oweller2
commited on
Commit
·
5448b02
1
Parent(s):
3807a72
tokenizer
Browse files- tokenizer.py +83 -0
tokenizer.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedTokenizerFast
|
2 |
+
import numpy
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class ModernDecoderBERTTokenizer(PreTrainedTokenizerFast):
|
6 |
+
|
7 |
+
def _batch_encode_plus(self, *args, **kwargs):
|
8 |
+
outputs = super()._batch_encode_plus(*args, **kwargs)
|
9 |
+
del outputs["token_type_ids"]
|
10 |
+
|
11 |
+
# Get the input_ids to check for EOS tokens
|
12 |
+
input_ids = outputs['input_ids']
|
13 |
+
|
14 |
+
# Function to check if sequence ends with EOS token
|
15 |
+
def ends_with_eos(sequence):
|
16 |
+
if len(sequence) == 0:
|
17 |
+
return False
|
18 |
+
return sequence[-1] == self.eos_token_id
|
19 |
+
|
20 |
+
# Check for EOS tokens using input_ids only
|
21 |
+
if isinstance(input_ids, torch.Tensor):
|
22 |
+
last_token_is_eos = torch.tensor([
|
23 |
+
ends_with_eos(seq) for seq in input_ids
|
24 |
+
], dtype=torch.bool)
|
25 |
+
|
26 |
+
if last_token_is_eos.all():
|
27 |
+
# If all sequences have EOS, just truncate all
|
28 |
+
for key in ['input_ids', 'attention_mask']:
|
29 |
+
outputs[key] = outputs[key][..., :-1]
|
30 |
+
elif last_token_is_eos.any():
|
31 |
+
# Process each sequence individually
|
32 |
+
batch_size = input_ids.shape[0]
|
33 |
+
for i in range(batch_size):
|
34 |
+
if last_token_is_eos[i]:
|
35 |
+
for key in ['input_ids', 'attention_mask']:
|
36 |
+
# Remove last token and add padding at start for this sequence
|
37 |
+
truncated = outputs[key][i, :-1]
|
38 |
+
outputs[key][i] = torch.cat([
|
39 |
+
torch.zeros_like(truncated[:1]),
|
40 |
+
truncated
|
41 |
+
])
|
42 |
+
|
43 |
+
elif isinstance(input_ids, numpy.ndarray):
|
44 |
+
last_token_is_eos = numpy.array([
|
45 |
+
ends_with_eos(seq) for seq in input_ids
|
46 |
+
], dtype=bool)
|
47 |
+
|
48 |
+
if last_token_is_eos.all():
|
49 |
+
# If all sequences have EOS, just truncate all
|
50 |
+
for key in ['input_ids', 'attention_mask']:
|
51 |
+
outputs[key] = outputs[key][..., :-1]
|
52 |
+
elif last_token_is_eos.any():
|
53 |
+
batch_size = input_ids.shape[0]
|
54 |
+
for i in range(batch_size):
|
55 |
+
if last_token_is_eos[i]:
|
56 |
+
for key in ['input_ids', 'attention_mask']:
|
57 |
+
# Remove last token and add padding at start for this sequence
|
58 |
+
truncated = outputs[key][i, :-1]
|
59 |
+
outputs[key][i] = numpy.concatenate([
|
60 |
+
numpy.zeros_like(truncated[:1]),
|
61 |
+
truncated
|
62 |
+
])
|
63 |
+
|
64 |
+
elif isinstance(input_ids, list):
|
65 |
+
last_token_is_eos = [ends_with_eos(seq) for seq in input_ids]
|
66 |
+
|
67 |
+
if all(last_token_is_eos):
|
68 |
+
# If all sequences have EOS, just truncate all
|
69 |
+
for key in ['input_ids', 'attention_mask']:
|
70 |
+
outputs[key] = [sequence[:-1] for sequence in outputs[key]]
|
71 |
+
elif any(last_token_is_eos):
|
72 |
+
for key in ['input_ids', 'attention_mask']:
|
73 |
+
outputs[key] = [
|
74 |
+
[0] + sequence[:-1] if is_eos else sequence
|
75 |
+
for sequence, is_eos in zip(outputs[key], last_token_is_eos)
|
76 |
+
]
|
77 |
+
|
78 |
+
return outputs
|
79 |
+
|
80 |
+
|
81 |
+
# Register the class
|
82 |
+
from transformers import AutoTokenizer
|
83 |
+
AutoTokenizer.register(ModernDecoderBERTTokenizer, fast_tokenizer_class=ModernDecoderBERTTokenizer[])
|