NEXTGPT / code /dataset /T+X-T_instruction_dataset.py
osamaifti's picture
Upload 83 files
7cdf421 verified
raw
history blame
2.34 kB
import json
import os.path
from torch.utils.data import Dataset
from tqdm import tqdm
import pandas as pd
import re
import random
import numpy as np
import torch
# from .base_dataset import BaseDataset
class TX2TInstructionDataset(Dataset):
"""
T + X - T instruction Dataset
"""
def __init__(self, data_path: str, mm_root_path: str = None, dataset_type: str='ImageToText'):
super(TX2TInstructionDataset, self).__init__()
self.mm_root_path = mm_root_path
self.instruction_list = []
self.mm_path_list = []
self.dataset_category = 't2t' if mm_root_path is None else 'tx2t'
with open(data_path, 'r', encoding='utf-8') as f:
res = json.load(f)
for instance in tqdm(res, total=len(res)):
self.instruction_list.append(instance['conversation'])
if self.dataset_category == 'tx2t':
# Text + X -> Text dataset
self.mm_path_list.append(os.path.join(mm_root_path, instance['image_name']))
self.dataset_type_list = [dataset_type for _ in range(len(self.instruction_list))]
def __len__(self): # number of instances
return len(self.instruction_list)
def __getitem__(self, i):
if self.dataset_category == 'tx2t':
# Text + X -> Text dataset
return dict(mm_paths=self.mm_path_list[i], output_texts=self.instruction_list[i],
dataset_types=self.dataset_type_list[i])
else:
# Text -> Text dataset
return dict(output_texts=self.instruction_list[i], dataset_types=self.dataset_type_list[i])
def collate(self, instances):
if self.dataset_category == 'tx2t':
mm_paths, output_texts, dataset_types = tuple(
[instance[key] for instance in instances] for key in ("mm_paths", "output_texts", "dataset_types"))
return dict(
mm_paths=mm_paths,
output_texts=output_texts,
dataset_types=dataset_types
)
else:
output_texts, dataset_types = tuple(
[instance[key] for instance in instances] for key in ("output_texts", "dataset_types"))
return dict(
output_texts=output_texts,
dataset_types=dataset_types
)