NEXTGPT / code /dataset /preprocess_dataset.py
osamaifti's picture
Upload 83 files
7cdf421 verified
raw
history blame
4.41 kB
import json
import os.path
from torch.utils.data import Dataset
from tqdm import tqdm
import pandas as pd
import re
import random
import numpy as np
import torch
def load_alpaca(data_path, sample_data=False, sample_numer=1000, save_dir=''):
"""
sample and process the alpaca dataset in to the following format:
[
{
"image_name": "00000000000",
"output_modality": "text",
"conversation": [
{
"from": "human",
"value": "Give three tips for staying healthy.",
"input_modality": "text"
},
{
"from": "gpt",
"value": "1. Eat a balanced and nutritious diet: ...",
"caption": "",
"output_modality": "text"
}
]
},
...
]
"""
with open(data_path, 'r') as f:
data = json.load(f)
print('the total instance is {}'.format(len(data)))
if sample_data and sample_numer > 0:
data = random.sample(data, sample_numer)
res = []
for d in data:
_temp = dict()
_temp['image_name'] = '00000000000'
_temp['output_modality'] = 'text'
conversation = []
conversation.append(
{'from': 'human',
'value': d['instruction'] + d['input'],
'input_modality': 'text'}
)
conversation.append(
{'from': 'gpt',
'value': d['output'],
'caption': '',
'output_modality': 'text'}
)
_temp['conversation'] = conversation
res.append(_temp)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = os.path.join(save_dir, os.path.basename(data_path))
with open(save_path, 'w', encoding='utf-8') as f:
json.dump(res, f, indent=4)
return res
def load_llava(data_path, sample_data=False, sample_numer=1000, save_dir=''):
"""
sample and process the llava instruction dataset into the following format:
[
{
"image_name": "00000000000.jpg",
"output_modality": "text",
"conversation": [
{
"from": "human",
"value": "Give three tips for staying healthy.",
"input_modality": "image"
},
{
"from": "gpt",
"value": "1. Eat a balanced and nutritious diet: ...",
"caption": "",
"output_modality": "text"
}
]
},
...
]
"""
with open(data_path, 'r') as f:
data = json.load(f)
print('the total instance is {}'.format(len(data)))
if sample_data and sample_numer > 0:
res = random.sample(data, sample_numer)
else:
res = data
# res = data
save_path = os.path.join(save_dir, os.path.basename(data_path))
for x in res:
i = 0
x['output_modality'] = 'text'
for j in x['conversation']:
if j['from'] == 'gpt':
j['caption'] = ''
j['output_modality'] = 'text'
elif j['from'] == 'human':
if i == 0:
j['input_modality'] = 'image'
i += 1
else:
j['input_modality'] = 'text'
with open(save_path, 'w', encoding='utf-8') as f:
json.dump(res, f, indent=4)
return res
def load_t2x(data_path):
with open(data_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
if __name__ == '__main__':
save_dir = '../../data/IT_data/T+X-T_data'
res = []
# audios = load_t2x(os.path.join(save_dir, 'audio_t2x.json'))
# videos = load_t2x(os.path.join(save_dir, 'video_t2x.json'))
# images = load_t2x(os.path.join(save_dir, 'image_t2x.json'))
# sample_number = max(len(audios), len(videos), len(images))
#
# print(sample_number)
sample_number = 1000
print('Load aplaca dataset ...')
text = load_alpaca('../../data/IT_data/T+X-T_data/alpaca/alpaca.json', False, sample_number, save_dir)
res.extend(text)
print('Load llava dataset ...')
data = load_llava('../../data/IT_data/T+X-T_data/llava/llava.json', False, sample_number, save_dir)