File size: 21,258 Bytes
7cdf421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
from transformers import AutoModel, AutoTokenizer
from copy import deepcopy
import os
import ipdb
import gradio as gr
import mdtex2html
from model.anyToImageVideoAudio import NextGPTModel
import torch
import json
import tempfile
from PIL import Image
import scipy
from config import *
import imageio
import argparse
import re

# init the model

parser = argparse.ArgumentParser(description='train parameters')
parser.add_argument('--model', type=str, default='nextgpt')
parser.add_argument('--nextgpt_ckpt_path', type=str)  # the delta parameters trained in each stages
parser.add_argument('--stage', type=int, default=3)
args = parser.parse_args()
args = vars(args)
args.update(load_config(args))
model = NextGPTModel(**args)
delta_ckpt = torch.load(os.path.join(args['nextgpt_ckpt_path'], f'pytorch_model.pt'), map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.eval().half().cuda()
print(f'[!] init the 7b model over ...')

g_cuda = torch.Generator(device='cuda').manual_seed(13)

filter_value = -float('Inf')
min_word_tokens = 10
gen_scale_factor = 4.0
stops_id = [[835]]
ENCOUNTERS = 1
load_sd = True
generator = g_cuda

max_num_imgs = 1
max_num_vids = 1
height = 320
width = 576

max_num_auds = 1
max_length = 246

"""Override Chatbot.postprocess"""


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text, image_path, video_path, audio_path):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    outputs = text
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines) + "<br>"
    res_text = ''
    split_text = re.split(r' <|> ', text)
    image_path_list, video_path_list, audio_path_list = [], [], []
    for st in split_text:
        if st.startswith('<Image>'):
            pattern = r'Image>(.*?)<\/Image'
            matches = re.findall(pattern, text)
            for m in matches:
                image_path_list.append(m)
        elif st.startswith('<Audio>'):
            pattern = r'Audio>(.*?)<\/Audio'
            matches = re.findall(pattern, text)
            for m in matches:
                audio_path_list.append(m)
        elif st.startswith('<Video>'):
            pattern = r'Video>(.*?)<\/Video'
            matches = re.findall(pattern, text)
            for m in matches:
                video_path_list.append(m)
        else:
            res_text += st
    text = res_text
    if image_path is not None:
        text += f'<img src="./file={image_path}" style="display: inline-block;width: 250px;max-height: 400px;"><br>'
        outputs = f'<Image>{image_path}</Image> ' + outputs
    if len(image_path_list) > 0:
        for i in image_path_list:
            text += f'<img src="./file={i}" style="display: inline-block;width: 250px;max-height: 400px;"><br>'
            outputs = f'<Image>{i}</Image> ' + outputs
    if video_path is not None:
        text += f' <video controls playsinline width="500" style="display: inline-block;"  src="./file={video_path}"></video><br>'
        outputs = f'<Video>{video_path}</Video> ' + outputs
    if len(video_path_list) > 0:
        for i in video_path_list:
            text += f' <video controls playsinline width="500" style="display: inline-block;"  src="./file={i}"></video><br>'
            outputs = f'<Video>{i}</Video> ' + outputs
    if audio_path is not None:
        text += f'<audio controls playsinline><source src="./file={audio_path}" type="audio/wav"></audio><br>'
        outputs = f'<Audio>{audio_path}</Audio> ' + outputs
    if len(audio_path_list) > 0:
        for i in audio_path_list:
            text += f'<audio controls playsinline><source src="./file={i}" type="audio/wav"></audio><br>'
            outputs = f'<Audio>{i}</Audio> ' + outputs
    # text = text[::-1].replace(">rb<", "", 1)[::-1]
    text = text[:-len("<br>")].rstrip() if text.endswith("<br>") else text
    return text, outputs


def save_image_to_local(image: Image.Image):
    # TODO: Update so the url path is used, to prevent repeat saving.
    if not os.path.exists('temp'):
        os.mkdir('temp')
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
    image.save(filename)
    return filename


def save_video_to_local(video):
    if not os.path.exists('temp'):
        os.mkdir('temp')
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
    writer = imageio.get_writer(filename, format='FFMPEG', fps=8)
    for frame in video:
        writer.append_data(frame)
    writer.close()
    return filename


def save_audio_to_local(audio):
    if not os.path.exists('temp'):
        os.mkdir('temp')
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.wav')
    scipy.io.wavfile.write(filename, rate=16000, data=audio)
    return filename


def parse_reponse(model_outputs):
    response = ''
    text_outputs = []
    for output_i, p in enumerate(model_outputs):
        if isinstance(p, str):
            response += p
            response += '<br>'
            text_outputs.append(p)
        elif 'img' in p.keys():
            _temp_output = ''
            for m in p['img']:
                if isinstance(m, str):
                    response += m.replace(' '.join([f'[IMG{i}]' for i in range(args['num_gen_img_tokens'])]), '')
                    response += '<br>'
                    _temp_output += m.replace(' '.join([f'[IMG{i}]' for i in range(args['num_gen_img_tokens'])]), '')
                else:
                    filename = save_image_to_local(m[0])
                    print(filename)
                    _temp_output = f'<Image>{filename}</Image> ' + _temp_output
                    response += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">'
            text_outputs.append(_temp_output)
        elif 'vid' in p.keys():
            _temp_output = ''
            for idx, m in enumerate(p['vid']):
                if isinstance(m, str):
                    response += m.replace(' '.join([f'[VID{i}]' for i in range(args['num_gen_video_tokens'])]), '')
                    response += '<br>'
                    _temp_output += m.replace(' '.join([f'[VID{i}]' for i in range(args['num_gen_video_tokens'])]), '')
                else:
                    filename = save_video_to_local(m)
                    print(filename)
                    _temp_output = f'<Video>{filename}</Video> ' + _temp_output
                    response += f'<video controls playsinline width="500" style="display: inline-block;"  src="./file={filename}"></video>'
            text_outputs.append(_temp_output)
        elif 'aud' in p.keys():
            _temp_output = ''
            for idx, m in enumerate(p['aud']):
                if isinstance(m, str):
                    response += m.replace(' '.join([f'[AUD{i}]' for i in range(args['num_gen_audio_tokens'])]), '')
                    response += '<br>'
                    _temp_output += m.replace(' '.join([f'[AUD{i}]' for i in range(args['num_gen_audio_tokens'])]), '')
                else:
                    filename = save_audio_to_local(m)
                    print(filename)
                    _temp_output = f'<Audio>{filename}</Audio> ' + _temp_output
                    response += f'<audio controls playsinline><source src="./file={filename}" type="audio/wav"></audio>'
            text_outputs.append(_temp_output)
        else:
            pass
    response = response[:-len("<br>")].rstrip() if response.endswith("<br>") else response
    return response, text_outputs


def re_predict(
        prompt_input,
        image_path,
        audio_path,
        video_path,
        # thermal_path,
        chatbot,
        # max_length,
        top_p,
        temperature,
        history,
        modality_cache,
        guidance_scale_for_img,
        num_inference_steps_for_img,
        guidance_scale_for_vid,
        num_inference_steps_for_vid,
        num_frames,
        guidance_scale_for_aud,
        num_inference_steps_for_aud,
        audio_length_in_s
):
    # drop the latest query and answers and generate again

    q, a = history.pop()
    chatbot.pop()
    return predict(q, image_path, audio_path, video_path, chatbot, top_p,
                   temperature, history, modality_cache, guidance_scale_for_img, num_inference_steps_for_img,
                   guidance_scale_for_vid, num_inference_steps_for_vid, num_frames,
                   guidance_scale_for_aud, num_inference_steps_for_aud, audio_length_in_s)


def predict(
        prompt_input,
        image_path,
        audio_path,
        video_path,
        chatbot,
        top_p,
        temperature,
        history,
        modality_cache,
        guidance_scale_for_img,
        num_inference_steps_for_img,
        guidance_scale_for_vid,
        num_inference_steps_for_vid,
        num_frames,
        guidance_scale_for_aud,
        num_inference_steps_for_aud,
        audio_length_in_s
):
    # prepare the prompt
    prompt_text = ''

    if len(history) == 0:
        prompt_text += '### Human: '
        if image_path is not None:
            prompt_text += f'<Image>{image_path}</Image> '
        if audio_path is not None:
            prompt_text += f'<Audio>{audio_path}</Audio> '
        if video_path is not None:
            prompt_text += f'<Video>{video_path}</Video> '
        prompt_text += f' {prompt_input}'
    else:
        for idx, (q, a) in enumerate(history):
            if idx == 0:
                prompt_text += f'### Human: {q}\n### Assistant: {a}\n###'
            else:
                prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
        prompt_text += ' Human: '
        if image_path is not None:
            prompt_text += f'<Image>{image_path}</Image> '
        if audio_path is not None:
            prompt_text += f'<Audio>{audio_path}</Audio> '
        if video_path is not None:
            prompt_text += f'<Video>{video_path}</Video> '
        prompt_text += f' {prompt_input}'
    print('prompt_text: ', prompt_text)
    print('image_path: ', image_path)
    print('audio_path: ', audio_path)
    print('video_path: ', video_path)
    response = model.generate({
        'prompt': prompt_text,
        'image_paths': [image_path] if image_path else [],
        'audio_paths': [audio_path] if audio_path else [],
        'video_paths': [video_path] if video_path else [],
        # 'thermal_paths': [thermal_path] if thermal_path else [],
        'top_p': top_p,
        'temperature': temperature,
        'max_tgt_len': max_length,
        'modality_embeds': modality_cache,
        'filter_value': filter_value, 'min_word_tokens': min_word_tokens,
        'gen_scale_factor': gen_scale_factor, 'max_num_imgs': max_num_imgs,
        'stops_id': stops_id,
        'load_sd': load_sd,
        'generator': generator,
        'guidance_scale_for_img': guidance_scale_for_img,
        'num_inference_steps_for_img': num_inference_steps_for_img,

        'guidance_scale_for_vid': guidance_scale_for_vid,
        'num_inference_steps_for_vid': num_inference_steps_for_vid,
        'max_num_vids': max_num_vids,
        'height': height,
        'width': width,
        'num_frames': num_frames,

        'guidance_scale_for_aud': guidance_scale_for_aud,
        'num_inference_steps_for_aud': num_inference_steps_for_aud,
        'max_num_auds': max_num_auds,
        'audio_length_in_s': audio_length_in_s,
        'ENCOUNTERS': ENCOUNTERS,
    })
    response_chat, response_outputs = parse_reponse(response)
    print('text_outputs: ', response_outputs)
    user_chat, user_outputs = parse_text(prompt_input, image_path, video_path, audio_path)
    chatbot.append((user_chat, response_chat))
    history.append((user_outputs, ''.join(response_outputs).replace('\n###', '')))
    return chatbot, history, modality_cache, None, None, None,


def reset_user_input():
    return gr.update(value='')


def reset_dialog():
    return [], []


def reset_state():
    return None, None, None, None, [], [], []


def upload_image(conversation, chat_history, image_input):
    input_image = Image.open(image_input.name).resize(
        (224, 224)).convert('RGB')
    input_image.save(image_input.name)  # Overwrite with smaller image.
    conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
    return conversation, chat_history + [input_image, ""]


def upload_image_video_audio(gr_image, gr_video, gr_audio, chatbot, history):
    if gr_image is not None:
        print(gr_image)
        chatbot.append(((gr_image.name,), None))
        history = history + [((gr_image,), None)]
    if gr_video is not None:
        print(gr_video)
        chatbot.append(((gr_video.name,), None))
        history = history + [((gr_video,), None)]
    if gr_audio is not None:
        print(gr_audio)
        chatbot.append(((gr_audio.name,), None))
        history = history + [((gr_audio,), None)]
    return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), chatbot, history


with gr.Blocks() as demo:

    gr.HTML("""
        <h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; "><img src='./file=nextgpt.png' width="45" height="45" style="margin-right: 10px;">NExT-GPT</h1>
        <h3>This is the demo page of NExT-GPT, an any-to-any multimodal LLM that allows for seamless conversion and generation among text, image, video and audio!</h3>
        <h3>The current initial version of NExT-GPT, limited by the quantity of fine-tuning data and the quality of the base models, may generate some low-quality or hallucinated content. Please interpret the results with caution. We will continue to update the model to enhance its performance. Thank you for trying the demo! If you have any questions or feedback, feel free to contact us.</h3>
        <div style="display: flex;"><a href='https://next-gpt.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> &nbsp  &nbsp  &nbsp <a href='https://github.com/NExT-GPT/NExT-GPT'><img src='https://img.shields.io/badge/Github-Code-blue'></a> &nbsp &nbsp  &nbsp  <a href='https://arxiv.org/pdf/2309.05519.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
        """)

    with gr.Row():
        with gr.Column(scale=0.7, min_width=500):
            with gr.Row():
                chatbot = gr.Chatbot(label='NExT-GPT Chatbot', avatar_images=((os.path.join(os.path.dirname(__file__), 'user.png')), (os.path.join(os.path.dirname(__file__), "bot.png")))).style(height=440)

            with gr.Tab("User Input"):
                with gr.Row(scale=3):
                    user_input = gr.Textbox(label="Text", placeholder="Key in something here...", lines=3)
                with gr.Row(scale=3):
                    with gr.Column(scale=1):
                        # image_btn = gr.UploadButton("🖼️ Upload Image", file_types=["image"])
                        image_path = gr.Image(type="filepath", label="Image")  # .style(height=200)  # <PIL.Image.Image image mode=RGB size=512x512 at 0x7F6E06738D90>
                    with gr.Column(scale=1):
                        audio_path = gr.Audio(type='filepath')  #.style(height=200)
                    with gr.Column(scale=1):
                        video_path = gr.Video()  #.style(height=200) # , value=None, interactive=True
        with gr.Column(scale=0.3, min_width=300):
            with gr.Group():
                with gr.Accordion('Text Advanced Options', open=True):
                    top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
                    temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True)
                with gr.Accordion('Image Advanced Options', open=True):
                    guidance_scale_for_img = gr.Slider(1, 10, value=7.5, step=0.5, label="Guidance scale",
                                                       interactive=True)
                    num_inference_steps_for_img = gr.Slider(10, 50, value=50, step=1, label="Number of inference steps",
                                                            interactive=True)
                with gr.Accordion('Video Advanced Options', open=False):
                    guidance_scale_for_vid = gr.Slider(1, 10, value=7.5, step=0.5, label="Guidance scale",
                                                       interactive=True)
                    num_inference_steps_for_vid = gr.Slider(10, 50, value=50, step=1, label="Number of inference steps",
                                                            interactive=True)
                    num_frames = gr.Slider(label='Number of frames', minimum=16, maximum=32, step=8, value=24,
                                           interactive=True,
                                           info='Note that the content of the video also changes when you change the number of frames.')
                with gr.Accordion('Audio Advanced Options', open=False):
                    guidance_scale_for_aud = gr.Slider(1, 10, value=7.5, step=0.5, label="Guidance scale",
                                                       interactive=True)
                    num_inference_steps_for_aud = gr.Slider(10, 50, value=50, step=1, label="Number of inference steps",
                                                            interactive=True)
                    audio_length_in_s = gr.Slider(1, 9, value=9, step=1, label="The audio length in seconds",
                                                  interactive=True)
            with gr.Tab("Operation"):
                with gr.Row(scale=1):
                    submitBtn = gr.Button(value="Submit & Run", variant="primary")
                with gr.Row(scale=1):
                    resubmitBtn = gr.Button("Rerun")
                with gr.Row(scale=1):
                    emptyBtn = gr.Button("Clear History")

    history = gr.State([])
    modality_cache = gr.State([])

    submitBtn.click(
        predict, [
            user_input,
            image_path,
            audio_path,
            video_path,
            chatbot,
            # max_length,
            top_p,
            temperature,
            history,
            modality_cache,
            guidance_scale_for_img,
            num_inference_steps_for_img,
            guidance_scale_for_vid,
            num_inference_steps_for_vid,
            num_frames,
            guidance_scale_for_aud,
            num_inference_steps_for_aud,
            audio_length_in_s
        ], [
            chatbot,
            history,
            modality_cache,
            image_path,
            audio_path,
            video_path
        ],
        show_progress=True
    )

    resubmitBtn.click(
        re_predict, [
            user_input,
            image_path,
            audio_path,
            video_path,
            chatbot,
            # max_length,
            top_p,
            temperature,
            history,
            modality_cache,
            guidance_scale_for_img,
            num_inference_steps_for_img,
            guidance_scale_for_vid,
            num_inference_steps_for_vid,
            num_frames,
            guidance_scale_for_aud,
            num_inference_steps_for_aud,
            audio_length_in_s
        ], [
            chatbot,
            history,
            modality_cache,
            image_path,
            audio_path,
            video_path
        ],
        show_progress=True
    )

    submitBtn.click(reset_user_input, [], [user_input])
    emptyBtn.click(reset_state, outputs=[
        image_path,
        audio_path,
        video_path,
        chatbot,
        history,
        modality_cache
    ], show_progress=True)

demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=24004)