTs72a8CUhpRSlGgVS2RoFkdAJOXcxj8UEnV9lChoBmgJaA9DCHZSX5Z2BlLAlIaUUpRoFUtJaBZHQCTns/pt78h1fZQoaAZoCWgPQwi7trdbkrRewJSGlFKUaBVLV2gWR0Ak7SiudPLxdX2UKGgGaAloD0MIa39ne3SBYsCUhpRSlGgVS2poFkdAJPPSc9W6snV9lChoBmgJaA9DCBrerMH79ljAlIaUUpRoFUtCaBZHQCUPMyJsO5J1fZQoaAZoCWgPQwj8prBSQTdlwJSGlFKUaBVLhGgWR0AlFsZ5zHS4dX2UKGgGaAloD0MIj6UPXVAwXcCUhpRSlGgVS1RoFkdAJTEzGgi/wnV9lChoBmgJaA9DCGNfsvFgHFzAlIaUUpRoFUtMaBZHQCU2tjkMkQh1fZQoaAZoCWgPQwhIN8KiIgtVwJSGlFKUaBVLbmgWR0AlV2alUIcBdX2UKGgGaAloD0MIYFs//WcCWsCUhpRSlGgVS1VoFkdAJWVYyO7xu3V9lChoBmgJaA9DCM2VQbXBCl3AlIaUUpRoFUtGaBZHQCVkbzbvgFZ1fZQoaAZoCWgPQwiBs5QsJ+E+QJSGlFKUaBVLi2gWR0AlgP8yeqaPdX2UKGgGaAloD0MI5ujxexuGacCUhpRSlGgVS2doFkdAJYlOfukUK3V9lChoBmgJaA9DCDJ1V3ZBk2PAlIaUUpRoFUtUaBZHQCWOKEWZZ0V1fZQoaAZoCWgPQwiyuP/I9It0wJSGlFKUaBVLcGgWR0Alk97ngYP5dX2UKGgGaAloD0MIrAMg7upUeMCUhpRSlGgVS1poFkdAJZSGJvYOD3V9lChoBmgJaA9DCD+oixRKZGLAlIaUUpRoFUtKaBZHQCWckGA08/51fZQoaAZoCWgPQwi1M0xtqTNtwJSGlFKUaBVLcmgWR0AloAlOXVsldX2UKGgGaAloD0MImWN5V/0odsCUhpRSlGgVS2ZoFkdAJahdld1Md3V9lChoBmgJaA9DCE5eZAJ+vFrAlIaUUpRoFUtfaBZHQCWpwuM+/xl1fZQoaAZoCWgPQwjtLeV8sQpUwJSGlFKUaBVLb2gWR0AlrYjB2wFDdX2UKGgGaAloD0MICK7yBMI+X8CUhpRSlGgVS1NoFkdAJbNT1kDp1XV9lChoBmgJaA9DCJMZbyu9hV3AlIaUUpRoFUtJaBZHQCW8I/qxC6Z1fZQoaAZoCWgPQwiZoIZvYb1YwJSGlFKUaBVLQmgWR0Al0PYnOSntdX2UKGgGaAloD0MIK4TVWEKkbcCUhpRSlGgVS1poFkdAJdu7xusLfHV9lChoBmgJaA9DCNpXHqSnbFHAlIaUUpRoFUtHaBZHQCXnzcynDSB1fZQoaAZoCWgPQwjS4SGMnyViwJSGlFKUaBVLSGgWR0AmDQ/HHWBjdX2UKGgGaAloD0MIchb2tMOZWMCUhpRSlGgVS0hoFkdAJhh73PAwf3V9lChoBmgJaA9DCN816EtvalTAlIaUUpRoFUtLaBZHQCYdxZMcp9Z1fZQoaAZoCWgPQwi+g584AMVmwJSGlFKUaBVLQ2gWR0AmG7YkE9t/dX2UKGgGaAloD0MIJSNnYU/2c8CUhpRSlGgVS0doFkdAJh+67NB4U3V9lChoBmgJaA9DCPfMkgA1YVLAlIaUUpRoFUtBaBZHQCYmK4x1xKh1fZQoaAZoCWgPQwgpd5/jo3pVwJSGlFKUaBVLRWgWR0AmKIhyKekIdX2UKGgGaAloD0MIDhMNUnBFYsCUhpRSlGgVS2BoFkdAJjVMEidJ8XV9lChoBmgJaA9DCKSOjqsRWG7AlIaUUpRoFUtxaBZHQCY6de6Zpi91fZQoaAZoCWgPQwjsbMg/My5swJSGlFKUaBVLWmgWR0AmT6iTMaCMdX2UKGgGaAloD0MI9MRztoDnW8CUhpRSlGgVS0JoFkdAJppDNQj2SXV9lChoBmgJaA9DCEAWokPgH17AlIaUUpRoFUt8aBZHQCaejdpItlJ1fZQoaAZoCWgPQwhz9s5oK+NxwJSGlFKUaBVLYGgWR0AmpMuez2OAdX2UKGgGaAloD0MI1uQpq+lmVcCUhpRSlGgVS2xoFkdAJqP557gKnnV9lChoBmgJaA9DCPSHZp6cGHLAlIaUUpRoFUuUaBZHQCamnAIppex1fZQoaAZoCWgPQwjCobd4eFRSwJSGlFKUaBVLUmgWR0Amt003wTdtdX2UKGgGaAloD0MIJ4Oj5BXTcMCUhpRSlGgVS3FoFkdAJrgYP5HmR3V9lChoBmgJaA9DCICBIECGeVfAlIaUUpRoFUtGaBZHQCa9HWjGkvd1fZQoaAZoCWgPQwgAAWvVrrdTwJSGlFKUaBVLU2gWR0AmwHeJpFkQdX2UKGgGaAloD0MIR3Nk5ZdnVsCUhpRSlGgVS1toFkdAJs0V8CxNZnV9lChoBmgJaA9DCG2MnfCSk2XAlIaUUpRoFUuQaBZHQCbPVf/m1Y11fZQoaAZoCWgPQwi1xqATwrt2wJSGlFKUaBVLaGgWR0Am1rnkkrwwdX2UKGgGaAloD0MI3UPC937WYcCUhpRSlGgVS05oFkdAJuUjTrmhd3V9lChoBmgJaA9DCNoc5zbhPgVAlIaUUpRoFUt/aBZHQCcYfCAMDwJ1fZQoaAZoCWgPQwjJ6IAk7NtawJSGlFKUaBVLdmgWR0AnHYyO7xusdX2UKGgGaAloD0MICHb8FwjgVMCUhpRSlGgVS0RoFkdAJyELH+6y0XV9lChoBmgJaA9DCKj8a3nlCXbAlIaUUpRoFUuNaBZHQCc2q//Nqxl1fZQoaAZoCWgPQwidDmQ9tSlpwJSGlFKUaBVLQ2gWR0AnN4zJp35fdX2UKGgGaAloD0MIbM8sCVD6VcCUhpRSlGgVS0NoFkdAJzyidrftQnV9lChoBmgJaA9DCFZmSutv2VLAlIaUUpRoFUtPaBZHQCc8wL3K0Up1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b41f1e99dd1b0b2d9a9668315d4129e53f555671540251a11ce4c38203d2f2a
3
+ size 147002
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc39cc31680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc39cc31710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc39cc317a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc39cc31830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc39cc318c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc39cc31950>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc39cc319e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc39cc31a70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc39cc31b00>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc39cc31b90>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc39cc31c20>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc39cc6cea0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 500,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1667960404165455596,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYGKr08ZrE/uvPJvkZSYr7sYmk89zGZvQAAAAAAAAAAvnfxvtRLrD+QCFy/hdkRvxDc2D7hNYk+AAAAAAAAAAAgAC6+UOm4P0K9J78SnDK+DbydPrmzgD4AAAAAAAAAABgTAT/LhCQ/cFhHP/K5nb/ulXC+fY2huwAAAAAAAAAA5tROPZWrlT/2GkU+Y7E0v2g7Xz02ujM9AAAAAAAAAAAaqtm+PVRHPtKHqL+hFra//tS8P77CrT4AAAAAAAAAADiQBj8ao4w/BV15P47dWb8paDW/lrA4vgAAAAAAAAAAmqdJPFSGoD+gtsg91icsv3KHbbt+zA49AAAAAAAAAAB2ekK/8seIP4oYyb8WG1S/5T+TP5ugzz4AAAAAAAAAAGZfjL0i/7o/Jl5Gv2U8Pj4Lfnc9LrTQPQAAAAAAAAAAAKOvvPAcpz/j/R6+ugEJv+am9D78RKo+AAAAAAAAAABN02u9RYK7P24vgb6FeJG9GBrAPAs63j0AAAAAAAAAAAPdLj9IKP87XXWYP9morb8ouTy/cOJvPgAAgD8AAAAAEM2NPjZBqj77Ntk+mu2evzItBr4I+NS9AAAAAAAAAACwY7M+DBfZPhulkD8fRI+/HQ6Vv4oqqL4AAAAAAAAAAGb+sby89q8/sbZKvvzibr7pXzk9oGxvPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -31.768,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIje21oPf9X8CUhpRSlIwBbJRLVowBdJRHQCE0l/pdKNB1fZQoaAZoCWgPQwhinpW04jNMwJSGlFKUaBVLT2gWR0AhOCZnctXgdX2UKGgGaAloD0MISyGQS5xzdMCUhpRSlGgVS2loFkdAIUOyE+Pik3V9lChoBmgJaA9DCAucbAN39V7AlIaUUpRoFUtHaBZHQCFLcoH9m6J1fZQoaAZoCWgPQwhKJqd2BptqwJSGlFKUaBVLUWgWR0AhWKtPpIMCdX2UKGgGaAloD0MI0clS6/1NVMCUhpRSlGgVSzpoFkdAIb/h2nsLOXV9lChoBmgJaA9DCP4nf/eO+VnAlIaUUpRoFUtMaBZHQCHPIS13MZB1fZQoaAZoCWgPQwhjey3ovchqwJSGlFKUaBVLWWgWR0Ah2XyAhB7edX2UKGgGaAloD0MIb0ijAidJWsCUhpRSlGgVS2FoFkdAIe/TTfBN23V9lChoBmgJaA9DCPq19dM/hXjAlIaUUpRoFUtraBZHQCIDPQfIS151fZQoaAZoCWgPQwi/8iA9RVlewJSGlFKUaBVLa2gWR0AiGOpbUwztdX2UKGgGaAloD0MIiC09mupVYsCUhpRSlGgVS1FoFkdAIib1RLsa9HV9lChoBmgJaA9DCPLtXYO+qHHAlIaUUpRoFUtoaBZHQCIzy1/lQuV1fZQoaAZoCWgPQwhRpPs5BahkwJSGlFKUaBVLRGgWR0AiM1BMSK3vdX2UKGgGaAloD0MIB/AWSFAlW8CUhpRSlGgVS19oFkdAIjoOpbUwz3V9lChoBmgJaA9DCHglyXN9h1zAlIaUUpRoFUtEaBZHQCJIOvt+kQB1fZQoaAZoCWgPQwgzbJT1m5tPwJSGlFKUaBVLQmgWR0AiV0Dlo11odX2UKGgGaAloD0MIu9IyUu/2W8CUhpRSlGgVS2RoFkdAImH3UQTVUnV9lChoBmgJaA9DCBYwgVt3QVDAlIaUUpRoFUtNaBZHQCJqmEXcgyN1fZQoaAZoCWgPQwjz5QXYh9p5wJSGlFKUaBVLY2gWR0AindIGyHEddX2UKGgGaAloD0MIwcQfRZ3/WcCUhpRSlGgVS2BoFkdAIpxiobXHznV9lChoBmgJaA9DCJMcsKvJNmTAlIaUUpRoFUtGaBZHQCLNAcDKYAt1fZQoaAZoCWgPQwgHeT2YFJRewJSGlFKUaBVLOGgWR0Ai9gAp8WsSdX2UKGgGaAloD0MID3uhgG25bcCUhpRSlGgVS0loFkdAIv3BHkLhJnV9lChoBmgJaA9DCLaEfNBzRHnAlIaUUpRoFUtjaBZHQCMamVJL/S91fZQoaAZoCWgPQwjqymd5nnJ4wJSGlFKUaBVLZWgWR0AjL2fTTfBOdX2UKGgGaAloD0MILBA9KZOZX8CUhpRSlGgVS1JoFkdAIzU52hZha3V9lChoBmgJaA9DCEok0csoYVHAlIaUUpRoFUtHaBZHQCNH9Hc1wYN1fZQoaAZoCWgPQwgJ+3YSEcxbwJSGlFKUaBVLVWgWR0AjZoUSIxgzdX2UKGgGaAloD0MIzHucaUJJd8CUhpRSlGgVS1loFkdAI3Owosqaw3V9lChoBmgJaA9DCJTeN772omDAlIaUUpRoFUtAaBZHQCN4GwA2hqV1fZQoaAZoCWgPQwiGBIwurzV0wJSGlFKUaBVLXWgWR0AjdubZvkzXdX2UKGgGaAloD0MIEqJ8QQvjccCUhpRSlGgVS3hoFkdAI6CFK02LpHV9lChoBmgJaA9DCKLxRBAnLH/AlIaUUpRoFUtwaBZHQCPV2HLzPKN1fZQoaAZoCWgPQwhCWmPQiUFgwJSGlFKUaBVLRGgWR0AkGQiA2AG0dX2UKGgGaAloD0MIoOHNGjwda8CUhpRSlGgVS3VoFkdAJD65f+jubHV9lChoBmgJaA9DCNFY+zvboVbAlIaUUpRoFUtyaBZHQCQ9+5OJtSB1fZQoaAZoCWgPQwh9yjFZ3OxewJSGlFKUaBVLcWgWR0Akd0Fr2xptdX2UKGgGaAloD0MIbyu9NhtrYMCUhpRSlGgVS0hoFkdAJLV89fTkQ3V9lChoBmgJaA9DCA9j0t/LbHjAlIaUUpRoFUtiaBZHQCTHs5XEIgN1fZQoaAZoCWgPQwg1fAvrxvdDQJSGlFKUaBVLR2gWR0Akx8pkPMB7dX2UKGgGaAloD0MITDRIwVNwK8CUhpRSlGgVS3BoFkdAJMiNCJGe+XV9lChoBmgJaA9DCOJXrOGiIWHAlIaUUpRoFUtLaBZHQCTaCFsYVIt1fZQoaAZoCWgPQwiKdD+nYJ53wJSGlFKUaBVLUGgWR0Ak4Xrt3OfNdX2UKGgGaAloD0MIPQytTs72a8CUhpRSlGgVS2RoFkdAJOXcxj8UEnV9lChoBmgJaA9DCHZSX5Z2BlLAlIaUUpRoFUtJaBZHQCTns/pt78h1fZQoaAZoCWgPQwi7trdbkrRewJSGlFKUaBVLV2gWR0Ak7SiudPLxdX2UKGgGaAloD0MIa39ne3SBYsCUhpRSlGgVS2poFkdAJPPSc9W6snV9lChoBmgJaA9DCBrerMH79ljAlIaUUpRoFUtCaBZHQCUPMyJsO5J1fZQoaAZoCWgPQwj8prBSQTdlwJSGlFKUaBVLhGgWR0AlFsZ5zHS4dX2UKGgGaAloD0MIj6UPXVAwXcCUhpRSlGgVS1RoFkdAJTEzGgi/wnV9lChoBmgJaA9DCGNfsvFgHFzAlIaUUpRoFUtMaBZHQCU2tjkMkQh1fZQoaAZoCWgPQwhIN8KiIgtVwJSGlFKUaBVLbmgWR0AlV2alUIcBdX2UKGgGaAloD0MIYFs//WcCWsCUhpRSlGgVS1VoFkdAJWVYyO7xu3V9lChoBmgJaA9DCM2VQbXBCl3AlIaUUpRoFUtGaBZHQCVkbzbvgFZ1fZQoaAZoCWgPQwiBs5QsJ+E+QJSGlFKUaBVLi2gWR0AlgP8yeqaPdX2UKGgGaAloD0MI5ujxexuGacCUhpRSlGgVS2doFkdAJYlOfukUK3V9lChoBmgJaA9DCDJ1V3ZBk2PAlIaUUpRoFUtUaBZHQCWOKEWZZ0V1fZQoaAZoCWgPQwiyuP/I9It0wJSGlFKUaBVLcGgWR0Alk97ngYP5dX2UKGgGaAloD0MIrAMg7upUeMCUhpRSlGgVS1poFkdAJZSGJvYOD3V9lChoBmgJaA9DCD+oixRKZGLAlIaUUpRoFUtKaBZHQCWckGA08/51fZQoaAZoCWgPQwi1M0xtqTNtwJSGlFKUaBVLcmgWR0AloAlOXVsldX2UKGgGaAloD0MImWN5V/0odsCUhpRSlGgVS2ZoFkdAJahdld1Md3V9lChoBmgJaA9DCE5eZAJ+vFrAlIaUUpRoFUtfaBZHQCWpwuM+/xl1fZQoaAZoCWgPQwjtLeV8sQpUwJSGlFKUaBVLb2gWR0AlrYjB2wFDdX2UKGgGaAloD0MICK7yBMI+X8CUhpRSlGgVS1NoFkdAJbNT1kDp1XV9lChoBmgJaA9DCJMZbyu9hV3AlIaUUpRoFUtJaBZHQCW8I/qxC6Z1fZQoaAZoCWgPQwiZoIZvYb1YwJSGlFKUaBVLQmgWR0Al0PYnOSntdX2UKGgGaAloD0MIK4TVWEKkbcCUhpRSlGgVS1poFkdAJdu7xusLfHV9lChoBmgJaA9DCNpXHqSnbFHAlIaUUpRoFUtHaBZHQCXnzcynDSB1fZQoaAZoCWgPQwjS4SGMnyViwJSGlFKUaBVLSGgWR0AmDQ/HHWBjdX2UKGgGaAloD0MIchb2tMOZWMCUhpRSlGgVS0hoFkdAJhh73PAwf3V9lChoBmgJaA9DCN816EtvalTAlIaUUpRoFUtLaBZHQCYdxZMcp9Z1fZQoaAZoCWgPQwi+g584AMVmwJSGlFKUaBVLQ2gWR0AmG7YkE9t/dX2UKGgGaAloD0MIJSNnYU/2c8CUhpRSlGgVS0doFkdAJh+67NB4U3V9lChoBmgJaA9DCPfMkgA1YVLAlIaUUpRoFUtBaBZHQCYmK4x1xKh1fZQoaAZoCWgPQwgpd5/jo3pVwJSGlFKUaBVLRWgWR0AmKIhyKekIdX2UKGgGaAloD0MIDhMNUnBFYsCUhpRSlGgVS2BoFkdAJjVMEidJ8XV9lChoBmgJaA9DCKSOjqsRWG7AlIaUUpRoFUtxaBZHQCY6de6Zpi91fZQoaAZoCWgPQwjsbMg/My5swJSGlFKUaBVLWmgWR0AmT6iTMaCMdX2UKGgGaAloD0MI9MRztoDnW8CUhpRSlGgVS0JoFkdAJppDNQj2SXV9lChoBmgJaA9DCEAWokPgH17AlIaUUpRoFUt8aBZHQCaejdpItlJ1fZQoaAZoCWgPQwhz9s5oK+NxwJSGlFKUaBVLYGgWR0AmpMuez2OAdX2UKGgGaAloD0MI1uQpq+lmVcCUhpRSlGgVS2xoFkdAJqP557gKnnV9lChoBmgJaA9DCPSHZp6cGHLAlIaUUpRoFUuUaBZHQCamnAIppex1fZQoaAZoCWgPQwjCobd4eFRSwJSGlFKUaBVLUmgWR0Amt003wTdtdX2UKGgGaAloD0MIJ4Oj5BXTcMCUhpRSlGgVS3FoFkdAJrgYP5HmR3V9lChoBmgJaA9DCICBIECGeVfAlIaUUpRoFUtGaBZHQCa9HWjGkvd1fZQoaAZoCWgPQwgAAWvVrrdTwJSGlFKUaBVLU2gWR0AmwHeJpFkQdX2UKGgGaAloD0MIR3Nk5ZdnVsCUhpRSlGgVS1toFkdAJs0V8CxNZnV9lChoBmgJaA9DCG2MnfCSk2XAlIaUUpRoFUuQaBZHQCbPVf/m1Y11fZQoaAZoCWgPQwi1xqATwrt2wJSGlFKUaBVLaGgWR0Am1rnkkrwwdX2UKGgGaAloD0MI3UPC937WYcCUhpRSlGgVS05oFkdAJuUjTrmhd3V9lChoBmgJaA9DCNoc5zbhPgVAlIaUUpRoFUt/aBZHQCcYfCAMDwJ1fZQoaAZoCWgPQwjJ6IAk7NtawJSGlFKUaBVLdmgWR0AnHYyO7xusdX2UKGgGaAloD0MICHb8FwjgVMCUhpRSlGgVS0RoFkdAJyELH+6y0XV9lChoBmgJaA9DCKj8a3nlCXbAlIaUUpRoFUuNaBZHQCc2q//Nqxl1fZQoaAZoCWgPQwidDmQ9tSlpwJSGlFKUaBVLQ2gWR0AnN4zJp35fdX2UKGgGaAloD0MIbM8sCVD6VcCUhpRSlGgVS0NoFkdAJzyidrftQnV9lChoBmgJaA9DCFZmSutv2VLAlIaUUpRoFUtPaBZHQCc8wL3K0Up1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:022a11a3b254a67bba98d53094b065fbb761b3df36fee10fcabbb7c54f503e2d
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d4bdf1af909c9e2e1567be8e3c61724f8e6f9c40f070ed42029c59a47159bdf
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (193 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -152.88161329539108, "std_reward": 29.969171935861286, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-09T02:20:34.133573"}