dalle-mini-fork / pipeline.py
osanseviero's picture
Fix
cdc4c33
import jax
import flax.linen as nn
import random
import numpy as np
from PIL import Image
from transformers import BartConfig, BartTokenizer
from transformers.models.bart.modeling_flax_bart import (
FlaxBartModule,
FlaxBartForConditionalGenerationModule,
FlaxBartForConditionalGeneration,
FlaxBartEncoder,
FlaxBartDecoder
)
from vqgan_jax.modeling_flax_vqgan import VQModel
# Model hyperparameters, for convenience
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
BOS_TOKEN_ID = 16384
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large
class CustomFlaxBartModule(FlaxBartModule):
def setup(self):
# check config is valid, otherwise set default values
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH)
# we keep shared to easily load pre-trained weights
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
# a separate embedding is used for the decoder
self.decoder_embed = nn.Embed(
self.config.vocab_size_output,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
# the decoder has a different config
decoder_config = BartConfig(self.config.to_dict())
decoder_config.max_position_embeddings = self.config.max_position_embeddings_decoder
decoder_config.vocab_size = self.config.vocab_size_output
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
def setup(self):
# check config is valid, otherwise set default values
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size_output,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.config.vocab_size_output))
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
module_class = CustomFlaxBartForConditionalGenerationModule
class PreTrainedPipeline():
def __init__(self, path=""):
self.vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384", revision="90cc46addd2dd8f5be21586a9a23e1b95aa506a9")
self.tokenizer = BartTokenizer.from_pretrained(path)
self.model = CustomFlaxBartForConditionalGeneration.from_pretrained(path)
def __call__(self, inputs: str):
"""
Args:
inputs (:obj:`str`):
a string containing some text
Return:
A :obj:`PIL.Image` with the raw image representation as PIL.
"""
tokenized_prompt = self.tokenizer(inputs, return_tensors='jax', padding='max_length', truncation=True, max_length=128)
key = jax.random.PRNGKey(random.randint(0, 2**32-1))
encoded_image = self.model.generate(**tokenized_prompt, do_sample=True, num_beams=1, prng_key=key)
# remove first token (BOS)
encoded_image = encoded_image.sequences[..., 1:]
decoded_image = self.vqgan.decode_code(encoded_image)
clipped_image = decoded_image.squeeze().clip(0., 1.)
return Image.fromarray(np.asarray(clipped_image * 255, dtype=np.uint8))