File size: 19,728 Bytes
9346d2c 7cdf421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
---
language: en
license: apache-2.0
tags:
- text-generation
- multimodal
datasets:
- commoncrawl
- imagenet
metrics:
- bleu
- rouge
---
# <img src="code/nextgpt.png" style="width: 5%"> NExT-GPT: Any-to-Any Multimodal LLM
[Shengqiong Wu](https://chocowu.github.io/), [Hao Fei](http://haofei.vip/)*, [Leigang Qu](#), [Wei Ji](https://jiwei0523.github.io/), and [Tat-Seng Chua](https://www.chuatatseng.com/).
(*Correspondence )
**[NExT++](https://www.nextcenter.org/), School of Computing, National University of Singapore**
-----
<a href='https://next-gpt.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='#'><img src='https://img.shields.io/badge/Demo-Page-purple'></a>
<a href='https://arxiv.org/pdf/2309.05519'><img src='https://img.shields.io/badge/Paper-PDF-orange'></a>
![License](https://img.shields.io/badge/License-BSD-blue.svg)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://www.youtube.com/watch?v=aqw2SCWeWD0)
This repository hosts the code, data and model weight of **NExT-GPT**, the first end-to-end MM-LLM that perceives input and generates output in arbitrary combinations (any-to-any) of text, image, video, and audio and beyond.
-----------
## π News
- [x] [2023.09.15] ππ Release the code of NExT-GPT in version `7b_tiva_v0`.
- [x] [2023.09.27] π¨π§© Added modality-blended batch sampler .
- [x] [2023.10.01] π’π’ Release the T2M instruction dataset.
- [x] [2023.10.04] ππ Release the checkpoint of NExT-GPT in version [7b_tiva_v0](https://huggingface.co/ChocoWu/nextgpt_7b_tiva_v0) .
- [x] [2023.10.15] π¨π Update of NExT-GPT in version [7b_tiva_v0](https://huggingface.co/ChocoWu/nextgpt_7b_tiva_v0) .
## π TODO
- [ ] Release MosIT data.
- [ ] Updating NExT-GPT in more types&sizes of LLMs.
- [ ] Empowering NExT-GPT with more modalities of inputs&outputs.
- [ ] ...
-----------
## Example Demos
Here we showcase examples generated from NExT-GPT.
For more examples, kindly visit the [webpage](https://next-gpt.github.io/), or the online live [demo](https://acc414b22d6839d28f.gradio.live).
https://github.com/NExT-GPT/NExT-GPT/assets/18722770/0c2b3d88-a533-4899-ab44-65580fe54538
https://github.com/NExT-GPT/NExT-GPT/assets/18722770/eb1319a6-38aa-4546-a96e-163207e7de93
https://github.com/NExT-GPT/NExT-GPT/assets/18722770/36bec0ad-9bad-4bcf-bc37-92b028f1bc6a
<span id='introduction'/>
## Brief Introduction
NExt-GPT is built on top of existing pre-trained LLM, multimodal encoder and SoTA diffusion models, with sufficient end-to-end instruction tuning.
<p align="center" width="100%">
<a target="_blank"><img src="figures/framework.png" alt="Video-LLaMA" style="width: 90%; min-width: 200px; display: block; margin: auto;"></a>
</p>
- **Multimodal Encoding Stage.** Leveraging established encoders to encode inputs in various modalities, where these representations are projected into language-like representations comprehensible to the LLM through a projection layer.
- **LLM Understanding and Reasoning Stage.** Harnessing an existing open-sourced LLM as the core to process input information for semantic understanding and reasoning. The LLM not only directly generates text tokens but also produces unique βmodality signalβ tokens that serve as instructions to dictate the decoding layers whether & what modal content to output correspondingly.
- **Multimodal Generation Stage.** Receiving the multimodal signals with specific instructions from LLM (if any), the Transformer-based output projection layers map the signal token representations into the ones that are understandable to following multimodal decoders.
For more technical details, kindly refer to the [paper](https://arxiv.org/pdf/2309.05519.pdf).
-----------
<span id='Usage'/>
## Getting Started
<span id='all_catelogue'/>
### Table of Contents:
* <a href='#Code Structure'>1. Code Structure</a>
* <a href='#Environment Preparation'>2. Environment Preparation </a>
* <a href='#Training on Your Own'>3. Training/Adapting NExt-GPT on Your Own</a>
* <a href='#Prepare Pre-trained Checkpoint'>3.1. Preparing Pre-trained Checkpoint</a>
* <a href='#Prepare Dataset'>3.2. Preparing Dataset </a>
* <a href='#Precompute Embeddings'>3.3. Precomputing Embeddings</a>
* <a href='#Train NExT-GPT'>3.4. Training NExT-GPT</a>
* <a href='#Run NExT-GPT System'>4. Running NExT-GPT System</a>
* <a href='#Prepare checkpoints'>4.1. Preparing checkpoints</a>
* <a href='#Deploy Demo System'>4.2. Deploying Demo System</a>
****
<span id='Code Structure'/>
### 1. Code Structure
```
βββ figures
βββ data
β βββ T-X_pair_data
β β βββ audiocap # text-autio pairs data
β β β βββ audios # audio files
β β β βββ audiocap.json # the audio captions
β β βββ cc3m # text-image paris data
β β β βββ images # image files
β β β βββ cc3m.json # the image captions
β β βββ webvid # text-video pairs data
β β β βββ videos # video files
β β β βββ webvid.json # the video captions
β βββ IT_data # instruction data
β β βββ T+X-T_data # text+[image/audio/video] to text instruction data
β β β βββ alpaca # textual instruction data
β β β βββ llava # visual instruction data
β β βββ T-T+X # synthesized text to text+[image/audio/video] instruction data
β β βββ MosIT # Modality-switching Instruction Tuning instruction data
βββ code
β βββ config
β β βββ base.yaml # the model configuration
β β βββ stage_1.yaml # enc-side alignment training configuration
β β βββ stage_2.yaml # dec-side alignment training configuration
β β βββ stage_3.yaml # instruction-tuning configuration
β βββ dsconfig
β β βββ stage_1.json # deepspeed configuration for enc-side alignment training
β β βββ stage_2.json # deepspeed configuration for dec-side alignment training
β β βββ stage_3.json # deepspeed configuration for instruction-tuning training
β βββ datast
β β βββ base_dataset.py
β β βββ catalog.py # the catalog information of the dataset
β β βββ cc3m_datast.py # process and load text-image pair dataset
β β βββ audiocap_datast.py # process and load text-audio pair dataset
β β βββ webvid_dataset.py # process and load text-video pair dataset
β β βββ T+X-T_instruction_dataset.py # process and load text+x-to-text instruction dataset
β β βββ T-T+X_instruction_dataset.py # process and load text-to-text+x instruction dataset
β β βββ concat_dataset.py # process and load multiple dataset
β βββ model
β β βββ ImageBind # the code from ImageBind Model
β β βββ common
β β βββ anyToImageVideoAudio.py # the main model file
β β βββ agent.py
β β βββ modeling_llama.py
β β βββ custom_ad.py # the audio diffusion
β β βββ custom_sd.py # the image diffusion
β β βββ custom_vd.py # the video diffusion
β β βββ layers.py # the output projection layers
β β βββ ...
β βββ scripts
β β βββ train.sh # training NExT-GPT script
β β βββ app.sh # deploying demo script
β βββ header.py
β βββ process_embeddings.py # precompute the captions embeddings
β βββ train.py # training
β βββ inference.py # inference
β βββ demo_app.py # deploy Gradio demonstration
β βββ ...
βββ ckpt
β βββ delta_ckpt # tunable NExT-GPT params
β β βββ nextgpt
β β β βββ 7b_tiva_v0 # the directory to save the log file
β β β β βββ log # the logs
β βββ ...
β βββ pretrained_ckpt # frozen params of pretrained modules
β β βββ imagebind_ckpt
β β β βββhuge # version
β β β β βββimagebind_huge.pth
β β βββ vicuna_ckpt
β β β βββ 7b_v0 # version
β β β β βββ config.json
β β β β βββ pytorch_model-00001-of-00002.bin
β β β β βββ tokenizer.model
β β β β βββ ...
βββ LICENCE.md
βββ README.md
βββ requirements.txt
```
<span id='Environment Preparation'/>
### 2. Environment Preparation <a href='#all_catelogue'>[Back to Top]</a>
Please first clone the repo and install the required environment, which can be done by running the following commands:
```
conda env create -n nextgpt python=3.8
conda activate nextgpt
# CUDA 11.6
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
git clone https://github.com/NExT-GPT/NExT-GPT.git
cd NExT-GPT
pip install -r requirements.txt
```
<span id='Training on Your Own'/>
### 3. Training/Adapting NExt-GPT on Your Own
####
<span id='Prepare Pre-trained Checkpoint'/>
#### 3.1. Preparing Pre-trained Checkpoint <a href='#all_catelogue'>[Back to Top]</a>
NExT-GPT is trained based on following excellent existing models.
Please follow the instructions to prepare the checkpoints.
- `ImageBind`
is the unified image/video/audio encoder. The pre-trained checkpoint can be downloaded from [here](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) with version `huge`. Afterward, put the `imagebind_huge.pth` file at [[./ckpt/pretrained_ckpt/imagebind_ckpt/huge]](ckpt/pretrained_ckpt/imagebind_ckpt/).
- `Vicuna`:
first prepare the LLaMA by following the instructions [[here]](ckpt/pretrained_ckpt/prepare_vicuna.md). Then put the pre-trained model at [[./ckpt/pretrained_ckpt/vicuna_ckpt/]](ckpt/pretrained_ckpt/vicuna_ckpt/).
- `Image Diffusion`
is used to generate images. NExT-GPT uses [Stable Diffusion](https://huggingface.co/runwayml/stable-diffusion-v1-5) with version `
v1-5`. (_will be automatically downloaded_)
- `Audio Diffusion`
for producing audio content. NExT-GPT employs [AudioLDM](https://github.com/haoheliu/AudioLDM) with version `l-full`. (_will be automatically downloaded_)
- `Video Diffusion`
for the video generation. We employ [ZeroScope](https://huggingface.co/cerspense/zeroscope_v2_576w) with version `v2_576w`. (_will be automatically downloaded_)
<span id='Prepare Dataset'/>
#### 3.2. Preparing Dataset <a href='#all_catelogue'>[Back to Top]</a>
Please download the following datasets used for model training:
A) T-X pairs data
- `CC3M` of ***text-image*** pairs, please follow this instruction [[here]](./data/T-X_pair_data/cc3m/prepare.md). Then put the data at [[./data/T-X_pair_data/cc3m]](./data/T-X_pair_data/cc3m).
- `WebVid` of ***text-video*** pairs, see the [[instruction]](./data/T-X_pair_data/webvid/prepare.md). The file should be saved at [[./data/T-X_pair_data/webvid]](./data/T-X_pair_data/webvid).
- `AudioCap` of ***text-audio*** pairs, see the [[instruction]](./data/T-X_pair_data/audiocap/prepare.md). Save the data in [[./data/T-X_pair_data/audiocap]](./data/T-X_pair_data/audiocap).
B) Instruction data
- T+X-T
- `LLaVA` of the ***visual instruction data***, download it from [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md), and then put it at [[./data/IT_data/T+X-T_data/llava]](./data/IT_data/T+X-T_data/llava/).
- `Alpaca` of the ***textual instruction data***, download it from [here](https://github.com/tatsu-lab/stanford_alpaca), and then put it at [[./data/IT_data/T+X-T_data/alpaca/]](data/IT_data/T+X-T_data/alpaca/).
- `VideoChat`, download the ***video instruction data*** [here](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data), and then put it at [[./data/IT_data/T+X-T_data/videochat/]](data/IT_data/T+X-T_data/videochat/).
Side noteοΌAfter downloading dataset, please run `preprocess_dataset.py` to preprocess the dataset into a unified format.
- T-X+T (T2M)
- The `T-X+T` instruction datasets (T2M) are saved at [[./data/IT_data/T-T+X_data]](./data/IT_data/T-T+X_data).
- MosIT
- Download the file from [here](), put them in [[./data/IT_data/MosIT_data/]](./data/IT_data/MosIT_data/). (_We are in the process of finalizing the data and handling the copyright issue. Will release later._)
<span id='Precompute Embeddings'/>
#### 3.3. Precomputing Embeddings <a href='#all_catelogue'>[Back to Top]</a>
In decoding-side alignment training, we minimize the distance between the representation of signal tokens and captions.
To save costs of time and memory, we precompute the text embeddings for image, audio and video captions using the text encoder within the respective diffusion models.
Please run this command before the following training of NExT-GPT, where the produced `embedding` file will be saved at [[./data/embed]](./data/embed).
```angular2html
cd ./code/
python process_embeddings.py ../data/T-X_pair_data/cc3m/cc3m.json image ../data/embed/ runwayml/stable-diffusion-v1-5
```
Note of arguments:
- args[1]: path of caption file;
- args[2]: modality, which can be `image`, `video`, and `audio`;
- args[3]: saving path of embedding file;
- args[4]: corresponding pre-trained diffusion model name.
<span id='Train NExT-GPT'/>
#### 3.4. Training NExT-GPT <a href='#all_catelogue'>[Back to Top]</a>
First of all, please refer to the base configuration file [[./code/config/base.yaml]](./code/config/base.yaml) for the basic system setting of overall modules.
Then, the training of NExT-GPT starts with this script:
```angular2html
cd ./code
bash scripts/train.sh
```
Specifying the command:
```angular2html
deepspeed --include localhost:0 --master_addr 127.0.0.1 --master_port 28459 train.py \
--model nextgpt \
--stage 1\
--save_path ../ckpt/delta_ckpt/nextgpt/7b_tiva_v0/\
--log_path ../ckpt/delta_ckpt/nextgpt/7b_tiva_v0/log/
```
where the key arguments are:
- `--include`: `localhost:0` indicating the GPT cuda number `0` of deepspeed.
- `--stage`: training stage.
- `--save_path`: the directory which saves the trained delta weights. This directory will be automatically created.
- `--log_path`: the directory which saves the log file.
The whole NExT-GPT training involves 3 steps:
- **Step-1**: Encoding-side LLM-centric Multimodal Alignment. This stage trains the ***input projection layer*** while freezing the ImageBind, LLM, output projection layer.
Just run the above `train.sh` script by setting: `--stage 1`
Also refer to the running config file [[./code/config/stage_1.yaml]](./code/config/stage_1.yaml) and deepspeed config file [[./code/dsconfig/stage_1.yaml]](./code/dsconfig/stage_1.yaml) for more step-wise configurations.
Note that the dataset used for training in this step is included `dataset_name_list` and the dataset name must precisely match the definition in [[./code/dataset/catalog.py]](./code/dataset/catalog.py)
- **Step-2**: Decoding-side Instruction-following Alignment. This stage trains the ***output projection layers*** while freezing the ImageBind, LLM, input projection layers.
Just run the above `train.sh` script by setting: `--stage 2`
Also refer to the running config file [[./code/config/stage_2.yaml]](./code/config/stage_2.yaml) and deepspeed config file [[./code/dsconfig/stage_2.yaml]](./code/dsconfig/stage_2.yaml) for more step-wise configurations.
- **Step-3**: Instruction Tuning. This stage instruction-tune 1) the ***LLM*** via LoRA, 2) ***input projection layer*** and 3) ***output projection layer*** on the instruction dataset.
Just run the above `train.sh` script by setting: `--stage 3`
Also refer to the running config file [[./code/config/stage_3.yaml]](./code/config/stage_3.yaml) and deepspeed config file [[./code/dsconfig/stage_3.yaml]](./code/dsconfig/stage_3.yaml) for more step-wise configurations.
<span id='Run NExT-GPT System'/>
## 4. Running NExT-GPT System <a href='#all_catelogue'>[Back to Top]</a>
<span id='Prepare checkpoints'/>
#### 4.1. Preparing Checkpoints
First, loading the pre-trained NExT-GPT system.
- **Step-1**: load `Frozen parameters`. Please refer to <a href='#Prepare Pre-trained Checkpoint'>3.1 Preparing Pre-trained Checkpoint</a>.
- **Step-2**: load `Tunable parameters`. Please put the NExT-GPT system at [[./ckpt/delta_ckpt/nextgpt/7b_tiva_v0]](./ckpt/delta_ckpt/nextgpt/7b_tiva_v0). You may either 1) use the params trained yourselves, or 2) download our checkpoints from [Huggingface](https://huggingface.co/ChocoWu/nextgpt_7b_tiva_v0).
<span id='Deploy Demo System'/>
#### 4.2. Deploying Gradio Demo
Upon completion of the checkpoint loading, you can run the demo locally via:
```angular2html
cd ./code
bash scripts/app.sh
```
Specifying the key arguments as:
- `--nextgpt_ckpt_path`: the path of pre-trained NExT-GPT params.
---------
## Contact
For any questions or feedback, feel free to contact [Shengqiong Wu](mailto:[email protected]) and [Hao Fei](mailto:[email protected]).
## Citation
If you find NextGPT useful in your research or applications, please kindly cite:
```
@articles{wu2023nextgpt,
title={NExT-GPT: Any-to-Any Multimodal LLM},
author={Shengqiong Wu and Hao Fei and Leigang Qu and Wei Ji and Tat-Seng Chua},
journal = {CoRR},
volume = {abs/2309.05519},
year={2023}
}
```
## Acknowledgements
You may refer to related work that serves as foundations for our framework and code repository,
[Vicuna](https://github.com/lm-sys/FastChat),
[ImageBind](https://github.com/facebookresearch/ImageBind),
[Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img),
[AudioLDM](https://github.com/haoheliu/AudioLDM), and
[Zeroscope](https://huggingface.co/cerspense/zeroscope_v2_576w).
We also partially draw inspirations from
[PandaGPT](https://github.com/yxuansu/PandaGPT),
[VPGTrans](https://vpgtrans.github.io/),
[GILL](https://github.com/kohjingyu/gill/),
[CoDi](https://codi-gen.github.io/),
[Video-LLaMA](https://github.com/DAMO-NLP-SG/Video-LLaMA),
and [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4).
Thanks for their wonderful works.
## License Notices
This repository is under [BSD 3-Clause License](LICENSE.txt).
NExT-GPT is a research project intended for non-commercial use only.
One must NOT use the code of NExT-GPT for any illegal, harmful, violent, racist, or sexual purposes.
One is strictly prohibited from engaging in any activity that will potentially violate these guidelines.
Any potential commercial use of this code should be approved by the authors.
|