File size: 5,198 Bytes
7cdf421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
Adapted from salesforce@LAVIS. Below is the original copyright:
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import contextlib
import logging
import os
import time
import datetime

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F

from .common import dist_utils
# from video_llama.common.dist_utils import download_cached_file
# from .common.utils import is_url
from .common.logger import MetricLogger
# from video_llama.models.base_model import BaseModel
# from video_llama.models.Qformer import BertConfig, BertLMHeadModel
# from video_llama.models.eva_vit import create_eva_vit_g
# from transformers import BertTokenizer


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


def compute_sim_matrix(model, data_loader, **kwargs):
    k_test = kwargs.pop("k_test")

    metric_logger = MetricLogger(delimiter="  ")
    header = "Evaluation:"

    logging.info("Computing features for evaluation...")
    start_time = time.time()

    texts = data_loader.dataset.text
    num_text = len(texts)
    text_bs = 256
    text_ids = []
    text_embeds = []
    text_atts = []
    for i in range(0, num_text, text_bs):
        text = texts[i : min(num_text, i + text_bs)]
        text_input = model.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=35,
            return_tensors="pt",
        ).to(model.device)
        text_feat = model.forward_text(text_input)
        text_embed = F.normalize(model.text_proj(text_feat))
        text_embeds.append(text_embed)
        text_ids.append(text_input.input_ids)
        text_atts.append(text_input.attention_mask)

    text_embeds = torch.cat(text_embeds, dim=0)
    text_ids = torch.cat(text_ids, dim=0)
    text_atts = torch.cat(text_atts, dim=0)

    vit_feats = []
    image_embeds = []
    for samples in data_loader:
        image = samples["image"]

        image = image.to(model.device)
        image_feat, vit_feat = model.forward_image(image)
        image_embed = model.vision_proj(image_feat)
        image_embed = F.normalize(image_embed, dim=-1)

        vit_feats.append(vit_feat.cpu())
        image_embeds.append(image_embed)

    vit_feats = torch.cat(vit_feats, dim=0)
    image_embeds = torch.cat(image_embeds, dim=0)

    sims_matrix = []
    for image_embed in image_embeds:
        sim_q2t = image_embed @ text_embeds.t()
        sim_i2t, _ = sim_q2t.max(0)
        sims_matrix.append(sim_i2t)
    sims_matrix = torch.stack(sims_matrix, dim=0)

    score_matrix_i2t = torch.full(
        (len(data_loader.dataset.image), len(texts)), -100.0
    ).to(model.device)

    num_tasks = dist_utils.get_world_size()
    rank = dist_utils.get_rank()
    step = sims_matrix.size(0) // num_tasks + 1
    start = rank * step
    end = min(sims_matrix.size(0), start + step)

    for i, sims in enumerate(
        metric_logger.log_every(sims_matrix[start:end], 50, header)
    ):
        topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
        image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device)
        score = model.compute_itm(
            image_inputs=image_inputs,
            text_ids=text_ids[topk_idx],
            text_atts=text_atts[topk_idx],
        ).float()
        score_matrix_i2t[start + i, topk_idx] = score + topk_sim

    sims_matrix = sims_matrix.t()
    score_matrix_t2i = torch.full(
        (len(texts), len(data_loader.dataset.image)), -100.0
    ).to(model.device)

    step = sims_matrix.size(0) // num_tasks + 1
    start = rank * step
    end = min(sims_matrix.size(0), start + step)

    for i, sims in enumerate(
        metric_logger.log_every(sims_matrix[start:end], 50, header)
    ):
        topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
        image_inputs = vit_feats[topk_idx.cpu()].to(model.device)
        score = model.compute_itm(
            image_inputs=image_inputs,
            text_ids=text_ids[start + i].repeat(k_test, 1),
            text_atts=text_atts[start + i].repeat(k_test, 1),
        ).float()
        score_matrix_t2i[start + i, topk_idx] = score + topk_sim

    if dist_utils.is_dist_avail_and_initialized():
        dist.barrier()
        torch.distributed.all_reduce(
            score_matrix_i2t, op=torch.distributed.ReduceOp.SUM
        )
        torch.distributed.all_reduce(
            score_matrix_t2i, op=torch.distributed.ReduceOp.SUM
        )

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logging.info("Evaluation time {}".format(total_time_str))

    return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()