oweller2
commited on
Commit
·
204da06
1
Parent(s):
c46937d
added in file
Browse files- README.md +2 -32
- __init__.py +74 -0
- activation.py +60 -0
- attention.py +1601 -0
- bert_padding.py +141 -0
- config.json +3 -1
- configuration_bert.py +272 -0
- embeddings.py +218 -0
- initialization.py +551 -0
- layers.py +700 -0
- mlp.py +214 -0
- modeling_flexbert.py +1920 -0
- normalization.py +116 -0
- options.py +32 -0
- padding.py +87 -0
- rotary.py +297 -0
- utils.py +38 -0
README.md
CHANGED
@@ -1,33 +1,3 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
pipeline_tag: fill-mask
|
5 |
-
---
|
6 |
-
|
7 |
-
## How to run:
|
8 |
-
Install these requirements
|
9 |
-
```
|
10 |
-
pip install flash_attn
|
11 |
-
pip install transformers==4.45.2 # (probably works with newer/older but tested with >=4.45.2)
|
12 |
-
```
|
13 |
-
Then you can load with
|
14 |
-
```
|
15 |
-
from transformers import AutoModel, AutoTokenizer
|
16 |
-
import torch
|
17 |
-
|
18 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
-
print(f"Using device: {device}")
|
20 |
-
|
21 |
-
model = AutoModel.from_pretrained("ModernBERT/bert24-base-v2-2ep-decay_100B-0.08-lr", trust_remote_code=True)
|
22 |
-
model = model.to(device)
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained("ModernBERT/bert24-base-v2-2ep-decay_100B-0.08-lr", trust_remote_code=True)
|
24 |
-
|
25 |
-
# test it out and encode some text
|
26 |
-
text = "This is a test sentence"
|
27 |
-
inputs = tokenizer(text, return_tensors="pt")
|
28 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
29 |
-
|
30 |
-
outputs = model(**inputs)
|
31 |
-
last_hidden_states = outputs.last_hidden_state
|
32 |
-
print(last_hidden_states.shape)
|
33 |
-
```
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__init__.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .attention import (
|
2 |
+
BertAlibiUnpadAttention,
|
3 |
+
BertAlibiUnpadSelfAttention,
|
4 |
+
BertSelfOutput,
|
5 |
+
FlexBertPaddedAttention,
|
6 |
+
FlexBertUnpadAttention,
|
7 |
+
)
|
8 |
+
from .embeddings import (
|
9 |
+
BertAlibiEmbeddings,
|
10 |
+
FlexBertAbsoluteEmbeddings,
|
11 |
+
FlexBertSansPositionEmbeddings,
|
12 |
+
)
|
13 |
+
from .layers import (
|
14 |
+
BertAlibiEncoder,
|
15 |
+
BertAlibiLayer,
|
16 |
+
BertResidualGLU,
|
17 |
+
FlexBertPaddedPreNormLayer,
|
18 |
+
FlexBertPaddedPostNormLayer,
|
19 |
+
FlexBertUnpadPostNormLayer,
|
20 |
+
FlexBertUnpadPreNormLayer,
|
21 |
+
)
|
22 |
+
from .modeling_flexbert import (
|
23 |
+
BertLMPredictionHead,
|
24 |
+
BertModel,
|
25 |
+
BertForMaskedLM,
|
26 |
+
BertForSequenceClassification,
|
27 |
+
BertForMultipleChoice,
|
28 |
+
BertOnlyMLMHead,
|
29 |
+
BertOnlyNSPHead,
|
30 |
+
BertPooler,
|
31 |
+
BertPredictionHeadTransform,
|
32 |
+
FlexBertModel,
|
33 |
+
FlexBertForMaskedLM,
|
34 |
+
FlexBertForSequenceClassification,
|
35 |
+
FlexBertForMultipleChoice,
|
36 |
+
FlexBertForCasualLM,
|
37 |
+
)
|
38 |
+
from .bert_padding import(
|
39 |
+
IndexFirstAxis,
|
40 |
+
IndexPutFirstAxis
|
41 |
+
)
|
42 |
+
|
43 |
+
__all__ = [
|
44 |
+
"BertAlibiEmbeddings",
|
45 |
+
"BertAlibiEncoder",
|
46 |
+
"BertForMaskedLM",
|
47 |
+
"BertForSequenceClassification",
|
48 |
+
"BertForMultipleChoice",
|
49 |
+
"BertResidualGLU",
|
50 |
+
"BertAlibiLayer",
|
51 |
+
"BertLMPredictionHead",
|
52 |
+
"BertModel",
|
53 |
+
"BertOnlyMLMHead",
|
54 |
+
"BertOnlyNSPHead",
|
55 |
+
"BertPooler",
|
56 |
+
"BertPredictionHeadTransform",
|
57 |
+
"BertSelfOutput",
|
58 |
+
"BertAlibiUnpadAttention",
|
59 |
+
"BertAlibiUnpadSelfAttention",
|
60 |
+
"FlexBertPaddedAttention",
|
61 |
+
"FlexBertUnpadAttention",
|
62 |
+
"FlexBertAbsoluteEmbeddings",
|
63 |
+
"FlexBertSansPositionEmbeddings",
|
64 |
+
"FlexBertPaddedPreNormLayer",
|
65 |
+
"FlexBertPaddedPostNormLayer",
|
66 |
+
"FlexBertUnpadPostNormLayer",
|
67 |
+
"FlexBertUnpadPreNormLayer",
|
68 |
+
"FlexBertModel",
|
69 |
+
"FlexBertForMaskedLM",
|
70 |
+
"FlexBertForSequenceClassification",
|
71 |
+
"FlexBertForMultipleChoice",
|
72 |
+
"IndexFirstAxis",
|
73 |
+
"IndexPutFirstAxis"
|
74 |
+
]
|
activation.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright 2020 The HuggingFace Team.
|
5 |
+
# License: Apache-2.0
|
6 |
+
|
7 |
+
from collections import OrderedDict
|
8 |
+
from typing import Union
|
9 |
+
import torch.nn as nn
|
10 |
+
from .configuration_bert import FlexBertConfig
|
11 |
+
|
12 |
+
|
13 |
+
class ClassInstantier(OrderedDict):
|
14 |
+
def __getitem__(self, key):
|
15 |
+
content = super().__getitem__(key)
|
16 |
+
cls, kwargs = content if isinstance(content, tuple) else (content, {})
|
17 |
+
return cls(**kwargs)
|
18 |
+
|
19 |
+
|
20 |
+
ACT2CLS = {
|
21 |
+
"celu": nn.CELU,
|
22 |
+
"elu": nn.ELU,
|
23 |
+
"gelu": nn.GELU,
|
24 |
+
"gelu_tanh": (nn.GELU, {"approximate": "tanh"}),
|
25 |
+
"hardtanh": nn.Hardtanh,
|
26 |
+
"hardsigmoid": nn.Hardsigmoid,
|
27 |
+
"hardshrink": nn.Hardshrink,
|
28 |
+
"hardswish": nn.Hardswish,
|
29 |
+
"leaky_relu": nn.LeakyReLU,
|
30 |
+
"logsigmoid": nn.LogSigmoid,
|
31 |
+
"mish": nn.Mish,
|
32 |
+
"prelu": nn.PReLU,
|
33 |
+
"relu": nn.ReLU,
|
34 |
+
"relu6": nn.ReLU6,
|
35 |
+
"rrelu": nn.RReLU,
|
36 |
+
"selu": nn.SELU,
|
37 |
+
"sigmoid": nn.Sigmoid,
|
38 |
+
"silu": nn.SiLU,
|
39 |
+
"softmin": nn.Softmin,
|
40 |
+
"softplus": nn.Softplus,
|
41 |
+
"softshrink": nn.Softshrink,
|
42 |
+
"softsign": nn.Softsign,
|
43 |
+
"swish": nn.SiLU,
|
44 |
+
"tanh": nn.Tanh,
|
45 |
+
"tanhshrink": nn.Tanhshrink,
|
46 |
+
"threshold": nn.Threshold,
|
47 |
+
}
|
48 |
+
ACT2FN = ClassInstantier(ACT2CLS)
|
49 |
+
|
50 |
+
|
51 |
+
def get_act_fn(config: Union[FlexBertConfig, str]) -> nn.Module:
|
52 |
+
try:
|
53 |
+
if isinstance(config, str):
|
54 |
+
return ACT2FN[config]
|
55 |
+
return ACT2FN[config.hidden_act]
|
56 |
+
except KeyError:
|
57 |
+
if isinstance(config, str):
|
58 |
+
raise ValueError(f"Invalid activation function type: {config}, must be one of {ACT2FN.keys()}.")
|
59 |
+
else:
|
60 |
+
raise ValueError(f"Invalid activation function type: {config.hidden_act=}, must be one of {ACT2FN.keys()}.")
|
attention.py
ADDED
@@ -0,0 +1,1601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright 2022 MosaicML Examples authors
|
5 |
+
# SPDX-License-Identifier: Apache-2.0
|
6 |
+
|
7 |
+
# Copyright 2023 MosaicML Examples authors
|
8 |
+
# SPDX-License-Identifier: Apache-2.0
|
9 |
+
|
10 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
11 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
12 |
+
# Copyright (c) 2023, Tri Dao.
|
13 |
+
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import warnings
|
19 |
+
from typing import Optional
|
20 |
+
import importlib.metadata
|
21 |
+
import logging
|
22 |
+
import math
|
23 |
+
|
24 |
+
import bert_padding
|
25 |
+
from .configuration_bert import FlexBertConfig, maybe_add_padding
|
26 |
+
from .normalization import get_norm_layer
|
27 |
+
from .initialization import ModuleType, init_weights
|
28 |
+
import src.utils # noqa: F401
|
29 |
+
|
30 |
+
IMPL_USE_FLASH3 = False
|
31 |
+
IMPL_USE_FLASH2 = False
|
32 |
+
try:
|
33 |
+
from flash_attn_interface import flash_attn_varlen_func
|
34 |
+
|
35 |
+
IMPL_USE_FLASH3 = True
|
36 |
+
except ImportError:
|
37 |
+
pass
|
38 |
+
# Import Flash Attention 2, which supports ALiBi https://github.com/Dao-AILab/flash-attention
|
39 |
+
try:
|
40 |
+
from flash_attn import flash_attn_varlen_qkvpacked_func, flash_attn_qkvpacked_func # type: ignore
|
41 |
+
|
42 |
+
installed_version = importlib.metadata.version("flash_attn") # type: ignore
|
43 |
+
if installed_version < "2.5.7":
|
44 |
+
raise ImportError("newer version of flash_attn required (>= 2.5.7)")
|
45 |
+
IMPL_USE_FLASH2 = True
|
46 |
+
except ImportError:
|
47 |
+
pass
|
48 |
+
|
49 |
+
try:
|
50 |
+
from flash_attn.layers.rotary import RotaryEmbedding # type: ignore
|
51 |
+
from .rotary import UnpaddedRotaryEmbedding # type: ignore
|
52 |
+
|
53 |
+
except ImportError:
|
54 |
+
RotaryEmbedding = None
|
55 |
+
UnpaddedRotaryEmbedding = None
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
class BertAlibiUnpadSelfAttention(nn.Module):
|
61 |
+
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
62 |
+
|
63 |
+
If Flash Attention 2 is installed, this module uses Flash Attention to greatly improve throughput.
|
64 |
+
The Flash Attention implementation used in MosaicBERT supports arbitrary attention biases (which
|
65 |
+
we use to implement ALiBi). If either Flash Attention 2 is not installed the implementation will
|
66 |
+
default to a math-equivalent pytorch version, which is much slower.
|
67 |
+
|
68 |
+
See `forward` method for additional details.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self, config):
|
72 |
+
super().__init__()
|
73 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
74 |
+
raise ValueError(
|
75 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
76 |
+
f"heads ({config.num_attention_heads})"
|
77 |
+
)
|
78 |
+
|
79 |
+
self.is_casual = config.casual_mask
|
80 |
+
self.num_attention_heads = config.num_attention_heads
|
81 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
82 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
83 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
84 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
85 |
+
self.Wqkv = nn.Linear(self.all_head_size, 3 * config.hidden_size)
|
86 |
+
self.deterministic_fa2 = getattr(config, "deterministic_fa2", False)
|
87 |
+
|
88 |
+
# Warn if defaulting to pytorch because of import issues
|
89 |
+
if not IMPL_USE_FLASH2:
|
90 |
+
warnings.warn(
|
91 |
+
"Unable to import flash_attn; defaulting MosaicBERT attention implementation to "
|
92 |
+
"vanilla PyTorch (this will reduce throughput when using this model)."
|
93 |
+
)
|
94 |
+
|
95 |
+
def forward(
|
96 |
+
self,
|
97 |
+
hidden_states: torch.Tensor,
|
98 |
+
cu_seqlens: torch.Tensor,
|
99 |
+
max_seqlen: int,
|
100 |
+
indices: torch.Tensor,
|
101 |
+
attn_mask: torch.Tensor,
|
102 |
+
bias: torch.Tensor,
|
103 |
+
slopes: torch.Tensor,
|
104 |
+
) -> torch.Tensor:
|
105 |
+
"""Perform self-attention.
|
106 |
+
|
107 |
+
There are two attention implementations: vanilla attention with ALiBi, and Flash Attention 2 with ALiBi
|
108 |
+
|
109 |
+
The arguments are unpadded. The vanilla implementation of attention requires padded arguments while the
|
110 |
+
Flash Attention implementation does not. If using vanilla we first call `pad_input`. Once we compute
|
111 |
+
attention, we re-unpad our outputs for the other layers. The pad/unpad operations add overhead, but not
|
112 |
+
sending pad tokens through ffs saves compute.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
hidden_states: (total_nnz, dim)
|
116 |
+
cu_seqlens: (batch + 1,)
|
117 |
+
max_seqlen: int
|
118 |
+
indices: (total_nnz,)
|
119 |
+
attn_mask: (batch, max_seqlen)
|
120 |
+
bias: (batch, heads, max_seqlen, max_seqlen)
|
121 |
+
slopes: (heads) or (batch, heads)
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
attention: (total_nnz, dim)
|
125 |
+
"""
|
126 |
+
bs, dim = hidden_states.shape
|
127 |
+
qkv = self.Wqkv(hidden_states)
|
128 |
+
|
129 |
+
# Option 1: Flash Attention with ALiBi
|
130 |
+
if IMPL_USE_FLASH2:
|
131 |
+
qkv = qkv.view(-1, 3, self.num_attention_heads, self.attention_head_size)
|
132 |
+
assert 1 <= len(slopes.shape) <= 2, f"{slopes=}"
|
133 |
+
assert slopes.shape[-1] == self.num_attention_heads, f"{slopes=}"
|
134 |
+
|
135 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
136 |
+
if convert_dtype:
|
137 |
+
# FA2 implementation only supports fp16 and bf16
|
138 |
+
# If FA2 is supported, bfloat16 must be supported
|
139 |
+
# as of FA2 2.4.2. (Turing GPUs not supported)
|
140 |
+
orig_dtype = qkv.dtype
|
141 |
+
qkv = qkv.to(torch.bfloat16)
|
142 |
+
|
143 |
+
attention = flash_attn_varlen_qkvpacked_func(
|
144 |
+
qkv,
|
145 |
+
cu_seqlens=cu_seqlens,
|
146 |
+
max_seqlen=max_seqlen,
|
147 |
+
dropout_p=self.p_dropout,
|
148 |
+
deterministic=self.deterministic_fa2,
|
149 |
+
alibi_slopes=slopes,
|
150 |
+
casual=self.is_casual
|
151 |
+
)
|
152 |
+
attention = attention.to(orig_dtype) # type: ignore
|
153 |
+
else:
|
154 |
+
attention = flash_attn_varlen_qkvpacked_func(
|
155 |
+
qkv,
|
156 |
+
cu_seqlens=cu_seqlens,
|
157 |
+
max_seqlen=max_seqlen,
|
158 |
+
dropout_p=self.p_dropout,
|
159 |
+
deterministic=self.deterministic_fa2,
|
160 |
+
alibi_slopes=slopes,
|
161 |
+
casual = self.is_casual
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
165 |
+
qkv = bert_padding.pad_input(qkv, indices, cu_seqlens.shape[0] - 1, max_seqlen) # batch, max_seqlen, thd
|
166 |
+
unpad_bs, *_ = qkv.shape
|
167 |
+
qkv = qkv.view(unpad_bs, -1, 3, self.num_attention_heads, self.attention_head_size)
|
168 |
+
# if we have nonzero attention dropout (e.g. during fine-tuning) or no Triton, compute attention in PyTorch
|
169 |
+
q = qkv[:, :, 0, :, :].permute(0, 2, 1, 3) # b h s d
|
170 |
+
k = qkv[:, :, 1, :, :].permute(0, 2, 3, 1) # b h d s
|
171 |
+
v = qkv[:, :, 2, :, :].permute(0, 2, 1, 3) # b h s d
|
172 |
+
attention_scores = torch.matmul(q, k) / math.sqrt(self.attention_head_size)
|
173 |
+
attention_scores = attention_scores + bias
|
174 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
175 |
+
attention_probs = self.dropout(attention_probs)
|
176 |
+
attention = torch.matmul(attention_probs, v).permute(0, 2, 1, 3) # b s h d
|
177 |
+
|
178 |
+
attention = bert_padding.unpad_input_only(attention, torch.squeeze(attn_mask) == 1)
|
179 |
+
|
180 |
+
return attention.view(bs, dim)
|
181 |
+
|
182 |
+
|
183 |
+
# Copy of transformer's library BertSelfOutput that will not be caught by surgery methods looking for HF BERT modules.
|
184 |
+
class BertSelfOutput(nn.Module):
|
185 |
+
"""Computes the output of the attention layer.
|
186 |
+
|
187 |
+
This module is modeled after the Hugging Face BERT's
|
188 |
+
:class:`~transformers.model.bert.modeling_bert.BertSelfOutput`.
|
189 |
+
The implementation is identical. Rather than use the original module
|
190 |
+
directly, we re-implement it here so that Mosaic BERT's modules will not
|
191 |
+
be affected by any Composer surgery algorithm that modifies Hugging Face
|
192 |
+
BERT modules.
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(self, config):
|
196 |
+
super().__init__()
|
197 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
198 |
+
self.LayerNorm = get_norm_layer(config)
|
199 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
200 |
+
|
201 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
202 |
+
hidden_states = self.dense(hidden_states)
|
203 |
+
hidden_states = self.dropout(hidden_states)
|
204 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
205 |
+
return hidden_states
|
206 |
+
|
207 |
+
|
208 |
+
class BertAlibiUnpadAttention(nn.Module):
|
209 |
+
"""Chains attention, Dropout, and LayerNorm for Mosaic BERT."""
|
210 |
+
|
211 |
+
def __init__(self, config):
|
212 |
+
super().__init__()
|
213 |
+
self.self = BertAlibiUnpadSelfAttention(config)
|
214 |
+
self.output = BertSelfOutput(config)
|
215 |
+
|
216 |
+
def forward(
|
217 |
+
self,
|
218 |
+
input_tensor: torch.Tensor,
|
219 |
+
cu_seqlens: torch.Tensor,
|
220 |
+
max_s: int,
|
221 |
+
subset_idx: Optional[torch.Tensor] = None,
|
222 |
+
indices: Optional[torch.Tensor] = None,
|
223 |
+
attn_mask: Optional[torch.Tensor] = None,
|
224 |
+
bias: Optional[torch.Tensor] = None,
|
225 |
+
slopes: Optional[torch.Tensor] = None,
|
226 |
+
) -> torch.Tensor:
|
227 |
+
"""Forward pass for scaled self-attention without padding.
|
228 |
+
|
229 |
+
Arguments:
|
230 |
+
input_tensor: (total_nnz, dim)
|
231 |
+
cu_seqlens: (batch + 1,)
|
232 |
+
max_s: int
|
233 |
+
subset_idx: () set of indices whose values we care about at the end of the layer
|
234 |
+
(e.g., the masked tokens, if this is the final layer).
|
235 |
+
indices: None or (total_nnz,)
|
236 |
+
attn_mask: None or (batch, max_seqlen)
|
237 |
+
bias: None or (batch, heads, max_seqlen, max_seqlen)
|
238 |
+
slopes: None or (batch, heads) or (heads,)
|
239 |
+
"""
|
240 |
+
assert (bias is None) == (slopes is None), f"{bias=}, {slopes=}"
|
241 |
+
self_output = self.self(input_tensor, cu_seqlens, max_s, indices, attn_mask, bias, slopes)
|
242 |
+
if subset_idx is not None:
|
243 |
+
return self.output(
|
244 |
+
bert_padding.index_first_axis(self_output, subset_idx),
|
245 |
+
bert_padding.index_first_axis(input_tensor, subset_idx),
|
246 |
+
)
|
247 |
+
else:
|
248 |
+
return self.output(self_output, input_tensor)
|
249 |
+
|
250 |
+
|
251 |
+
class FlexBertAttentionBase(nn.Module):
|
252 |
+
"""A FlexBERT attention base class for type hints."""
|
253 |
+
|
254 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
255 |
+
super().__init__()
|
256 |
+
self.config = config
|
257 |
+
self.layer_id = layer_id
|
258 |
+
|
259 |
+
def _init_weights(self, reset_params: bool = False):
|
260 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
261 |
+
|
262 |
+
def forward(self, hidden_states: torch.Tensor, attn_mask: torch.Tensor, **kwargs) -> torch.Tensor:
|
263 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
264 |
+
|
265 |
+
def extra_repr(self) -> str:
|
266 |
+
repr = ""
|
267 |
+
if hasattr(self, "num_attention_heads"):
|
268 |
+
repr += f"num_attention_heads={self.num_attention_heads}"
|
269 |
+
if hasattr(self, "attn_head_size"):
|
270 |
+
repr += f", attn_head_size={self.attn_head_size}"
|
271 |
+
if hasattr(self, "sliding_window"):
|
272 |
+
repr += f", sliding_window={self.sliding_window if self.sliding_window != (-1, -1) else 'False'}"
|
273 |
+
if hasattr(self, "use_fa2"):
|
274 |
+
repr += f", use_fa2={self.use_fa2}"
|
275 |
+
if hasattr(self, "deterministic_fa2"):
|
276 |
+
repr += f", deterministic_fa2={self.deterministic_fa2}"
|
277 |
+
return repr
|
278 |
+
|
279 |
+
|
280 |
+
class FlexBertUnpadAttention(FlexBertAttentionBase):
|
281 |
+
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
282 |
+
|
283 |
+
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
|
284 |
+
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
|
285 |
+
which requires padding and unpadding inputs, adding some overhead.
|
286 |
+
|
287 |
+
See `forward` method for additional detail.
|
288 |
+
"""
|
289 |
+
|
290 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
291 |
+
super().__init__(config=config, layer_id=layer_id)
|
292 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
293 |
+
raise ValueError(
|
294 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
295 |
+
f"heads ({config.num_attention_heads})"
|
296 |
+
)
|
297 |
+
|
298 |
+
self.is_casual = config.casual_mask
|
299 |
+
self.num_attention_heads = config.num_attention_heads
|
300 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
301 |
+
self.all_head_size = self.num_attention_heads * self.attn_head_size
|
302 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
303 |
+
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attn_qkv_bias)
|
304 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
305 |
+
self.out_drop = (
|
306 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
307 |
+
)
|
308 |
+
self.use_fa2 = config.use_fa2
|
309 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
310 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
311 |
+
|
312 |
+
if config.global_attn_every_n_layers > 0:
|
313 |
+
if config.sliding_window == -1:
|
314 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
315 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
316 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
317 |
+
else:
|
318 |
+
self.sliding_window = (-1, -1)
|
319 |
+
else:
|
320 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
321 |
+
|
322 |
+
# Warn if defaulting to pytorch because of import issues
|
323 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
324 |
+
logger.warn_once(
|
325 |
+
"Unable to import flash_attn; defaulting FlexBERT attention implementation to PyTorch's"
|
326 |
+
" SDPA kernel. This requires padding and unpadding inputs, which will add some overhead."
|
327 |
+
)
|
328 |
+
self.use_fa2 = False
|
329 |
+
if not self.use_fa2:
|
330 |
+
if not self.use_sdpa_attn_mask:
|
331 |
+
logger.warn_once(
|
332 |
+
"SDPA attention is being used without an attention mask. Including padding in the "
|
333 |
+
" attention calculation may cause differences from the Flash Attention implementation."
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
logger.warn_once(
|
337 |
+
"SDPA attention with an attention mask doesn't use the Flash Attention kernel and will"
|
338 |
+
" use more memory during the backward pass. Use the FA2 backend for linear memory scaling"
|
339 |
+
" with sequence length."
|
340 |
+
)
|
341 |
+
if self.sliding_window[0] > 0:
|
342 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
343 |
+
|
344 |
+
def _init_weights(self, reset_params: bool = False):
|
345 |
+
init_weights(
|
346 |
+
self.config,
|
347 |
+
self.Wqkv,
|
348 |
+
layer_dim=self.config.hidden_size,
|
349 |
+
layer_id=None,
|
350 |
+
type_of_module=ModuleType.in_module,
|
351 |
+
)
|
352 |
+
init_weights(
|
353 |
+
self.config,
|
354 |
+
self.Wo,
|
355 |
+
layer_dim=self.config.hidden_size,
|
356 |
+
layer_id=self.layer_id,
|
357 |
+
type_of_module=ModuleType.out_module,
|
358 |
+
)
|
359 |
+
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
hidden_states: torch.Tensor,
|
363 |
+
cu_seqlens: torch.Tensor,
|
364 |
+
max_seqlen: int,
|
365 |
+
indices: torch.Tensor,
|
366 |
+
attn_mask: torch.Tensor,
|
367 |
+
) -> torch.Tensor:
|
368 |
+
"""Perform self-attention.
|
369 |
+
|
370 |
+
There are two attention implementations supported: PyTorch's SDPA attention and Flash Attention 2.
|
371 |
+
|
372 |
+
The arguments are unpadded. The SDPA implementation of attention requires padded arguments while the
|
373 |
+
Flash Attention implementation does not. If using SDPA we first call `pad_input`. Once we compute
|
374 |
+
attention, we re-unpad our outputs for the other layers. The pad/unpad operations add overhead, but not
|
375 |
+
sending pad tokens through ffs saves compute.
|
376 |
+
|
377 |
+
Args:
|
378 |
+
hidden_states: (total_nnz, dim)
|
379 |
+
cu_seqlens: (batch + 1,)
|
380 |
+
max_seqlen: int
|
381 |
+
indices: (total_nnz,)
|
382 |
+
attn_mask: (batch, max_seqlen)
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
attention: (total_nnz, dim)
|
386 |
+
"""
|
387 |
+
bs, dim = hidden_states.shape
|
388 |
+
qkv = self.Wqkv(hidden_states)
|
389 |
+
|
390 |
+
if self.use_fa2:
|
391 |
+
qkv = qkv.view(-1, 3, self.num_attention_heads, self.attn_head_size)
|
392 |
+
|
393 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
394 |
+
if convert_dtype:
|
395 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
396 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
397 |
+
orig_dtype = qkv.dtype
|
398 |
+
qkv = qkv.to(torch.bfloat16)
|
399 |
+
|
400 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
401 |
+
qkv,
|
402 |
+
cu_seqlens=cu_seqlens,
|
403 |
+
max_seqlen=max_seqlen,
|
404 |
+
dropout_p=self.p_dropout,
|
405 |
+
deterministic=self.deterministic_fa2,
|
406 |
+
window_size=self.sliding_window,
|
407 |
+
casual=self.is_casual
|
408 |
+
)
|
409 |
+
attn = attn.to(orig_dtype) # type: ignore
|
410 |
+
else:
|
411 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
412 |
+
qkv,
|
413 |
+
cu_seqlens=cu_seqlens,
|
414 |
+
max_seqlen=max_seqlen,
|
415 |
+
dropout_p=self.p_dropout,
|
416 |
+
deterministic=self.deterministic_fa2,
|
417 |
+
window_size=self.sliding_window,
|
418 |
+
casual=self.is_casual
|
419 |
+
)
|
420 |
+
attn = attn.view(bs, dim)
|
421 |
+
else:
|
422 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
423 |
+
qkv = bert_padding.pad_input(qkv, indices, cu_seqlens.shape[0] - 1, max_seqlen) # batch, max_seqlen, thd
|
424 |
+
unpad_bs, seqlen, _ = qkv.shape
|
425 |
+
|
426 |
+
qkv = qkv.view(unpad_bs, -1, 3, self.num_attention_heads, self.attn_head_size)
|
427 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2) # b h s d
|
428 |
+
attn = F.scaled_dot_product_attention(
|
429 |
+
q,
|
430 |
+
k,
|
431 |
+
v,
|
432 |
+
dropout_p=self.p_dropout,
|
433 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(unpad_bs, 1, seqlen, seqlen)
|
434 |
+
if self.use_sdpa_attn_mask
|
435 |
+
else None,
|
436 |
+
)
|
437 |
+
attn = attn.transpose(1, 2).view(unpad_bs, -1, dim) # b s h d
|
438 |
+
attn = bert_padding.unpad_input_only(attn, torch.squeeze(attn_mask) == 1)
|
439 |
+
|
440 |
+
return self.out_drop(self.Wo(attn))
|
441 |
+
|
442 |
+
|
443 |
+
class FlexBertUnpadParallelAttention(FlexBertAttentionBase):
|
444 |
+
"""Computes the output of the multi-headed self parallel attention on a batch of unpadded sequences
|
445 |
+
|
446 |
+
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
|
447 |
+
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
|
448 |
+
which requires padding and unpadding inputs, adding some overhead.
|
449 |
+
|
450 |
+
See `forward` method for additional detail.
|
451 |
+
"""
|
452 |
+
|
453 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
454 |
+
super().__init__(config=config, layer_id=layer_id)
|
455 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
456 |
+
raise ValueError(
|
457 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
458 |
+
f"heads ({config.num_attention_heads})"
|
459 |
+
)
|
460 |
+
|
461 |
+
self.is_casual = config.casual_mask
|
462 |
+
self.num_attention_heads = config.num_attention_heads
|
463 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
464 |
+
self.hidden_size = config.hidden_size
|
465 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
466 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
467 |
+
self.out_drop = (
|
468 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
469 |
+
)
|
470 |
+
self.use_fa2 = config.use_fa2
|
471 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
472 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
473 |
+
|
474 |
+
if config.global_attn_every_n_layers > 0:
|
475 |
+
if config.sliding_window == -1:
|
476 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
477 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
478 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
479 |
+
else:
|
480 |
+
self.sliding_window = (-1, -1)
|
481 |
+
else:
|
482 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
483 |
+
|
484 |
+
# Warn if defaulting to pytorch because of import issues
|
485 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
486 |
+
logger.warn_once(
|
487 |
+
"Unable to import flash_attn; defaulting FlexBERT attention implementation to PyTorch's"
|
488 |
+
" SDPA kernel. This requires padding and unpadding inputs, which will add some overhead."
|
489 |
+
)
|
490 |
+
self.use_fa2 = False
|
491 |
+
if not self.use_fa2:
|
492 |
+
if not self.use_sdpa_attn_mask:
|
493 |
+
logger.warn_once(
|
494 |
+
"SDPA attention is being used without an attention mask. Including padding in the "
|
495 |
+
" attention calculation may cause differences from the Flash Attention implementation."
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
logger.warn_once(
|
499 |
+
"SDPA attention with an attention mask doesn't use the Flash Attention kernel and will"
|
500 |
+
" use more memory during the backward pass. Use the FA2 backend for linear memory scaling"
|
501 |
+
" with sequence length."
|
502 |
+
)
|
503 |
+
if self.sliding_window[0] > 0:
|
504 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
505 |
+
|
506 |
+
def _init_weights(self, reset_params: bool = False):
|
507 |
+
init_weights(
|
508 |
+
self.config,
|
509 |
+
self.Wo,
|
510 |
+
layer_dim=self.config.hidden_size,
|
511 |
+
layer_id=self.layer_id,
|
512 |
+
type_of_module=ModuleType.out_module,
|
513 |
+
)
|
514 |
+
|
515 |
+
def forward(
|
516 |
+
self,
|
517 |
+
qkv: torch.Tensor,
|
518 |
+
cu_seqlens: torch.Tensor,
|
519 |
+
max_seqlen: int,
|
520 |
+
indices: torch.Tensor,
|
521 |
+
attn_mask: torch.Tensor,
|
522 |
+
) -> torch.Tensor:
|
523 |
+
"""Perform self-attention.
|
524 |
+
|
525 |
+
There are two attention implementations supported: PyTorch's SDPA attention and Flash Attention 2.
|
526 |
+
|
527 |
+
The arguments are unpadded. The SDPA implementation of attention requires padded arguments while the
|
528 |
+
Flash Attention implementation does not. If using SDPA we first call `pad_input`. Once we compute
|
529 |
+
attention, we re-unpad our outputs for the other layers. The pad/unpad operations add overhead, but not
|
530 |
+
sending pad tokens through ffs saves compute.
|
531 |
+
|
532 |
+
Args:
|
533 |
+
qkv: (total_nnz, 3 * dim)
|
534 |
+
cu_seqlens: (batch + 1,)
|
535 |
+
max_seqlen: int
|
536 |
+
indices: (total_nnz,)
|
537 |
+
attn_mask: (batch, max_seqlen)
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
attention: (total_nnz, dim)
|
541 |
+
"""
|
542 |
+
bs = qkv.shape[0]
|
543 |
+
dim = self.hidden_size
|
544 |
+
if self.use_fa2:
|
545 |
+
qkv = qkv.view(-1, 3, self.num_attention_heads, self.attn_head_size)
|
546 |
+
|
547 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
548 |
+
if convert_dtype:
|
549 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
550 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
551 |
+
orig_dtype = qkv.dtype
|
552 |
+
qkv = qkv.to(torch.bfloat16)
|
553 |
+
|
554 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
555 |
+
qkv,
|
556 |
+
cu_seqlens=cu_seqlens,
|
557 |
+
max_seqlen=max_seqlen,
|
558 |
+
dropout_p=self.p_dropout,
|
559 |
+
deterministic=self.deterministic_fa2,
|
560 |
+
window_size=self.sliding_window,
|
561 |
+
casual=self.is_casual
|
562 |
+
)
|
563 |
+
attn = attn.to(orig_dtype) # type: ignore
|
564 |
+
else:
|
565 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
566 |
+
qkv,
|
567 |
+
cu_seqlens=cu_seqlens,
|
568 |
+
max_seqlen=max_seqlen,
|
569 |
+
dropout_p=self.p_dropout,
|
570 |
+
deterministic=self.deterministic_fa2,
|
571 |
+
window_size=self.sliding_window,
|
572 |
+
casual=self.is_casual
|
573 |
+
)
|
574 |
+
attn = attn.view(bs, dim)
|
575 |
+
else:
|
576 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
577 |
+
qkv = bert_padding.pad_input(qkv, indices, cu_seqlens.shape[0] - 1, max_seqlen) # batch, max_seqlen, thd
|
578 |
+
unpad_bs, seqlen, _ = qkv.shape
|
579 |
+
|
580 |
+
qkv = qkv.view(unpad_bs, -1, 3, self.num_attention_heads, self.attn_head_size)
|
581 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2) # b h s d
|
582 |
+
attn = F.scaled_dot_product_attention(
|
583 |
+
q,
|
584 |
+
k,
|
585 |
+
v,
|
586 |
+
dropout_p=self.p_dropout,
|
587 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(unpad_bs, 1, seqlen, seqlen)
|
588 |
+
if self.use_sdpa_attn_mask
|
589 |
+
else None,
|
590 |
+
)
|
591 |
+
attn = attn.transpose(1, 2).view(unpad_bs, -1, dim) # b s h d
|
592 |
+
attn = bert_padding.unpad_input_only(attn, torch.squeeze(attn_mask) == 1)
|
593 |
+
|
594 |
+
return self.out_drop(self.Wo(attn.view(bs, dim)))
|
595 |
+
|
596 |
+
|
597 |
+
class FlexBertPaddedAttention(FlexBertAttentionBase):
|
598 |
+
"""Performs multi-headed self attention on a batch of padded sequences.
|
599 |
+
|
600 |
+
This module supports two attention implementations:
|
601 |
+
1. Flash Attention 2 (if installed), which improves throughput.
|
602 |
+
2. PyTorch's scaled_dot_product_attention.
|
603 |
+
|
604 |
+
See `forward` method for additional detail.
|
605 |
+
"""
|
606 |
+
|
607 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
608 |
+
super().__init__(config=config, layer_id=layer_id)
|
609 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
610 |
+
raise ValueError(
|
611 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
612 |
+
f"heads ({config.num_attention_heads})"
|
613 |
+
)
|
614 |
+
|
615 |
+
self.is_casual = config.casual_mask
|
616 |
+
self.num_attention_heads = config.num_attention_heads
|
617 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
618 |
+
self.all_head_size = self.num_attention_heads * self.attn_head_size
|
619 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
620 |
+
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attn_qkv_bias)
|
621 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
622 |
+
self.out_drop = (
|
623 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
624 |
+
)
|
625 |
+
self.use_fa2 = config.use_fa2
|
626 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
627 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
628 |
+
|
629 |
+
if config.global_attn_every_n_layers > 0:
|
630 |
+
if config.sliding_window == -1:
|
631 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
632 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
633 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
634 |
+
else:
|
635 |
+
self.sliding_window = (-1, -1)
|
636 |
+
else:
|
637 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
638 |
+
|
639 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
640 |
+
self.use_fa2 = False
|
641 |
+
if self.use_fa2 and self.use_sdpa_attn_mask:
|
642 |
+
logger.warn_once(
|
643 |
+
"Flash Attention 2 does not support attention masks. Use unpadded attention "
|
644 |
+
"the equivalent functionality of masking out padding tokens."
|
645 |
+
)
|
646 |
+
if not self.use_fa2 and self.sliding_window[0] > 0:
|
647 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
648 |
+
|
649 |
+
def _init_weights(self, reset_params: bool = False):
|
650 |
+
init_weights(
|
651 |
+
self.config,
|
652 |
+
self.Wqkv,
|
653 |
+
layer_dim=self.config.hidden_size,
|
654 |
+
layer_id=None,
|
655 |
+
type_of_module=ModuleType.in_module,
|
656 |
+
)
|
657 |
+
init_weights(
|
658 |
+
self.config,
|
659 |
+
self.Wo,
|
660 |
+
layer_dim=self.config.hidden_size,
|
661 |
+
layer_id=self.layer_id,
|
662 |
+
type_of_module=ModuleType.out_module,
|
663 |
+
)
|
664 |
+
|
665 |
+
def forward(
|
666 |
+
self,
|
667 |
+
hidden_states: torch.Tensor,
|
668 |
+
attn_mask: Optional[torch.Tensor] = None,
|
669 |
+
) -> torch.Tensor:
|
670 |
+
"""Perform self-attention.
|
671 |
+
|
672 |
+
There are two attention implementations supported:
|
673 |
+
Flash Attention 2 and PyTorch's scaled_dot_product_attention.
|
674 |
+
|
675 |
+
Args:
|
676 |
+
hidden_states: (batch, seqlen, dim)
|
677 |
+
attn_mask: (batch, seqlen)
|
678 |
+
|
679 |
+
Returns:
|
680 |
+
attention: (batch, seqlen, dim)
|
681 |
+
"""
|
682 |
+
bs, seqlen, dim = hidden_states.shape
|
683 |
+
qkv = self.Wqkv(hidden_states)
|
684 |
+
|
685 |
+
if self.use_fa2:
|
686 |
+
qkv = qkv.view(bs, seqlen, 3, self.num_attention_heads, self.attn_head_size)
|
687 |
+
|
688 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
689 |
+
if convert_dtype:
|
690 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
691 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
692 |
+
orig_dtype = qkv.dtype
|
693 |
+
qkv = qkv.to(torch.bfloat16)
|
694 |
+
|
695 |
+
attn = flash_attn_qkvpacked_func(
|
696 |
+
qkv,
|
697 |
+
dropout_p=self.p_dropout,
|
698 |
+
deterministic=self.deterministic_fa2,
|
699 |
+
window_size=self.sliding_window,
|
700 |
+
casual=self.is_casual
|
701 |
+
)
|
702 |
+
attn = attn.to(orig_dtype) # type: ignore
|
703 |
+
else:
|
704 |
+
attn = flash_attn_qkvpacked_func(
|
705 |
+
qkv,
|
706 |
+
dropout_p=self.p_dropout,
|
707 |
+
deterministic=self.deterministic_fa2,
|
708 |
+
window_size=self.sliding_window,
|
709 |
+
casual=self.is_casual
|
710 |
+
)
|
711 |
+
else:
|
712 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
713 |
+
qkv = qkv.view(bs, seqlen, 3, self.num_attention_heads, self.attn_head_size)
|
714 |
+
|
715 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2)
|
716 |
+
attn = F.scaled_dot_product_attention(
|
717 |
+
q,
|
718 |
+
k,
|
719 |
+
v,
|
720 |
+
dropout_p=self.p_dropout,
|
721 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(bs, 1, seqlen, seqlen)
|
722 |
+
if self.use_sdpa_attn_mask
|
723 |
+
else None,
|
724 |
+
).transpose(1, 2)
|
725 |
+
|
726 |
+
attn = attn.view(bs, seqlen, dim)
|
727 |
+
return self.out_drop(self.Wo(attn))
|
728 |
+
|
729 |
+
|
730 |
+
class FlexBertUnpadRopeAttention(FlexBertAttentionBase):
|
731 |
+
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
732 |
+
|
733 |
+
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
|
734 |
+
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
|
735 |
+
which requires padding and unpadding inputs, adding some overhead.
|
736 |
+
|
737 |
+
See `forward` method for additional details.
|
738 |
+
"""
|
739 |
+
|
740 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
741 |
+
super().__init__(config=config, layer_id=layer_id)
|
742 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
743 |
+
raise ValueError(
|
744 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
745 |
+
f"heads ({config.num_attention_heads})"
|
746 |
+
)
|
747 |
+
|
748 |
+
self.is_casual = config.casual_mask
|
749 |
+
self.num_attention_heads = config.num_attention_heads
|
750 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
751 |
+
self.all_head_size = self.num_attention_heads * self.attn_head_size
|
752 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
753 |
+
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attn_qkv_bias)
|
754 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
755 |
+
self.out_drop = (
|
756 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
757 |
+
)
|
758 |
+
|
759 |
+
if config.global_attn_every_n_layers > 0:
|
760 |
+
if config.sliding_window == -1:
|
761 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
762 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
763 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
764 |
+
else:
|
765 |
+
self.sliding_window = (-1, -1)
|
766 |
+
else:
|
767 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
768 |
+
|
769 |
+
if config.rotary_emb_dim is None:
|
770 |
+
config.rotary_emb_dim = self.attn_head_size
|
771 |
+
|
772 |
+
rotary_base = config.rotary_emb_base
|
773 |
+
rotary_dim = config.rotary_emb_dim
|
774 |
+
if self.sliding_window != (-1, -1):
|
775 |
+
if config.local_attn_rotary_emb_base != -1:
|
776 |
+
rotary_base = config.local_attn_rotary_emb_base
|
777 |
+
if config.local_attn_rotary_emb_dim is not None:
|
778 |
+
rotary_dim = config.local_attn_rotary_emb_dim
|
779 |
+
|
780 |
+
assert UnpaddedRotaryEmbedding is not None, "rotary_emb is not installed"
|
781 |
+
self.rotary_emb = UnpaddedRotaryEmbedding(
|
782 |
+
dim=rotary_dim,
|
783 |
+
base=rotary_base,
|
784 |
+
scale_base=config.rotary_emb_scale_base, # If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
785 |
+
interleaved=config.rotary_emb_interleaved,
|
786 |
+
)
|
787 |
+
|
788 |
+
self.use_fa2 = config.use_fa2
|
789 |
+
# flash attention 3 only supports global attention
|
790 |
+
self.use_fa3 = config.use_fa2 and self.sliding_window == (-1, -1) and IMPL_USE_FLASH3
|
791 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
792 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
793 |
+
|
794 |
+
# Warn if defaulting to pytorch because of import issues
|
795 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
796 |
+
logger.warn_once(
|
797 |
+
"Unable to import flash_attn; defaulting FlexBERT attention implementation to PyTorch's"
|
798 |
+
" SDPA kernel. This requires padding and unpadding inputs, which will add some overhead."
|
799 |
+
)
|
800 |
+
self.use_fa2 = False
|
801 |
+
if not self.use_fa2:
|
802 |
+
if not self.use_sdpa_attn_mask:
|
803 |
+
logger.warn_once(
|
804 |
+
"SDPA attention is being used without an attention mask. Including padding in the "
|
805 |
+
" attention calculation may cause differences from the Flash Attention implementation."
|
806 |
+
)
|
807 |
+
else:
|
808 |
+
logger.warn_once(
|
809 |
+
"SDPA attention with an attention mask doesn't use the Flash Attention kernel and will"
|
810 |
+
" use more memory during the backward pass. Use the FA2 backend for linear memory scaling"
|
811 |
+
" with sequence length."
|
812 |
+
)
|
813 |
+
if self.sliding_window[0] > 0:
|
814 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
815 |
+
|
816 |
+
def _init_weights(self, reset_params: bool = False):
|
817 |
+
init_weights(
|
818 |
+
self.config,
|
819 |
+
self.Wqkv,
|
820 |
+
layer_dim=self.config.hidden_size,
|
821 |
+
layer_id=None,
|
822 |
+
type_of_module=ModuleType.in_module,
|
823 |
+
)
|
824 |
+
init_weights(
|
825 |
+
self.config,
|
826 |
+
self.Wo,
|
827 |
+
layer_dim=self.config.hidden_size,
|
828 |
+
layer_id=self.layer_id,
|
829 |
+
type_of_module=ModuleType.out_module,
|
830 |
+
)
|
831 |
+
|
832 |
+
def forward(
|
833 |
+
self,
|
834 |
+
hidden_states: torch.Tensor,
|
835 |
+
cu_seqlens: torch.Tensor,
|
836 |
+
max_seqlen: int,
|
837 |
+
indices: torch.Tensor,
|
838 |
+
attn_mask: torch.Tensor,
|
839 |
+
) -> torch.Tensor:
|
840 |
+
"""Perform self-attention.
|
841 |
+
|
842 |
+
There are two attention implementations supported: PyTorch's SDPA attention and Flash Attention 2.
|
843 |
+
|
844 |
+
The arguments are unpadded. The SDPA implementation of attention requires padded arguments while the
|
845 |
+
Flash Attention implementation does not. If using SDPA we first call `pad_input`. Once we compute
|
846 |
+
attention, we re-unpad our outputs for the other layers. The pad/unpad operations add overhead, but not
|
847 |
+
sending pad tokens through ffs saves compute.
|
848 |
+
|
849 |
+
Args:
|
850 |
+
hidden_states: (total_nnz, dim)
|
851 |
+
cu_seqlens: (batch + 1,)
|
852 |
+
max_seqlen: int
|
853 |
+
indices: (total_nnz,)
|
854 |
+
attn_mask: (batch, max_seqlen)
|
855 |
+
|
856 |
+
Returns:
|
857 |
+
attention: (total_nnz, dim)
|
858 |
+
"""
|
859 |
+
bs, dim = hidden_states.shape
|
860 |
+
qkv = self.Wqkv(hidden_states)
|
861 |
+
|
862 |
+
# only needed for inference when we have KV cache
|
863 |
+
seqlen_offset = 0
|
864 |
+
|
865 |
+
# (total_seqlen, 3, nheads, headdim)
|
866 |
+
qkv = qkv.view(-1, 3, self.num_attention_heads, self.attn_head_size)
|
867 |
+
qkv = self.rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, seqlen_offset=seqlen_offset)
|
868 |
+
|
869 |
+
if self.use_fa3:
|
870 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
871 |
+
if convert_dtype:
|
872 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
873 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
874 |
+
orig_dtype = qkv.dtype
|
875 |
+
qkv = qkv.to(torch.bfloat16)
|
876 |
+
q, k, v = qkv.view(-1, 3, self.num_attention_heads, self.attn_head_size).unbind(dim=1)
|
877 |
+
|
878 |
+
attn, _ = flash_attn_varlen_func(
|
879 |
+
q=q,
|
880 |
+
k=k,
|
881 |
+
v=v,
|
882 |
+
cu_seqlens_q=cu_seqlens,
|
883 |
+
cu_seqlens_k=cu_seqlens,
|
884 |
+
max_seqlen_q=max_seqlen,
|
885 |
+
max_seqlen_k=max_seqlen,
|
886 |
+
deterministic=self.deterministic_fa2,
|
887 |
+
causal=self.is_casual,
|
888 |
+
)
|
889 |
+
attn = attn.to(orig_dtype) # type: ignore
|
890 |
+
else:
|
891 |
+
q, k, v = qkv.view(-1, 3, self.num_attention_heads, self.attn_head_size).unbind(dim=1)
|
892 |
+
attn, _ = flash_attn_varlen_func(
|
893 |
+
q=q,
|
894 |
+
k=k,
|
895 |
+
v=v,
|
896 |
+
cu_seqlens_q=cu_seqlens,
|
897 |
+
cu_seqlens_k=cu_seqlens,
|
898 |
+
max_seqlen_q=max_seqlen,
|
899 |
+
max_seqlen_k=max_seqlen,
|
900 |
+
deterministic=self.deterministic_fa2,
|
901 |
+
causal=self.is_casual,
|
902 |
+
)
|
903 |
+
attn = attn.view(bs, dim)
|
904 |
+
elif self.use_fa2:
|
905 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
906 |
+
if convert_dtype:
|
907 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
908 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
909 |
+
orig_dtype = qkv.dtype
|
910 |
+
qkv = qkv.to(torch.bfloat16)
|
911 |
+
|
912 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
913 |
+
qkv,
|
914 |
+
cu_seqlens=cu_seqlens,
|
915 |
+
max_seqlen=max_seqlen,
|
916 |
+
dropout_p=self.p_dropout,
|
917 |
+
deterministic=self.deterministic_fa2,
|
918 |
+
window_size=self.sliding_window,
|
919 |
+
causal=self.is_casual,
|
920 |
+
)
|
921 |
+
attn = attn.to(orig_dtype) # type: ignore
|
922 |
+
else:
|
923 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
924 |
+
qkv,
|
925 |
+
cu_seqlens=cu_seqlens,
|
926 |
+
max_seqlen=max_seqlen,
|
927 |
+
dropout_p=self.p_dropout,
|
928 |
+
deterministic=self.deterministic_fa2,
|
929 |
+
window_size=self.sliding_window,
|
930 |
+
causal=self.is_casual,
|
931 |
+
)
|
932 |
+
attn = attn.view(bs, dim)
|
933 |
+
else:
|
934 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
935 |
+
qkv = bert_padding.pad_input(
|
936 |
+
qkv, indices, cu_seqlens.shape[0] - 1, attn_mask.shape[-1]
|
937 |
+
) # batch, max_seqlen, thd
|
938 |
+
unpad_bs, seqlen, *_ = qkv.shape
|
939 |
+
|
940 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2) # b h s d
|
941 |
+
attn = F.scaled_dot_product_attention(
|
942 |
+
q,
|
943 |
+
k,
|
944 |
+
v,
|
945 |
+
dropout_p=self.p_dropout,
|
946 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(unpad_bs, 1, seqlen, seqlen)
|
947 |
+
if self.use_sdpa_attn_mask
|
948 |
+
else None,
|
949 |
+
)
|
950 |
+
attn = attn.transpose(1, 2).view(unpad_bs, -1, dim) # b s h d
|
951 |
+
attn = bert_padding.unpad_input_only(attn, torch.squeeze(attn_mask) == 1)
|
952 |
+
|
953 |
+
return self.out_drop(self.Wo(attn))
|
954 |
+
|
955 |
+
|
956 |
+
class FlexBertPaddedRopeAttention(FlexBertAttentionBase):
|
957 |
+
"""Performs multi-headed self attention on a batch of padded sequences.
|
958 |
+
|
959 |
+
This module supports two attention implementations:
|
960 |
+
1. Flash Attention 2 (if installed), which improves throughput.
|
961 |
+
2. PyTorch's scaled_dot_product_attention.
|
962 |
+
|
963 |
+
See `forward` method for additional details.
|
964 |
+
"""
|
965 |
+
|
966 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
967 |
+
super().__init__(config=config, layer_id=layer_id)
|
968 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
969 |
+
raise ValueError(
|
970 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
971 |
+
f"heads ({config.num_attention_heads})"
|
972 |
+
)
|
973 |
+
|
974 |
+
self.is_casual = config.casual_mask
|
975 |
+
self.num_attention_heads = config.num_attention_heads
|
976 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
977 |
+
self.all_head_size = self.num_attention_heads * self.attn_head_size
|
978 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
979 |
+
self.Wqkv = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=config.attn_qkv_bias)
|
980 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
981 |
+
self.out_drop = (
|
982 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
983 |
+
)
|
984 |
+
|
985 |
+
self.use_fa2 = config.use_fa2
|
986 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
987 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
988 |
+
|
989 |
+
if config.global_attn_every_n_layers > 0:
|
990 |
+
if config.sliding_window == -1:
|
991 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
992 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
993 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
994 |
+
else:
|
995 |
+
self.sliding_window = (-1, -1)
|
996 |
+
else:
|
997 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
998 |
+
|
999 |
+
if config.rotary_emb_dim is None:
|
1000 |
+
config.rotary_emb_dim = self.attn_head_size
|
1001 |
+
|
1002 |
+
rotary_base = config.rotary_emb_base
|
1003 |
+
rotary_dim = config.rotary_emb_dim
|
1004 |
+
if self.sliding_window != (-1, -1):
|
1005 |
+
if config.local_attn_rotary_emb_base != -1:
|
1006 |
+
rotary_base = config.local_attn_rotary_emb_base
|
1007 |
+
if config.local_attn_rotary_emb_dim is not None:
|
1008 |
+
rotary_dim = config.local_attn_rotary_emb_dim
|
1009 |
+
|
1010 |
+
assert RotaryEmbedding is not None, "rotary_emb is not installed"
|
1011 |
+
self.rotary_emb = RotaryEmbedding(
|
1012 |
+
dim=rotary_dim,
|
1013 |
+
base=rotary_base,
|
1014 |
+
scale_base=config.rotary_emb_scale_base, # If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
1015 |
+
interleaved=config.rotary_emb_interleaved,
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
1019 |
+
self.use_fa2 = False
|
1020 |
+
if self.use_fa2 and self.use_sdpa_attn_mask:
|
1021 |
+
logger.warn_once(
|
1022 |
+
"Flash Attention 2 does not support attention masks. Use unpadded attention "
|
1023 |
+
"the equivalent functionality of masking out padding tokens."
|
1024 |
+
)
|
1025 |
+
if not self.use_fa2 and self.sliding_window[0] > 0:
|
1026 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
1027 |
+
|
1028 |
+
def _init_weights(self, reset_params: bool = False):
|
1029 |
+
init_weights(
|
1030 |
+
self.config,
|
1031 |
+
self.Wqkv,
|
1032 |
+
layer_dim=self.config.hidden_size,
|
1033 |
+
layer_id=None,
|
1034 |
+
type_of_module=ModuleType.in_module,
|
1035 |
+
)
|
1036 |
+
init_weights(
|
1037 |
+
self.config,
|
1038 |
+
self.Wo,
|
1039 |
+
layer_dim=self.config.hidden_size,
|
1040 |
+
layer_id=self.layer_id,
|
1041 |
+
type_of_module=ModuleType.out_module,
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
def forward(
|
1045 |
+
self,
|
1046 |
+
hidden_states: torch.Tensor,
|
1047 |
+
attn_mask: Optional[torch.Tensor] = None,
|
1048 |
+
) -> torch.Tensor:
|
1049 |
+
"""Perform self-attention.
|
1050 |
+
|
1051 |
+
There are two attention implementations supported:
|
1052 |
+
Flash Attention 2 and PyTorch's scaled_dot_product_attention.
|
1053 |
+
|
1054 |
+
Args:
|
1055 |
+
hidden_states: (batch, seqlen, dim)
|
1056 |
+
attn_mask: (batch, seqlen)
|
1057 |
+
|
1058 |
+
Returns:
|
1059 |
+
attention: (batch, seqlen, dim)
|
1060 |
+
"""
|
1061 |
+
bs, seqlen, dim = hidden_states.shape
|
1062 |
+
qkv = self.Wqkv(hidden_states)
|
1063 |
+
|
1064 |
+
seqlen_offset = 0
|
1065 |
+
|
1066 |
+
# Reshape to (batch, seqlen, 3, nheads, headdim)
|
1067 |
+
qkv = qkv.view(bs, seqlen, 3, self.num_attention_heads, self.attn_head_size)
|
1068 |
+
|
1069 |
+
if IMPL_USE_FLASH2:
|
1070 |
+
# Apply RoPE
|
1071 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset, max_seqlen=None)
|
1072 |
+
|
1073 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
1074 |
+
if convert_dtype:
|
1075 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
1076 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
1077 |
+
orig_dtype = qkv.dtype
|
1078 |
+
qkv = qkv.to(torch.bfloat16)
|
1079 |
+
|
1080 |
+
attn = flash_attn_qkvpacked_func(
|
1081 |
+
qkv,
|
1082 |
+
dropout_p=self.p_dropout,
|
1083 |
+
deterministic=self.deterministic_fa2,
|
1084 |
+
window_size=self.sliding_window,
|
1085 |
+
casual=self.is_casual,
|
1086 |
+
)
|
1087 |
+
attn = attn.to(orig_dtype) # type: ignore
|
1088 |
+
else:
|
1089 |
+
attn = flash_attn_qkvpacked_func(
|
1090 |
+
qkv,
|
1091 |
+
dropout_p=self.p_dropout,
|
1092 |
+
deterministic=self.deterministic_fa2,
|
1093 |
+
window_size=self.sliding_window,
|
1094 |
+
casual=self.is_casual
|
1095 |
+
)
|
1096 |
+
else:
|
1097 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
1098 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset, max_seqlen=None)
|
1099 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2)
|
1100 |
+
attn = F.scaled_dot_product_attention(
|
1101 |
+
q,
|
1102 |
+
k,
|
1103 |
+
v,
|
1104 |
+
dropout_p=self.p_dropout,
|
1105 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(bs, 1, seqlen, seqlen)
|
1106 |
+
if self.use_sdpa_attn_mask
|
1107 |
+
else None,
|
1108 |
+
).transpose(1, 2)
|
1109 |
+
|
1110 |
+
attn = attn.view(bs, seqlen, dim)
|
1111 |
+
return self.out_drop(self.Wo(attn))
|
1112 |
+
|
1113 |
+
|
1114 |
+
class FlexBertUnpadRopeParallelAttention(FlexBertAttentionBase):
|
1115 |
+
"""Performs multi-headed self attention on a batch of unpadded sequences.
|
1116 |
+
|
1117 |
+
If Flash Attention 2 is installed, this module uses Flash Attention to improve throughput.
|
1118 |
+
If Flash Attention 2 is not installed, the implementation will use PyTorch's SDPA kernel,
|
1119 |
+
which requires padding and unpadding inputs, adding some overhead.
|
1120 |
+
|
1121 |
+
See `forward` method for additional details.
|
1122 |
+
"""
|
1123 |
+
|
1124 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
1125 |
+
super().__init__(config=config, layer_id=layer_id)
|
1126 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
1127 |
+
raise ValueError(
|
1128 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
1129 |
+
f"heads ({config.num_attention_heads})"
|
1130 |
+
)
|
1131 |
+
|
1132 |
+
self.is_casual = config.casual_mask
|
1133 |
+
self.num_attention_heads = config.num_attention_heads
|
1134 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
1135 |
+
self.hidden_size = config.hidden_size
|
1136 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
1137 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
1138 |
+
self.out_drop = (
|
1139 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
if config.global_attn_every_n_layers > 0:
|
1143 |
+
if config.sliding_window == -1:
|
1144 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
1145 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
1146 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
1147 |
+
else:
|
1148 |
+
self.sliding_window = (-1, -1)
|
1149 |
+
else:
|
1150 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
1151 |
+
|
1152 |
+
if config.rotary_emb_dim is None:
|
1153 |
+
config.rotary_emb_dim = self.attn_head_size
|
1154 |
+
|
1155 |
+
rotary_base = config.rotary_emb_base
|
1156 |
+
rotary_dim = config.rotary_emb_dim
|
1157 |
+
if self.sliding_window != (-1, -1):
|
1158 |
+
if config.local_attn_rotary_emb_base != -1:
|
1159 |
+
rotary_base = config.local_attn_rotary_emb_base
|
1160 |
+
if config.local_attn_rotary_emb_dim is not None:
|
1161 |
+
rotary_dim = config.local_attn_rotary_emb_dim
|
1162 |
+
|
1163 |
+
assert UnpaddedRotaryEmbedding is not None, "rotary_emb is not installed"
|
1164 |
+
self.rotary_emb = UnpaddedRotaryEmbedding(
|
1165 |
+
dim=rotary_dim,
|
1166 |
+
base=rotary_base,
|
1167 |
+
scale_base=config.rotary_emb_scale_base, # If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
1168 |
+
interleaved=config.rotary_emb_interleaved,
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
self.use_fa2 = config.use_fa2
|
1172 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
1173 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
1174 |
+
|
1175 |
+
# Warn if defaulting to pytorch because of import issues
|
1176 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
1177 |
+
logger.warn_once(
|
1178 |
+
"Unable to import flash_attn; defaulting FlexBERT attention implementation to PyTorch's"
|
1179 |
+
" SDPA kernel. This requires padding and unpadding inputs, which will add some overhead."
|
1180 |
+
)
|
1181 |
+
self.use_fa2 = False
|
1182 |
+
if not self.use_fa2:
|
1183 |
+
if not self.use_sdpa_attn_mask:
|
1184 |
+
logger.warn_once(
|
1185 |
+
"SDPA attention is being used without an attention mask. Including padding in the "
|
1186 |
+
" attention calculation may cause differences from the Flash Attention implementation."
|
1187 |
+
)
|
1188 |
+
else:
|
1189 |
+
logger.warn_once(
|
1190 |
+
"SDPA attention with an attention mask doesn't use the Flash Attention kernel and will"
|
1191 |
+
" use more memory during the backward pass. Use the FA2 backend for linear memory scaling"
|
1192 |
+
" with sequence length."
|
1193 |
+
)
|
1194 |
+
if self.sliding_window[0] > 0:
|
1195 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
1196 |
+
|
1197 |
+
def _init_weights(self, reset_params: bool = False):
|
1198 |
+
init_weights(
|
1199 |
+
self.config,
|
1200 |
+
self.Wo,
|
1201 |
+
layer_dim=self.config.hidden_size,
|
1202 |
+
layer_id=self.layer_id,
|
1203 |
+
type_of_module=ModuleType.out_module,
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
def forward(
|
1207 |
+
self,
|
1208 |
+
qkv: torch.Tensor,
|
1209 |
+
cu_seqlens: torch.Tensor,
|
1210 |
+
max_seqlen: int,
|
1211 |
+
indices: torch.Tensor,
|
1212 |
+
attn_mask: torch.Tensor,
|
1213 |
+
) -> torch.Tensor:
|
1214 |
+
"""Perform self-attention.
|
1215 |
+
|
1216 |
+
There are two attention implementations supported: PyTorch's SDPA attention and Flash Attention 2.
|
1217 |
+
|
1218 |
+
The arguments are unpadded. The SDPA implementation of attention requires padded arguments while the
|
1219 |
+
Flash Attention implementation does not. If using SDPA we first call `pad_input`. Once we compute
|
1220 |
+
attention, we re-unpad our outputs for the other layers. The pad/unpad operations add overhead, but not
|
1221 |
+
sending pad tokens through ffs saves compute.
|
1222 |
+
|
1223 |
+
Args:
|
1224 |
+
qkv: (total_nnz, 3 * dim)
|
1225 |
+
cu_seqlens: (batch + 1,)
|
1226 |
+
max_seqlen: int
|
1227 |
+
indices: (total_nnz,)
|
1228 |
+
attn_mask: (batch, max_seqlen)
|
1229 |
+
|
1230 |
+
Returns:
|
1231 |
+
attention: (total_nnz, dim)
|
1232 |
+
"""
|
1233 |
+
bs = qkv.shape[0]
|
1234 |
+
dim = self.hidden_size
|
1235 |
+
|
1236 |
+
# only needed for inference when we have KV cache
|
1237 |
+
seqlen_offset = 0
|
1238 |
+
|
1239 |
+
# (total_seqlen, 3, nheads, headdim)
|
1240 |
+
qkv = qkv.view(-1, 3, self.num_attention_heads, self.attn_head_size)
|
1241 |
+
qkv = self.rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, seqlen_offset=seqlen_offset)
|
1242 |
+
|
1243 |
+
if self.use_fa2:
|
1244 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
1245 |
+
if convert_dtype:
|
1246 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
1247 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
1248 |
+
orig_dtype = qkv.dtype
|
1249 |
+
qkv = qkv.to(torch.bfloat16)
|
1250 |
+
|
1251 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
1252 |
+
qkv,
|
1253 |
+
cu_seqlens=cu_seqlens,
|
1254 |
+
max_seqlen=max_seqlen,
|
1255 |
+
dropout_p=self.p_dropout,
|
1256 |
+
deterministic=self.deterministic_fa2,
|
1257 |
+
window_size=self.sliding_window,
|
1258 |
+
casual=self.is_casual,
|
1259 |
+
)
|
1260 |
+
attn = attn.to(orig_dtype) # type: ignore
|
1261 |
+
else:
|
1262 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
1263 |
+
qkv,
|
1264 |
+
cu_seqlens=cu_seqlens,
|
1265 |
+
max_seqlen=max_seqlen,
|
1266 |
+
dropout_p=self.p_dropout,
|
1267 |
+
deterministic=self.deterministic_fa2,
|
1268 |
+
window_size=self.sliding_window,
|
1269 |
+
casual=self.is_casual,
|
1270 |
+
)
|
1271 |
+
attn = attn.view(bs, dim)
|
1272 |
+
else:
|
1273 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
1274 |
+
qkv = bert_padding.pad_input(
|
1275 |
+
qkv, indices, cu_seqlens.shape[0] - 1, attn_mask.shape[-1]
|
1276 |
+
) # batch, max_seqlen, thd
|
1277 |
+
unpad_bs, seqlen, *_ = qkv.shape
|
1278 |
+
|
1279 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2) # b h s d
|
1280 |
+
attn = F.scaled_dot_product_attention(
|
1281 |
+
q,
|
1282 |
+
k,
|
1283 |
+
v,
|
1284 |
+
dropout_p=self.p_dropout,
|
1285 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(unpad_bs, 1, seqlen, seqlen)
|
1286 |
+
if self.use_sdpa_attn_mask
|
1287 |
+
else None,
|
1288 |
+
)
|
1289 |
+
attn = attn.transpose(1, 2).view(unpad_bs, -1, dim) # b s h d
|
1290 |
+
attn = bert_padding.unpad_input_only(attn, torch.squeeze(attn_mask) == 1)
|
1291 |
+
|
1292 |
+
return self.out_drop(self.Wo(attn))
|
1293 |
+
|
1294 |
+
|
1295 |
+
class FlexBertPaddedRopeParallelAttention(FlexBertAttentionBase):
|
1296 |
+
"""Performs multi-headed self attention on a batch of padded sequences.
|
1297 |
+
|
1298 |
+
This module supports two attention implementations:
|
1299 |
+
1. Flash Attention 2 (if installed), which improves throughput.
|
1300 |
+
2. PyTorch's scaled_dot_product_attention.
|
1301 |
+
|
1302 |
+
See `forward` method for additional details.
|
1303 |
+
"""
|
1304 |
+
|
1305 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
1306 |
+
super().__init__(config=config, layer_id=layer_id)
|
1307 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
1308 |
+
raise ValueError(
|
1309 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
1310 |
+
f"heads ({config.num_attention_heads})"
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
self.is_casual = config.casual_mask
|
1314 |
+
self.num_attention_heads = config.num_attention_heads
|
1315 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
1316 |
+
self.hidden_size = config.hidden_size
|
1317 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
1318 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
1319 |
+
self.out_drop = (
|
1320 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
1321 |
+
)
|
1322 |
+
|
1323 |
+
self.use_fa2 = config.use_fa2
|
1324 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
1325 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
1326 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
1327 |
+
self.use_fa2 = False
|
1328 |
+
|
1329 |
+
if config.global_attn_every_n_layers > 0:
|
1330 |
+
if config.sliding_window == -1:
|
1331 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
1332 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
1333 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
1334 |
+
else:
|
1335 |
+
self.sliding_window = (-1, -1)
|
1336 |
+
else:
|
1337 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
1338 |
+
|
1339 |
+
if config.rotary_emb_dim is None:
|
1340 |
+
config.rotary_emb_dim = self.attn_head_size
|
1341 |
+
|
1342 |
+
rotary_base = config.rotary_emb_base
|
1343 |
+
rotary_dim = config.rotary_emb_dim
|
1344 |
+
if self.sliding_window != (-1, -1):
|
1345 |
+
if config.local_attn_rotary_emb_base != -1:
|
1346 |
+
rotary_base = config.local_attn_rotary_emb_base
|
1347 |
+
if config.local_attn_rotary_emb_dim is not None:
|
1348 |
+
rotary_dim = config.local_attn_rotary_emb_dim
|
1349 |
+
|
1350 |
+
assert RotaryEmbedding is not None, "rotary_emb is not installed"
|
1351 |
+
self.rotary_emb = RotaryEmbedding(
|
1352 |
+
dim=rotary_dim,
|
1353 |
+
base=rotary_base,
|
1354 |
+
scale_base=config.rotary_emb_scale_base, # If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
1355 |
+
interleaved=config.rotary_emb_interleaved,
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
1359 |
+
self.use_fa2 = False
|
1360 |
+
if self.use_fa2 and self.use_sdpa_attn_mask:
|
1361 |
+
logger.warn_once(
|
1362 |
+
"Flash Attention 2 does not support attention masks. Use unpadded attention "
|
1363 |
+
"the equivalent functionality of masking out padding tokens."
|
1364 |
+
)
|
1365 |
+
if not self.use_fa2 and self.sliding_window[0] > 0:
|
1366 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
1367 |
+
|
1368 |
+
def _init_weights(self, reset_params: bool = False):
|
1369 |
+
init_weights(
|
1370 |
+
self.config,
|
1371 |
+
self.Wo,
|
1372 |
+
layer_dim=self.config.hidden_size,
|
1373 |
+
layer_id=self.layer_id,
|
1374 |
+
type_of_module=ModuleType.out_module,
|
1375 |
+
)
|
1376 |
+
|
1377 |
+
def forward(
|
1378 |
+
self,
|
1379 |
+
qkv: torch.Tensor,
|
1380 |
+
attn_mask: Optional[torch.Tensor] = None,
|
1381 |
+
) -> torch.Tensor:
|
1382 |
+
"""Perform self-attention.
|
1383 |
+
|
1384 |
+
There are two attention implementations supported:
|
1385 |
+
Flash Attention 2 and PyTorch's scaled_dot_product_attention.
|
1386 |
+
|
1387 |
+
Args:
|
1388 |
+
qkv: (batch, seqlen, 3 * dim)
|
1389 |
+
attn_mask: (batch, seqlen)
|
1390 |
+
|
1391 |
+
Returns:
|
1392 |
+
attention: (batch, seqlen, dim)
|
1393 |
+
"""
|
1394 |
+
bs, seqlen, _ = qkv.shape
|
1395 |
+
dim = self.hidden_size
|
1396 |
+
|
1397 |
+
seqlen_offset = 0
|
1398 |
+
|
1399 |
+
# Reshape to (batch, seqlen, 3, nheads, headdim)
|
1400 |
+
qkv = qkv.view(bs, seqlen, 3, self.num_attention_heads, self.attn_head_size)
|
1401 |
+
|
1402 |
+
if self.use_fa2:
|
1403 |
+
# Apply RoPE
|
1404 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset, max_seqlen=None)
|
1405 |
+
|
1406 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
1407 |
+
if convert_dtype:
|
1408 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
1409 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
1410 |
+
orig_dtype = qkv.dtype
|
1411 |
+
qkv = qkv.to(torch.bfloat16)
|
1412 |
+
|
1413 |
+
attn = flash_attn_qkvpacked_func(
|
1414 |
+
qkv,
|
1415 |
+
dropout_p=self.p_dropout,
|
1416 |
+
deterministic=self.deterministic_fa2,
|
1417 |
+
window_size=self.sliding_window,
|
1418 |
+
casual=self.is_casual
|
1419 |
+
)
|
1420 |
+
attn = attn.to(orig_dtype) # type: ignore
|
1421 |
+
else:
|
1422 |
+
attn = flash_attn_qkvpacked_func(
|
1423 |
+
qkv,
|
1424 |
+
dropout_p=self.p_dropout,
|
1425 |
+
deterministic=self.deterministic_fa2,
|
1426 |
+
window_size=self.sliding_window,
|
1427 |
+
casual=self.is_casual
|
1428 |
+
)
|
1429 |
+
else:
|
1430 |
+
assert not self.is_casual, f"Casual mask not implemented here yet"
|
1431 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset, max_seqlen=None)
|
1432 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2)
|
1433 |
+
attn = F.scaled_dot_product_attention(
|
1434 |
+
q,
|
1435 |
+
k,
|
1436 |
+
v,
|
1437 |
+
dropout_p=self.p_dropout,
|
1438 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(bs, 1, seqlen, seqlen)
|
1439 |
+
if self.use_sdpa_attn_mask
|
1440 |
+
else None,
|
1441 |
+
).transpose(1, 2)
|
1442 |
+
|
1443 |
+
attn = attn.view(bs, seqlen, dim)
|
1444 |
+
return self.out_drop(self.Wo(attn))
|
1445 |
+
|
1446 |
+
|
1447 |
+
class FlexBertPaddedParallelAttention(FlexBertAttentionBase):
|
1448 |
+
"""Performs multi-headed self attention on a batch of padded sequences.
|
1449 |
+
|
1450 |
+
This module supports two attention implementations:
|
1451 |
+
1. Flash Attention 2 (if installed), which improves throughput.
|
1452 |
+
2. PyTorch's scaled_dot_product_attention.
|
1453 |
+
|
1454 |
+
See `forward` method for additional detail.
|
1455 |
+
"""
|
1456 |
+
|
1457 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
1458 |
+
super().__init__(config=config, layer_id=layer_id)
|
1459 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
1460 |
+
raise ValueError(
|
1461 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
1462 |
+
f"heads ({config.num_attention_heads})"
|
1463 |
+
)
|
1464 |
+
|
1465 |
+
self.is_casual = config.casual_mask
|
1466 |
+
self.num_attention_heads = config.num_attention_heads
|
1467 |
+
self.attn_head_size = int(config.hidden_size / config.num_attention_heads)
|
1468 |
+
self.hidden_size = config.hidden_size
|
1469 |
+
self.p_dropout = config.attention_probs_dropout_prob
|
1470 |
+
self.Wo = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attn_out_bias)
|
1471 |
+
self.out_drop = (
|
1472 |
+
nn.Dropout(config.attn_out_dropout_prob) if config.attn_out_dropout_prob > 0.0 else nn.Identity()
|
1473 |
+
)
|
1474 |
+
self.use_fa2 = config.use_fa2
|
1475 |
+
self.deterministic_fa2 = config.deterministic_fa2
|
1476 |
+
self.use_sdpa_attn_mask = config.use_sdpa_attn_mask
|
1477 |
+
|
1478 |
+
if config.global_attn_every_n_layers > 0:
|
1479 |
+
if config.sliding_window == -1:
|
1480 |
+
raise ValueError("global_attn_every_n_layers` requires `sliding_window` to be set")
|
1481 |
+
if layer_id % config.global_attn_every_n_layers != 0:
|
1482 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
1483 |
+
else:
|
1484 |
+
self.sliding_window = (-1, -1)
|
1485 |
+
else:
|
1486 |
+
self.sliding_window = (config.sliding_window // 2, config.sliding_window // 2)
|
1487 |
+
|
1488 |
+
if not IMPL_USE_FLASH2 and self.use_fa2:
|
1489 |
+
self.use_fa2 = False
|
1490 |
+
if self.use_fa2 and self.use_sdpa_attn_mask:
|
1491 |
+
logger.warn_once(
|
1492 |
+
"Flash Attention 2 does not support attention masks. Use unpadded attention "
|
1493 |
+
"the equivalent functionality of masking out padding tokens."
|
1494 |
+
)
|
1495 |
+
if not self.use_fa2 and self.sliding_window[0] > 0:
|
1496 |
+
raise ValueError("Sliding window is not implemented for the PyTorch SDPA path. Use the FA2 backend.")
|
1497 |
+
|
1498 |
+
def _init_weights(self, reset_params: bool = False):
|
1499 |
+
init_weights(
|
1500 |
+
self.config,
|
1501 |
+
self.Wo,
|
1502 |
+
layer_dim=self.config.hidden_size,
|
1503 |
+
layer_id=self.layer_id,
|
1504 |
+
type_of_module=ModuleType.out_module,
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
def forward(
|
1508 |
+
self,
|
1509 |
+
qkv: torch.Tensor,
|
1510 |
+
attn_mask: Optional[torch.Tensor] = None,
|
1511 |
+
) -> torch.Tensor:
|
1512 |
+
"""Perform self-attention.
|
1513 |
+
|
1514 |
+
There are two attention implementations supported:
|
1515 |
+
Flash Attention 2 and PyTorch's scaled_dot_product_attention.
|
1516 |
+
|
1517 |
+
Args:
|
1518 |
+
qkv: (batch, seqlen, 3 * dim)
|
1519 |
+
attn_mask: (batch, seqlen)
|
1520 |
+
|
1521 |
+
Returns:
|
1522 |
+
attention: (batch, seqlen, dim)
|
1523 |
+
"""
|
1524 |
+
bs, seqlen, _ = qkv.shape
|
1525 |
+
dim = self.hidden_size
|
1526 |
+
|
1527 |
+
if self.use_fa2:
|
1528 |
+
qkv = qkv.view(bs, seqlen, 3, self.num_attention_heads, self.attn_head_size)
|
1529 |
+
|
1530 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
1531 |
+
if convert_dtype:
|
1532 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
1533 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
1534 |
+
orig_dtype = qkv.dtype
|
1535 |
+
qkv = qkv.to(torch.bfloat16)
|
1536 |
+
|
1537 |
+
attn = flash_attn_qkvpacked_func(
|
1538 |
+
qkv,
|
1539 |
+
dropout_p=self.p_dropout,
|
1540 |
+
deterministic=self.deterministic_fa2,
|
1541 |
+
window_size=self.sliding_window,
|
1542 |
+
casual=self.is_casual
|
1543 |
+
)
|
1544 |
+
attn = attn.to(orig_dtype) # type: ignore
|
1545 |
+
else:
|
1546 |
+
attn = flash_attn_qkvpacked_func(
|
1547 |
+
qkv,
|
1548 |
+
dropout_p=self.p_dropout,
|
1549 |
+
deterministic=self.deterministic_fa2,
|
1550 |
+
window_size=self.sliding_window,
|
1551 |
+
casual=self.is_casual
|
1552 |
+
)
|
1553 |
+
else:
|
1554 |
+
assert not self.is_casual, f"Casual attention mask not yet implemented here"
|
1555 |
+
qkv = qkv.view(bs, seqlen, 3, self.num_attention_heads, self.attn_head_size)
|
1556 |
+
q, k, v = qkv.transpose(3, 1).unbind(dim=2) # b h s d
|
1557 |
+
attn = F.scaled_dot_product_attention(
|
1558 |
+
q,
|
1559 |
+
k,
|
1560 |
+
v,
|
1561 |
+
dropout_p=self.p_dropout,
|
1562 |
+
attn_mask=attn_mask[:, None, None, :seqlen].to(torch.bool).expand(bs, 1, seqlen, seqlen)
|
1563 |
+
if self.use_sdpa_attn_mask
|
1564 |
+
else None,
|
1565 |
+
).transpose(1, 2)
|
1566 |
+
|
1567 |
+
attn = attn.view(bs, seqlen, dim)
|
1568 |
+
return self.out_drop(self.Wo(attn))
|
1569 |
+
|
1570 |
+
|
1571 |
+
ATTN2CLS = {
|
1572 |
+
"unpadded_base": FlexBertUnpadAttention,
|
1573 |
+
"padded_base": FlexBertPaddedAttention,
|
1574 |
+
"unpadded_parallel": FlexBertUnpadParallelAttention,
|
1575 |
+
"padded_parallel": FlexBertPaddedParallelAttention,
|
1576 |
+
"unpadded_rope": FlexBertUnpadRopeAttention,
|
1577 |
+
"padded_rope": FlexBertPaddedRopeAttention,
|
1578 |
+
"unpadded_rope_parallel": FlexBertUnpadRopeParallelAttention,
|
1579 |
+
"padded_rope_parallel": FlexBertPaddedRopeParallelAttention,
|
1580 |
+
}
|
1581 |
+
|
1582 |
+
|
1583 |
+
def get_attention_layer(config: FlexBertConfig, layer_id: Optional[int] = None) -> FlexBertAttentionBase:
|
1584 |
+
try:
|
1585 |
+
attention_layer = (
|
1586 |
+
config.initial_attention_layer
|
1587 |
+
if layer_id < config.num_initial_layers and getattr(config, "initial_attention_layer", None) is not None
|
1588 |
+
else config.attention_layer
|
1589 |
+
)
|
1590 |
+
return ATTN2CLS[maybe_add_padding(config, attention_layer)](config, layer_id=layer_id)
|
1591 |
+
except KeyError:
|
1592 |
+
if layer_id < config.num_initial_layers and getattr(config, "initial_attention_layer", None) is not None:
|
1593 |
+
raise ValueError(
|
1594 |
+
f"Invalid attention layer type: {config.initial_attention_layer=}, must be one of {ATTN2CLS.keys()}."
|
1595 |
+
f"{config.padding=} will be automatically prepended to `config.attention_layer` if unspecified."
|
1596 |
+
)
|
1597 |
+
else:
|
1598 |
+
raise ValueError(
|
1599 |
+
f"Invalid attention layer type: {config.attention_layer=}, must be one of {ATTN2CLS.keys()}. "
|
1600 |
+
f"{config.padding=} will be automatically prepended to `config.attention_layer` if unspecified."
|
1601 |
+
)
|
bert_padding.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
5 |
+
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
6 |
+
|
7 |
+
"""Helper functions for padding and unpadding batches.
|
8 |
+
|
9 |
+
These functions are used extensively throughout the Mosaic BERT implementation
|
10 |
+
in `bert_layers.py`.
|
11 |
+
"""
|
12 |
+
|
13 |
+
from typing import Tuple, cast
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from einops import rearrange, repeat
|
18 |
+
|
19 |
+
|
20 |
+
class IndexFirstAxis(torch.autograd.Function):
|
21 |
+
@staticmethod
|
22 |
+
def forward(ctx, input: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
|
23 |
+
"""Get just the values of `input` which are at `indices`.
|
24 |
+
|
25 |
+
Arguments:
|
26 |
+
ctx: the autograd context object
|
27 |
+
input: (b, ...) 2+ dimensional tensor
|
28 |
+
indices: (num_idx) 1D tensor
|
29 |
+
"""
|
30 |
+
ctx.save_for_backward(indices)
|
31 |
+
assert input.ndim >= 2
|
32 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] # type: ignore
|
33 |
+
second_dim = other_shape.numel() # product of sizes of all but first dimension
|
34 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
35 |
+
return torch.gather(
|
36 |
+
rearrange(input, "b ... -> b (...)"), # (b, ...) -> (b, second_dim)
|
37 |
+
0,
|
38 |
+
repeat(indices, "z -> z d", d=second_dim), # (indices,) -> (indices, second_dim)
|
39 |
+
).reshape(-1, *other_shape) # (num_idx, ...)
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]:
|
43 |
+
(indices,) = ctx.saved_tensors
|
44 |
+
assert grad_output.ndim >= 2
|
45 |
+
other_shape = grad_output.shape[1:]
|
46 |
+
grad_output = rearrange(grad_output, "b ... -> b (...)")
|
47 |
+
grad_input = torch.zeros(
|
48 |
+
[ctx.first_axis_dim, grad_output.shape[1]], device=grad_output.device, dtype=grad_output.dtype
|
49 |
+
)
|
50 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
51 |
+
# grad_input[indices] = grad_output
|
52 |
+
grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
|
53 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
54 |
+
|
55 |
+
|
56 |
+
index_first_axis = IndexFirstAxis.apply
|
57 |
+
|
58 |
+
|
59 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
60 |
+
@staticmethod
|
61 |
+
def forward(ctx, values: torch.Tensor, indices: torch.Tensor, first_axis_dim) -> torch.Tensor:
|
62 |
+
ctx.save_for_backward(indices)
|
63 |
+
assert indices.ndim == 1
|
64 |
+
assert values.ndim >= 2
|
65 |
+
output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype)
|
66 |
+
output[indices] = values
|
67 |
+
return output
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
71 |
+
(indices,) = ctx.saved_tensors
|
72 |
+
grad_values = grad_output[indices]
|
73 |
+
return grad_values, None, None
|
74 |
+
|
75 |
+
|
76 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
77 |
+
|
78 |
+
|
79 |
+
def unpad_input(
|
80 |
+
hidden_states: torch.Tensor,
|
81 |
+
attention_mask: torch.Tensor,
|
82 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
83 |
+
"""Remove padding from input sequences.
|
84 |
+
|
85 |
+
Arguments:
|
86 |
+
hidden_states: (batch, seqlen, ...)
|
87 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
91 |
+
indices: (total_nnz)
|
92 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
93 |
+
max_seqlen_in_batch: int ()
|
94 |
+
"""
|
95 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
96 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
97 |
+
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
98 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
99 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
100 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
101 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
102 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
103 |
+
# so we write custom forward and backward to make it a bit faster.
|
104 |
+
hidden_states = cast(torch.Tensor, index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices))
|
105 |
+
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
|
106 |
+
|
107 |
+
|
108 |
+
def unpad_input_only(
|
109 |
+
hidden_states: torch.Tensor,
|
110 |
+
attention_mask: torch.Tensor,
|
111 |
+
) -> torch.Tensor:
|
112 |
+
"""Like unpad_input, but only return the unpadded first tensor.
|
113 |
+
|
114 |
+
Save a small amount of overhead.
|
115 |
+
|
116 |
+
Arguments:
|
117 |
+
hidden_states: (batch, seqlen, ...)
|
118 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
122 |
+
"""
|
123 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
124 |
+
rearranged = rearrange(hidden_states, "b s ... -> (b s) ...")
|
125 |
+
return index_first_axis(rearranged, indices) # type: ignore
|
126 |
+
|
127 |
+
|
128 |
+
def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
|
129 |
+
"""Add padding to sequences.
|
130 |
+
|
131 |
+
Arguments:
|
132 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
133 |
+
indices: (total_nnz)
|
134 |
+
batch: int batch_size
|
135 |
+
seqlen: int max sequence length
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
hidden_states: (batch, seqlen, ...)
|
139 |
+
"""
|
140 |
+
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
141 |
+
return rearrange(output, "(b s) ... -> b s ...", b=batch) # type: ignore
|
config.json
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
{
|
2 |
"allow_embedding_resizing": true,
|
3 |
"architectures": [
|
|
|
4 |
"FlexBertForCasualLM"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "orionweller/FlexGPT--configuration_bert.FlexBertConfig",
|
8 |
-
"AutoModel": "lightonai/FlexGPT--modeling_flexbert.
|
|
|
9 |
},
|
10 |
"attention_layer": "rope",
|
11 |
"attention_probs_dropout_prob": 0.0,
|
|
|
1 |
{
|
2 |
"allow_embedding_resizing": true,
|
3 |
"architectures": [
|
4 |
+
"FlexBertModel",
|
5 |
"FlexBertForCasualLM"
|
6 |
],
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "orionweller/FlexGPT--configuration_bert.FlexBertConfig",
|
9 |
+
"AutoModel": "lightonai/FlexGPT--modeling_flexbert.FlexBertModel",
|
10 |
+
"AutoModelForCasualLM": "lightonai/FlexGPT--modeling_flexbert.FlexBertForCasualLM",
|
11 |
},
|
12 |
"attention_layer": "rope",
|
13 |
"attention_probs_dropout_prob": 0.0,
|
configuration_bert.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
from transformers import BertConfig as TransformersBertConfig
|
7 |
+
|
8 |
+
|
9 |
+
class BertConfig(TransformersBertConfig):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
alibi_starting_size: int = 512,
|
13 |
+
normalization: str = "layernorm",
|
14 |
+
attention_probs_dropout_prob: float = 0.0,
|
15 |
+
head_pred_act: str = "gelu",
|
16 |
+
deterministic_fa2: bool = False,
|
17 |
+
allow_embedding_resizing: bool = False,
|
18 |
+
**kwargs,
|
19 |
+
):
|
20 |
+
"""Configuration class for MosaicBert.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to
|
24 |
+
create when initializing the model. You should be able to ignore this parameter in most cases.
|
25 |
+
Defaults to 512.
|
26 |
+
attention_probs_dropout_prob (float): By default, turn off attention dropout in MosaicBERT
|
27 |
+
Note that the custom Triton Flash Attention with ALiBi implementation does not support droput.
|
28 |
+
However, Flash Attention 2 supports ALiBi and dropout https://github.com/Dao-AILab/flash-attention
|
29 |
+
embed_dropout_prob (float): Dropout probability for the embedding layer.
|
30 |
+
attn_out_dropout_prob (float): Dropout probability for the attention output layer.
|
31 |
+
mlp_dropout_prob (float): Dropout probability for the MLP layer.
|
32 |
+
allow_embedding_resizing (bool): Embeddings will be automatically resized when they are smaller than the tokenizer vocab size.
|
33 |
+
"""
|
34 |
+
super().__init__(attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
|
35 |
+
self.alibi_starting_size = alibi_starting_size
|
36 |
+
self.normalization = normalization
|
37 |
+
self.head_pred_act = head_pred_act
|
38 |
+
self.deterministic_fa2 = deterministic_fa2
|
39 |
+
self.allow_embedding_resizing = allow_embedding_resizing
|
40 |
+
|
41 |
+
|
42 |
+
class FlexBertConfig(TransformersBertConfig):
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
attention_layer: str = "base",
|
46 |
+
attention_probs_dropout_prob: float = 0.0,
|
47 |
+
attn_out_bias: bool = False,
|
48 |
+
attn_out_dropout_prob: float = 0.0,
|
49 |
+
attn_qkv_bias: bool = False,
|
50 |
+
bert_layer: str = "prenorm",
|
51 |
+
decoder_bias: bool = True,
|
52 |
+
embed_dropout_prob: float = 0.0,
|
53 |
+
embed_norm: bool = True,
|
54 |
+
final_norm: bool = False,
|
55 |
+
embedding_layer: str = "absolute_pos",
|
56 |
+
encoder_layer: str = "base",
|
57 |
+
loss_function: str = "cross_entropy",
|
58 |
+
loss_kwargs: dict = {},
|
59 |
+
mlp_dropout_prob: float = 0.0,
|
60 |
+
mlp_in_bias: bool = False,
|
61 |
+
mlp_layer: str = "mlp",
|
62 |
+
mlp_out_bias: bool = False,
|
63 |
+
norm_kwargs: dict = {},
|
64 |
+
normalization: str = "rmsnorm",
|
65 |
+
padding: str = "unpadded",
|
66 |
+
head_class_act: str = "silu",
|
67 |
+
head_class_bias: bool = False,
|
68 |
+
head_class_dropout: float = 0.0,
|
69 |
+
head_class_norm: str = False,
|
70 |
+
head_pred_act: str = "silu",
|
71 |
+
head_pred_bias: bool = False,
|
72 |
+
head_pred_dropout: float = 0.0,
|
73 |
+
head_pred_norm: bool = True,
|
74 |
+
pooling_type: str = "cls",
|
75 |
+
rotary_emb_dim: int | None = None,
|
76 |
+
rotary_emb_base: float = 10000.0,
|
77 |
+
rotary_emb_scale_base=None,
|
78 |
+
rotary_emb_interleaved: bool = False,
|
79 |
+
use_fa2: bool = True,
|
80 |
+
use_sdpa_attn_mask: bool = False,
|
81 |
+
allow_embedding_resizing: bool = False,
|
82 |
+
init_method: str = "default",
|
83 |
+
init_std: float = 0.02,
|
84 |
+
init_cutoff_factor: float = 2.0,
|
85 |
+
init_small_embedding: bool = False,
|
86 |
+
initial_attention_layer: str | None = None,
|
87 |
+
initial_bert_layer: str | None = None,
|
88 |
+
initial_mlp_layer: str | None = None,
|
89 |
+
num_initial_layers: int = 1,
|
90 |
+
skip_first_prenorm: bool = False,
|
91 |
+
deterministic_fa2: bool = False,
|
92 |
+
sliding_window: int = -1,
|
93 |
+
global_attn_every_n_layers: int = -1,
|
94 |
+
local_attn_rotary_emb_base: float = -1,
|
95 |
+
local_attn_rotary_emb_dim: int | None = None,
|
96 |
+
unpad_embeddings: bool = False,
|
97 |
+
pad_logits: bool = False,
|
98 |
+
compile_model: bool = False,
|
99 |
+
masked_prediction: bool = False,
|
100 |
+
casual_mask: bool = False,
|
101 |
+
**kwargs,
|
102 |
+
):
|
103 |
+
"""
|
104 |
+
Args:
|
105 |
+
attention_layer (str): Attention layer type.
|
106 |
+
attention_probs_dropout_prob (float): Dropout probability for attention probabilities.
|
107 |
+
attn_out_bias (bool): use bias in attention output projection.
|
108 |
+
attn_out_dropout_prob (float): Dropout probability for attention output.
|
109 |
+
attn_qkv_bias (bool): use bias for query, key, value linear layer(s).
|
110 |
+
bert_layer (str): BERT layer type.
|
111 |
+
decoder_bias (bool): use bias in decoder linear layer.
|
112 |
+
embed_dropout_prob (float): Dropout probability for embeddings.
|
113 |
+
embed_norm (bool): Normalize embedding output.
|
114 |
+
final_norm (bool): Add normalization after the final encoder layer and before head.
|
115 |
+
embedding_layer (str): Embedding layer type.
|
116 |
+
encoder_layer (str): Encoder layer type.
|
117 |
+
loss_function (str): Loss function to use.
|
118 |
+
loss_kwargs (dict): Keyword arguments for loss function.
|
119 |
+
mlp_dropout_prob (float): Dropout probability for MLP layers.
|
120 |
+
mlp_in_bias (bool): Use bias in MLP input linear layer.
|
121 |
+
mlp_layer (str): MLP layer type.
|
122 |
+
mlp_out_bias (bool): Use bias in MLP output linear layer.
|
123 |
+
norm_kwargs (dict): Keyword arguments for normalization layers.
|
124 |
+
normalization (str): Normalization type.
|
125 |
+
padding (str): Unpad inputs. Best with `use_fa2=True`.
|
126 |
+
head_class_act (str): Activation function for classification head.
|
127 |
+
head_class_bias (bool): Use bias in classification head linear layer(s).
|
128 |
+
head_class_dropout (float): Dropout probability for classification head.
|
129 |
+
head_class_norm (str): Normalization type for classification head.
|
130 |
+
head_pred_act (str): Activation function for prediction head.
|
131 |
+
head_pred_bias (bool): Use bias in prediction head linear layer(s).
|
132 |
+
head_pred_dropout (float): Dropout probability for prediction head.
|
133 |
+
head_pred_norm (bool): Normalize prediction head output.
|
134 |
+
pooling_type (str): Pooling type.
|
135 |
+
rotary_emb_dim (int | None): Rotary embedding dimension.
|
136 |
+
rotary_emb_base (float): Rotary embedding base.
|
137 |
+
rotary_emb_scale_base (float): Rotary embedding scale base.
|
138 |
+
rotary_emb_interleaved (bool): Use interleaved rotary embeddings.
|
139 |
+
use_fa2 (bool): Use FlashAttention2. Requires flash_attn package.
|
140 |
+
use_sdpa_attn_mask (bool): Pass a mask to SDPA. This will prevent SDPA from using the PyTorch FA2 kernel.
|
141 |
+
allow_embedding_resizing (bool): Embeddings will be automatically resized when they are smaller than the tokenizer vocab size.
|
142 |
+
init_method (str): Model layers initialization method.
|
143 |
+
init_std (float): Standard deviation for initialization. Used for normal and full_megatron init.
|
144 |
+
init_cutoff_factor (float): Cutoff factor for initialization. Used for normal and full_megatron init.
|
145 |
+
init_small_embedding (bool): Initialize embeddings with RWKV small init.
|
146 |
+
initial_attention_layer (str | None): Replace first `num_initial_layers` attention_layer instance with this layer.
|
147 |
+
initial_bert_layer (str | None): Replace first `num_initial_layers` bert_layer instance with this layer.
|
148 |
+
initial_mlp_layer (str | None): Replace first `num_initial_layers` mlp_layer instance with this layer.
|
149 |
+
num_initial_layers (int): Number of initial layers to set via `initial_attention_layer`, `initial_bert_layer`, and `initial_mlp_layer`.
|
150 |
+
skip_first_prenorm (bool): Skip pre-normalization for the first bert layer. Requires `embed_norm=True`.
|
151 |
+
deterministic_fa2 (bool): Use Flash Attention 2 deterministic mode. This is slower then the default non-deterministic mode.
|
152 |
+
sliding_window (int): Use sliding window attention with window size `n`. -1 to disable. Window size split between the left and right context. Only supports FA2.
|
153 |
+
global_attn_every_n_layers (int): Use global attention every `n` layers and sliding window for the rest. -1 to disable.
|
154 |
+
local_attn_rotary_emb_base (float): Rotary embedding base for local attention. -1 to disable and use `rotary_emb_base` for all layers.
|
155 |
+
local_attn_rotary_emb_dim (int | None): Rotary embedding dimension for local attention. None to disable and use `rotary_emb_dim` for all layers.
|
156 |
+
unpad_embeddings (bool): Unpad inputs before the embedding layer.
|
157 |
+
pad_logits (bool): Pad logits after the calculating the loss.
|
158 |
+
compile_model (bool): Compile the subset of the model which can be compiled.
|
159 |
+
masked_prediction (bool): Use only pass the masked tokens throught the final MLM layers
|
160 |
+
casual_mask (bool): Use a casual mask, defaulting to false.
|
161 |
+
**kwargs: Additional keyword arguments.
|
162 |
+
"""
|
163 |
+
super().__init__(attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
|
164 |
+
self.attention_layer = attention_layer
|
165 |
+
self.attn_out_bias = attn_out_bias
|
166 |
+
self.attn_out_dropout_prob = attn_out_dropout_prob
|
167 |
+
self.attn_qkv_bias = attn_qkv_bias
|
168 |
+
self.bert_layer = bert_layer
|
169 |
+
self.decoder_bias = decoder_bias
|
170 |
+
self.embed_dropout_prob = embed_dropout_prob
|
171 |
+
self.embed_norm = embed_norm
|
172 |
+
self.final_norm = final_norm
|
173 |
+
self.embedding_layer = embedding_layer
|
174 |
+
self.encoder_layer = encoder_layer
|
175 |
+
self.loss_function = loss_function
|
176 |
+
self.loss_kwargs = loss_kwargs
|
177 |
+
self.mlp_dropout_prob = mlp_dropout_prob
|
178 |
+
self.mlp_in_bias = mlp_in_bias
|
179 |
+
self.mlp_layer = mlp_layer
|
180 |
+
self.mlp_out_bias = mlp_out_bias
|
181 |
+
self.norm_kwargs = norm_kwargs
|
182 |
+
self.normalization = normalization
|
183 |
+
self.padding = padding
|
184 |
+
self.head_class_act = head_class_act
|
185 |
+
self.head_class_bias = head_class_bias
|
186 |
+
self.head_class_dropout = head_class_dropout
|
187 |
+
self.head_class_norm = head_class_norm
|
188 |
+
self.head_pred_act = head_pred_act
|
189 |
+
self.head_pred_bias = head_pred_bias
|
190 |
+
self.head_pred_dropout = head_pred_dropout
|
191 |
+
self.head_pred_norm = head_pred_norm
|
192 |
+
self.pooling_type = pooling_type
|
193 |
+
self.rotary_emb_dim = rotary_emb_dim
|
194 |
+
self.rotary_emb_base = rotary_emb_base
|
195 |
+
self.rotary_emb_scale_base = rotary_emb_scale_base
|
196 |
+
self.rotary_emb_interleaved = rotary_emb_interleaved
|
197 |
+
self.use_fa2 = use_fa2
|
198 |
+
self.use_sdpa_attn_mask = use_sdpa_attn_mask
|
199 |
+
self.allow_embedding_resizing = allow_embedding_resizing
|
200 |
+
self.init_method = init_method
|
201 |
+
self.init_std = init_std
|
202 |
+
self.init_cutoff_factor = init_cutoff_factor
|
203 |
+
self.init_small_embedding = init_small_embedding
|
204 |
+
self.initial_attention_layer = initial_attention_layer
|
205 |
+
self.initial_bert_layer = initial_bert_layer
|
206 |
+
self.initial_mlp_layer = initial_mlp_layer
|
207 |
+
self.num_initial_layers = num_initial_layers
|
208 |
+
self.skip_first_prenorm = skip_first_prenorm
|
209 |
+
self.deterministic_fa2 = deterministic_fa2
|
210 |
+
self.sliding_window = sliding_window
|
211 |
+
self.global_attn_every_n_layers = global_attn_every_n_layers
|
212 |
+
self.local_attn_rotary_emb_base = local_attn_rotary_emb_base
|
213 |
+
self.local_attn_rotary_emb_dim = local_attn_rotary_emb_dim
|
214 |
+
self.unpad_embeddings = unpad_embeddings
|
215 |
+
self.pad_logits = pad_logits
|
216 |
+
self.compile_model = compile_model
|
217 |
+
self.masked_prediction = masked_prediction
|
218 |
+
self.casual_mask = casual_mask
|
219 |
+
|
220 |
+
if loss_kwargs.get("return_z_loss", False):
|
221 |
+
if loss_function != "fa_cross_entropy":
|
222 |
+
raise ValueError("loss_function must be 'fa_cross_entropy' when return_z_loss is True")
|
223 |
+
if loss_kwargs.get("lse_square_scale", 0) <= 0:
|
224 |
+
raise ValueError(
|
225 |
+
"lse_square_scale must be passed to `loss_kwargs` and must be greater than 0 for z_loss"
|
226 |
+
)
|
227 |
+
if loss_kwargs.get("inplace_backward", False):
|
228 |
+
self.loss_kwargs["inplace_backward"] = False
|
229 |
+
warnings.warn("`inplace_backward=True` will cause incorrect metrics. Automatically setting to False.")
|
230 |
+
|
231 |
+
if global_attn_every_n_layers > 0 and (self.num_hidden_layers - 1) % global_attn_every_n_layers != 0:
|
232 |
+
raise ValueError(
|
233 |
+
f"{global_attn_every_n_layers=} must be a divisor of one less than {self.num_hidden_layers=}"
|
234 |
+
)
|
235 |
+
|
236 |
+
if self.sliding_window != -1:
|
237 |
+
if not self.use_fa2:
|
238 |
+
raise ValueError("Sliding window attention is only supported with FlashAttention2")
|
239 |
+
if self.sliding_window % 2 != 0 and self.sliding_window % 64 != 0:
|
240 |
+
raise ValueError(
|
241 |
+
f"Sliding window must be an even number and divisible by 64: {self.sliding_window=} {self.sliding_window % 64} {self.sliding_window % 2}"
|
242 |
+
)
|
243 |
+
else:
|
244 |
+
if self.global_attn_every_n_layers != -1:
|
245 |
+
raise ValueError("global_attn_every_n_layers must be -1 when sliding_window is disabled")
|
246 |
+
if self.local_attn_rotary_emb_base != -1:
|
247 |
+
raise ValueError("local_attn_rotary_emb_base must be -1 when sliding_window is disabled")
|
248 |
+
if self.local_attn_rotary_emb_dim is not None:
|
249 |
+
raise ValueError("local_attn_rotary_emb_dim must be None when sliding_window is disabled")
|
250 |
+
|
251 |
+
if self.unpad_embeddings and self.padding != "unpadded":
|
252 |
+
warnings.warn(
|
253 |
+
"`unpad_embeddings=True` requires `padding='unpadded'`. Automatically setting `padding='unpadded'`."
|
254 |
+
)
|
255 |
+
self.padding = "unpadded"
|
256 |
+
if self.pad_logits and not self.unpad_embeddings:
|
257 |
+
raise ValueError("`pad_logits=True` requires `unpad_embeddings=True`")
|
258 |
+
if self.unpad_embeddings and self.embedding_layer == "absolute_pos":
|
259 |
+
raise ValueError(f"{self.unpad_embeddings=} is incompatible with {self.embedding_layer=}")
|
260 |
+
|
261 |
+
|
262 |
+
PADDING = ["unpadded", "padded"]
|
263 |
+
|
264 |
+
|
265 |
+
def maybe_add_padding(config: FlexBertConfig, config_option: str) -> str:
|
266 |
+
if config.padding not in PADDING:
|
267 |
+
raise ValueError(f"Invalid padding type: {config.padding}, must be one of {PADDING}")
|
268 |
+
|
269 |
+
if not any(config_option.startswith(pad + "_") for pad in PADDING):
|
270 |
+
config_option = f"{config.padding}_{config_option}"
|
271 |
+
|
272 |
+
return config_option
|
embeddings.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright 2022 MosaicML Examples authors
|
5 |
+
# SPDX-License-Identifier: Apache-2.0
|
6 |
+
|
7 |
+
# Copyright 2023 MosaicML Examples authors
|
8 |
+
# SPDX-License-Identifier: Apache-2.0
|
9 |
+
|
10 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
11 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
12 |
+
# Copyright (c) 2023, Tri Dao.
|
13 |
+
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
from .configuration_bert import FlexBertConfig
|
20 |
+
from .normalization import get_norm_layer
|
21 |
+
from .initialization import ModuleType, init_weights
|
22 |
+
|
23 |
+
|
24 |
+
class BertAlibiEmbeddings(nn.Module):
|
25 |
+
"""Construct the embeddings for words, ignoring position.
|
26 |
+
|
27 |
+
There are no positional embeddings since we use ALiBi and token_type
|
28 |
+
embeddings.
|
29 |
+
|
30 |
+
This module is modeled after the Hugging Face BERT's
|
31 |
+
:class:`~transformers.model.bert.modeling_bert.BertEmbeddings`, but is
|
32 |
+
modified as part of Mosaic BERT's ALiBi implementation. The key change is
|
33 |
+
that position embeddings are removed. Position information instead comes
|
34 |
+
from attention biases that scale linearly with the position distance
|
35 |
+
between query and key tokens.
|
36 |
+
|
37 |
+
This module ignores the `position_ids` input to the `forward` method.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(self, config):
|
41 |
+
super().__init__()
|
42 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
43 |
+
# ALiBi doesn't use position embeddings
|
44 |
+
if getattr(config, "token_type_embeddings", True):
|
45 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
46 |
+
self.use_token_type_embeddings = True
|
47 |
+
else:
|
48 |
+
self.use_token_type_embeddings = False
|
49 |
+
|
50 |
+
self.LayerNorm = get_norm_layer(config)
|
51 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
52 |
+
if self.use_token_type_embeddings:
|
53 |
+
self.register_buffer(
|
54 |
+
"token_type_ids", torch.zeros(config.max_position_embeddings, dtype=torch.long), persistent=False
|
55 |
+
)
|
56 |
+
|
57 |
+
def forward(
|
58 |
+
self,
|
59 |
+
input_ids: Optional[torch.LongTensor] = None,
|
60 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
61 |
+
position_ids: Optional[torch.LongTensor] = None,
|
62 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
63 |
+
past_key_values_length: int = 0,
|
64 |
+
) -> torch.Tensor:
|
65 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
66 |
+
raise ValueError("Must specify either input_ids or input_embeds!")
|
67 |
+
if input_ids is not None:
|
68 |
+
input_shape = input_ids.size()
|
69 |
+
else:
|
70 |
+
assert inputs_embeds is not None # just for type checking
|
71 |
+
input_shape = inputs_embeds.size()[:-1]
|
72 |
+
|
73 |
+
seq_length = input_shape[1]
|
74 |
+
|
75 |
+
if position_ids is None:
|
76 |
+
# great! ALiBi
|
77 |
+
pass
|
78 |
+
|
79 |
+
# Setting the token_type_ids to the registered buffer in constructor
|
80 |
+
# where it is all zeros, which usually occurs when it's auto-generated;
|
81 |
+
# registered buffer helps users when tracing the model without passing
|
82 |
+
# token_type_ids, solves issue #5664
|
83 |
+
if self.use_token_type_embeddings and token_type_ids is None:
|
84 |
+
if hasattr(self, "token_type_ids"):
|
85 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
86 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
87 |
+
token_type_ids = buffered_token_type_ids_expanded
|
88 |
+
else:
|
89 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=input_ids.device)
|
90 |
+
|
91 |
+
if inputs_embeds is None:
|
92 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
93 |
+
|
94 |
+
if self.use_token_type_embeddings:
|
95 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
96 |
+
embeddings = inputs_embeds + token_type_embeddings
|
97 |
+
else:
|
98 |
+
embeddings = inputs_embeds
|
99 |
+
|
100 |
+
# no position embeddings! ALiBi
|
101 |
+
embeddings = self.LayerNorm(embeddings)
|
102 |
+
embeddings = self.dropout(embeddings)
|
103 |
+
return embeddings
|
104 |
+
|
105 |
+
|
106 |
+
class FlexBertEmbeddingsBase(nn.Module):
|
107 |
+
"""A FlexBERT embeddings base class for type hints."""
|
108 |
+
|
109 |
+
def __init__(self, config: FlexBertConfig):
|
110 |
+
super().__init__()
|
111 |
+
self.config = config
|
112 |
+
|
113 |
+
def _init_weights(self, reset_params: bool = False):
|
114 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
115 |
+
|
116 |
+
def reset_parameters(self):
|
117 |
+
self._init_weights(reset_params=True)
|
118 |
+
|
119 |
+
def forward(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None) -> torch.Tensor:
|
120 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
121 |
+
|
122 |
+
|
123 |
+
class FlexBertAbsoluteEmbeddings(FlexBertEmbeddingsBase):
|
124 |
+
"""Construct the embeddings with absolute positional embeddings."""
|
125 |
+
|
126 |
+
def __init__(self, config: FlexBertConfig):
|
127 |
+
super().__init__(config)
|
128 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
129 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
130 |
+
|
131 |
+
self.norm = get_norm_layer(config) if config.embed_norm else nn.Identity()
|
132 |
+
self.drop = nn.Dropout(config.embed_dropout_prob) if config.embed_dropout_prob > 0.0 else nn.Identity()
|
133 |
+
|
134 |
+
self.register_buffer(
|
135 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
136 |
+
)
|
137 |
+
|
138 |
+
def _init_weights(self, reset_params: bool = False):
|
139 |
+
init_weights(self.config, self.tok_embeddings, type_of_module=ModuleType.emb)
|
140 |
+
init_weights(self.config, self.position_embeddings, type_of_module=ModuleType.emb)
|
141 |
+
|
142 |
+
if reset_params:
|
143 |
+
if self.config.embed_norm:
|
144 |
+
self.norm.reset_parameters() # type: ignore
|
145 |
+
|
146 |
+
def forward(
|
147 |
+
self,
|
148 |
+
input_ids: torch.LongTensor,
|
149 |
+
position_ids: Optional[torch.LongTensor] = None,
|
150 |
+
) -> torch.Tensor:
|
151 |
+
if position_ids is None:
|
152 |
+
position_ids = self.position_ids[:, 0 : input_ids.shape[1]]
|
153 |
+
|
154 |
+
embeddings = self.tok_embeddings(input_ids)
|
155 |
+
position_embeddings = self.position_embeddings(position_ids)
|
156 |
+
|
157 |
+
embeddings = self.norm(embeddings + position_embeddings)
|
158 |
+
return self.drop(embeddings)
|
159 |
+
|
160 |
+
|
161 |
+
class FlexBertCompiledSansPositionEmbeddings(FlexBertEmbeddingsBase):
|
162 |
+
"""Construct the embeddings from token embeddings without any positional embeddings."""
|
163 |
+
|
164 |
+
def __init__(self, config: FlexBertConfig):
|
165 |
+
super().__init__(config)
|
166 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
167 |
+
|
168 |
+
self.norm = get_norm_layer(config, compiled_norm=config.compile_model) if config.embed_norm else nn.Identity()
|
169 |
+
self.drop = nn.Dropout(config.embed_dropout_prob) if config.embed_dropout_prob > 0.0 else nn.Identity()
|
170 |
+
|
171 |
+
def _init_weights(self, reset_params: bool = False):
|
172 |
+
init_weights(self.config, self.tok_embeddings, type_of_module=ModuleType.emb)
|
173 |
+
|
174 |
+
if reset_params:
|
175 |
+
if self.config.embed_norm:
|
176 |
+
self.norm.reset_parameters() # type: ignore
|
177 |
+
|
178 |
+
@torch.compile(dynamic=True)
|
179 |
+
def forward(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None) -> torch.Tensor:
|
180 |
+
return self.drop(self.norm(self.tok_embeddings(input_ids)))
|
181 |
+
|
182 |
+
|
183 |
+
class FlexBertSansPositionEmbeddings(FlexBertEmbeddingsBase):
|
184 |
+
"""Construct the embeddings from token embeddings without any positional embeddings."""
|
185 |
+
|
186 |
+
def __init__(self, config: FlexBertConfig):
|
187 |
+
super().__init__(config)
|
188 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
189 |
+
|
190 |
+
self.norm = get_norm_layer(config) if config.embed_norm else nn.Identity()
|
191 |
+
self.drop = nn.Dropout(config.embed_dropout_prob) if config.embed_dropout_prob > 0.0 else nn.Identity()
|
192 |
+
|
193 |
+
def _init_weights(self, reset_params: bool = False):
|
194 |
+
init_weights(self.config, self.tok_embeddings, type_of_module=ModuleType.emb)
|
195 |
+
|
196 |
+
if reset_params:
|
197 |
+
if self.config.embed_norm:
|
198 |
+
self.norm.reset_parameters() # type: ignore
|
199 |
+
|
200 |
+
def forward(self, input_ids: torch.LongTensor, position_ids: Optional[torch.LongTensor] = None) -> torch.Tensor:
|
201 |
+
return self.drop(self.norm(self.tok_embeddings(input_ids)))
|
202 |
+
|
203 |
+
|
204 |
+
EBB2CLS = {
|
205 |
+
"absolute_pos": FlexBertAbsoluteEmbeddings,
|
206 |
+
"sans_pos": FlexBertSansPositionEmbeddings,
|
207 |
+
}
|
208 |
+
|
209 |
+
|
210 |
+
def get_embedding_layer(config: FlexBertConfig) -> FlexBertEmbeddingsBase:
|
211 |
+
try:
|
212 |
+
if config.compile_model and config.embedding_layer == "sans_pos":
|
213 |
+
return FlexBertCompiledSansPositionEmbeddings(config)
|
214 |
+
elif config.compile_model:
|
215 |
+
raise ValueError(f"{config.compile_model=} only supports sans_pos embeddings.")
|
216 |
+
return EBB2CLS[config.embedding_layer](config)
|
217 |
+
except KeyError:
|
218 |
+
raise ValueError(f"Invalid embeddings layer type: {config.embedding_layer=}, must be one of {EBB2CLS.keys()}.")
|
initialization.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 MosaicML Examples authors
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright 2023 OLMo Authors
|
5 |
+
# License: Apache-2.0
|
6 |
+
|
7 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
8 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
9 |
+
# License: Apache-2.0
|
10 |
+
|
11 |
+
import math
|
12 |
+
from typing import Optional, Union
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
|
17 |
+
from .utils import StrEnum
|
18 |
+
|
19 |
+
from .configuration_bert import FlexBertConfig
|
20 |
+
from .normalization import RMSNorm
|
21 |
+
|
22 |
+
__all__ = ["init_weights", "ModuleType", "InitFnType"]
|
23 |
+
|
24 |
+
|
25 |
+
class InitFnType(StrEnum):
|
26 |
+
mitchell = "mitchell"
|
27 |
+
"""
|
28 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
29 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
30 |
+
on the size of the weights as well as the depth of the layer.
|
31 |
+
"""
|
32 |
+
|
33 |
+
normal = "normal"
|
34 |
+
"""
|
35 |
+
All weights are initialized from the same normal distribution.
|
36 |
+
"""
|
37 |
+
|
38 |
+
default = "default"
|
39 |
+
"""
|
40 |
+
All weights are initialized with the default HuggingFace Bert method. Set init_std=0.02 to match.
|
41 |
+
"""
|
42 |
+
|
43 |
+
kaiming_normal = "kaiming_normal"
|
44 |
+
"""
|
45 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
46 |
+
Note this currently won't work with FSDP.
|
47 |
+
"""
|
48 |
+
|
49 |
+
fan_in = "fan_in"
|
50 |
+
"""
|
51 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
52 |
+
is the input dimensionality of the kernel.
|
53 |
+
"""
|
54 |
+
|
55 |
+
full_megatron = "full_megatron"
|
56 |
+
"""
|
57 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
58 |
+
"""
|
59 |
+
|
60 |
+
|
61 |
+
class ModuleType(StrEnum):
|
62 |
+
in_module = "in"
|
63 |
+
out_module = "out"
|
64 |
+
emb = "emb"
|
65 |
+
final_out = "final_out"
|
66 |
+
|
67 |
+
|
68 |
+
def init_weights(
|
69 |
+
config: FlexBertConfig,
|
70 |
+
module: Union[nn.Linear, nn.Embedding],
|
71 |
+
layer_dim: Optional[int] = None,
|
72 |
+
layer_id: Optional[int] = None,
|
73 |
+
std_factor: float = 1.0,
|
74 |
+
type_of_module: Optional[ModuleType] = None,
|
75 |
+
) -> None:
|
76 |
+
"""
|
77 |
+
Initialize weights of a linear or embedding module.
|
78 |
+
|
79 |
+
:param config: The model config.
|
80 |
+
:param module: The linear or embedding submodule to initialize.
|
81 |
+
:param layer_dim: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
|
82 |
+
for fused layers.
|
83 |
+
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
|
84 |
+
``1 / sqrt(2 * (layer_id + 1))``.
|
85 |
+
"""
|
86 |
+
if config.init_method == InitFnType.full_megatron and config.init_small_embedding:
|
87 |
+
raise ValueError("Cannot use 'small_embedding_init' with 'full_megatron' init.")
|
88 |
+
|
89 |
+
layer_dim = layer_dim if layer_dim is not None else config.hidden_size
|
90 |
+
if config.init_method == InitFnType.normal:
|
91 |
+
std = config.init_std * std_factor
|
92 |
+
if config.init_cutoff_factor is not None:
|
93 |
+
cutoff_value = config.init_cutoff_factor * std
|
94 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
95 |
+
else:
|
96 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
97 |
+
elif config.init_method == InitFnType.mitchell:
|
98 |
+
std = std_factor / math.sqrt(layer_dim)
|
99 |
+
if layer_id is not None:
|
100 |
+
std = std / math.sqrt(2 * (layer_id + 1))
|
101 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
102 |
+
elif config.init_method == InitFnType.kaiming_normal:
|
103 |
+
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
|
104 |
+
elif config.init_method == InitFnType.fan_in:
|
105 |
+
std = std_factor / math.sqrt(layer_dim)
|
106 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
107 |
+
elif config.init_method == InitFnType.full_megatron:
|
108 |
+
if type_of_module is None:
|
109 |
+
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
|
110 |
+
|
111 |
+
cutoff_factor = config.init_cutoff_factor
|
112 |
+
if cutoff_factor is None:
|
113 |
+
cutoff_factor = 3
|
114 |
+
|
115 |
+
if type_of_module == ModuleType.in_module:
|
116 |
+
# for att_proj (same as QKV), ff_proj
|
117 |
+
std = config.init_std
|
118 |
+
elif type_of_module == ModuleType.out_module:
|
119 |
+
# for attn_out, ff_out
|
120 |
+
std = config.init_std / math.sqrt(2.0 * config.num_hidden_layers)
|
121 |
+
elif type_of_module == ModuleType.emb:
|
122 |
+
# positional embeddings (wpe)
|
123 |
+
# token embeddings (wte)
|
124 |
+
std = config.init_std
|
125 |
+
elif type_of_module == ModuleType.final_out:
|
126 |
+
# final output (ff_out)
|
127 |
+
std = config.hidden_size**-0.5
|
128 |
+
else:
|
129 |
+
raise RuntimeError(f"Unknown module type '{type_of_module}'")
|
130 |
+
|
131 |
+
nn.init.trunc_normal_(
|
132 |
+
module.weight,
|
133 |
+
mean=0.0,
|
134 |
+
std=std,
|
135 |
+
a=-cutoff_factor * std,
|
136 |
+
b=cutoff_factor * std,
|
137 |
+
)
|
138 |
+
elif config.init_method == InitFnType.default:
|
139 |
+
# default hugging face bert initialization
|
140 |
+
# normalization layers already init to ones and zeros
|
141 |
+
if isinstance(module, nn.Linear):
|
142 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
143 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
144 |
+
module.weight.data.normal_(mean=0.0, std=config.init_std)
|
145 |
+
if module.bias is not None:
|
146 |
+
module.bias.data.zero_()
|
147 |
+
elif isinstance(module, nn.Embedding):
|
148 |
+
module.weight.data.normal_(mean=0.0, std=config.init_std)
|
149 |
+
if module.padding_idx is not None:
|
150 |
+
module.weight.data[module.padding_idx].zero_()
|
151 |
+
else:
|
152 |
+
raise NotImplementedError(config.init_method)
|
153 |
+
|
154 |
+
if isinstance(module, nn.Linear):
|
155 |
+
if module.bias is not None:
|
156 |
+
nn.init.zeros_(module.bias)
|
157 |
+
|
158 |
+
if config.init_method == InitFnType.normal and getattr(module, "_is_residual", False):
|
159 |
+
with torch.no_grad():
|
160 |
+
module.weight.div_(math.sqrt(2 * config.num_hidden_layers))
|
161 |
+
|
162 |
+
if isinstance(module, nn.Embedding) and config.init_small_embedding:
|
163 |
+
nn.init.uniform_(module.weight, a=-1e-4, b=1e-4)
|
164 |
+
|
165 |
+
|
166 |
+
class TileMode(StrEnum):
|
167 |
+
center_weights = "center_weights"
|
168 |
+
tile_weights_from_edge = "tile_weights_from_edge"
|
169 |
+
tile_weights_from_middle = "tile_weights_from_middle"
|
170 |
+
|
171 |
+
|
172 |
+
def tile_weight(
|
173 |
+
pretrained_weights: torch.Tensor,
|
174 |
+
new_weights: torch.Tensor,
|
175 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
176 |
+
) -> torch.Tensor:
|
177 |
+
"""
|
178 |
+
Tile or center an input tensor to a larger desired size. Works for both 2D and 1D tensors.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
pretrained_weights (torch.Tensor): The input tensor to be tiled or centered (1D or 2D).
|
182 |
+
new_weights (torch.Tensor): The tensor with the desired size.
|
183 |
+
mode (Union[str, TileMode]): 'center_weights', 'tile_weights_from_edge', or 'tile_weights_from_middle'
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
torch.Tensor: The resulting tensor of the desired size.
|
187 |
+
"""
|
188 |
+
assert pretrained_weights.dim() in (1, 2), "Input tensor must be 1-dimensional or 2-dimensional"
|
189 |
+
if isinstance(mode, str):
|
190 |
+
mode = TileMode(mode)
|
191 |
+
|
192 |
+
pretrained_weights = pretrained_weights.clone()
|
193 |
+
|
194 |
+
if pretrained_weights.dim() == 1:
|
195 |
+
return _tile_1d(pretrained_weights, new_weights, mode)
|
196 |
+
else:
|
197 |
+
return _tile_2d(pretrained_weights, new_weights, mode)
|
198 |
+
|
199 |
+
|
200 |
+
def _tile_1d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
|
201 |
+
assert pretrained_weights.dim() == 1, "Input tensor must be 1-dimensional"
|
202 |
+
input_size = pretrained_weights.shape[0]
|
203 |
+
new_size = new_weights.shape[0]
|
204 |
+
assert new_size >= input_size, "Desired size must be greater than or equal to input size"
|
205 |
+
|
206 |
+
if mode == TileMode.center_weights:
|
207 |
+
offset = (new_size - input_size) // 2
|
208 |
+
new_weights[offset : offset + input_size] = pretrained_weights
|
209 |
+
return new_weights.clone()
|
210 |
+
elif mode == TileMode.tile_weights_from_edge:
|
211 |
+
repeat_count = (new_size + input_size - 1) // input_size
|
212 |
+
tiled_tensor = pretrained_weights.repeat(repeat_count)
|
213 |
+
return tiled_tensor[:new_size].clone()
|
214 |
+
elif mode == TileMode.tile_weights_from_middle:
|
215 |
+
# Calculate offsets to center the original tensor
|
216 |
+
offset = (new_size - input_size) // 2
|
217 |
+
|
218 |
+
# Create a new tensor with the desired size
|
219 |
+
result = torch.zeros(new_size, dtype=pretrained_weights.dtype, device=pretrained_weights.device)
|
220 |
+
|
221 |
+
# Place the original tensor in the center
|
222 |
+
result[offset : offset + input_size] = pretrained_weights
|
223 |
+
|
224 |
+
# Tile the left and right sides
|
225 |
+
for i in range(offset):
|
226 |
+
result[offset - 1 - i] = pretrained_weights[input_size - 1 - (i % input_size)]
|
227 |
+
for i in range(offset + input_size, new_size):
|
228 |
+
result[i] = pretrained_weights[(i - offset) % input_size]
|
229 |
+
return result.clone()
|
230 |
+
|
231 |
+
|
232 |
+
def _tile_2d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
|
233 |
+
assert pretrained_weights.dim() == 2, "Input tensor must be 2-dimensional"
|
234 |
+
input_height, input_width = pretrained_weights.shape
|
235 |
+
new_height, new_width = new_weights.shape
|
236 |
+
assert new_height >= input_height, "Desired height must be greater than or equal to input height"
|
237 |
+
assert new_width >= input_width, "Desired width must be greater than or equal to input width"
|
238 |
+
|
239 |
+
if mode == TileMode.center_weights:
|
240 |
+
height_offset = (new_height - input_height) // 2
|
241 |
+
width_offset = (new_width - input_width) // 2
|
242 |
+
new_weights[height_offset : height_offset + input_height, width_offset : width_offset + input_width] = pretrained_weights # fmt: skip
|
243 |
+
return new_weights.clone()
|
244 |
+
elif mode == TileMode.tile_weights_from_edge:
|
245 |
+
repeat_height = (new_height + input_height - 1) // input_height
|
246 |
+
repeat_width = (new_width + input_width - 1) // input_width
|
247 |
+
tiled_tensor = pretrained_weights.repeat(repeat_height, repeat_width)
|
248 |
+
return tiled_tensor[:new_height, :new_width].clone()
|
249 |
+
elif mode == TileMode.tile_weights_from_middle:
|
250 |
+
# Calculate offsets to center the original tensor
|
251 |
+
height_offset = (new_height - input_height) // 2
|
252 |
+
width_offset = (new_width - input_width) // 2
|
253 |
+
|
254 |
+
# Create a new tensor with the desired width and input height
|
255 |
+
horizontal_tiled = torch.zeros(
|
256 |
+
input_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device
|
257 |
+
)
|
258 |
+
|
259 |
+
# Place the original tensor in the center horizontally
|
260 |
+
horizontal_tiled[:, width_offset : width_offset + input_width] = pretrained_weights
|
261 |
+
|
262 |
+
# Tile the left and right sides
|
263 |
+
for i in range(width_offset):
|
264 |
+
horizontal_tiled[:, i] = horizontal_tiled[
|
265 |
+
:, width_offset + input_width - 1 - (width_offset - i - 1) % input_width
|
266 |
+
]
|
267 |
+
for i in range(width_offset + input_width, new_width):
|
268 |
+
horizontal_tiled[:, i] = horizontal_tiled[:, width_offset + (i - width_offset) % input_width]
|
269 |
+
|
270 |
+
# Now tile vertically
|
271 |
+
result = torch.zeros(new_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device)
|
272 |
+
result[height_offset : height_offset + input_height, :] = horizontal_tiled
|
273 |
+
|
274 |
+
# Tile top
|
275 |
+
for i in range(height_offset):
|
276 |
+
row_to_copy = (input_height - 1) - (i % input_height)
|
277 |
+
result[height_offset - 1 - i, :] = horizontal_tiled[row_to_copy, :]
|
278 |
+
|
279 |
+
# Tile bottom
|
280 |
+
for i in range(height_offset + input_height, new_height):
|
281 |
+
row_to_copy = (i - height_offset) % input_height
|
282 |
+
result[i, :] = horizontal_tiled[row_to_copy, :]
|
283 |
+
return result.clone()
|
284 |
+
|
285 |
+
|
286 |
+
def tile_fused_qkv(
|
287 |
+
pretrained_qkv_weight: torch.Tensor,
|
288 |
+
new_qkv_weight: torch.Tensor,
|
289 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
290 |
+
):
|
291 |
+
"""
|
292 |
+
Tile the weights of a fused pretrained QKV layer to a new, larger QKV dimension.
|
293 |
+
|
294 |
+
Args:
|
295 |
+
pretrained_qkv_weight (torch.Tensor): The original fused QKV layer
|
296 |
+
new_qkv_weight (torch.Tensor): The new fused QKV layer with larger linear_dim
|
297 |
+
mode (Union[str, TileMode]): The tiling mode to use
|
298 |
+
Returns:
|
299 |
+
torch.Tensor: The new fused QKV layer with tiled weights
|
300 |
+
"""
|
301 |
+
# Split QKV, assume new_q, new_k, new_v are the same shape
|
302 |
+
pretrained_q, pretrained_k, pretrained_v = pretrained_qkv_weight.chunk(3, dim=0)
|
303 |
+
new_q, new_k, new_v = new_qkv_weight.chunk(3, dim=0)
|
304 |
+
|
305 |
+
# Tile Q, K, V separately
|
306 |
+
new_q = tile_weight(pretrained_q, new_q, mode=mode)
|
307 |
+
new_k = tile_weight(pretrained_k, new_k, mode=mode)
|
308 |
+
new_v = tile_weight(pretrained_v, new_v, mode=mode)
|
309 |
+
|
310 |
+
# Concatenate tiled Q, K, V
|
311 |
+
return torch.cat([new_q, new_k, new_v], dim=0)
|
312 |
+
|
313 |
+
|
314 |
+
def tile_fused_glu(
|
315 |
+
pretrained_glu_weight: torch.Tensor,
|
316 |
+
new_glu_weight: torch.Tensor,
|
317 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
318 |
+
):
|
319 |
+
"""
|
320 |
+
Tile the weights of a fused pretrained GLU layer to a new, larger GLU dimension.
|
321 |
+
|
322 |
+
Args:
|
323 |
+
pretrained_glu_weight (torch.Tensor): The original fused GLU layer
|
324 |
+
new_glu_weight (torch.Tensor): The new fused GLU layer with larger linear_dim
|
325 |
+
mode (Union[str, TileMode]): The tiling mode to use
|
326 |
+
Returns:
|
327 |
+
torch.Tensor: The new fused GLU layer with tiled weights
|
328 |
+
"""
|
329 |
+
# Split GLU, assume new_glu_wi, new_glu_wg are the same shape
|
330 |
+
pretrained_glu_wi, pretrained_glu_wg = pretrained_glu_weight.chunk(2, dim=0)
|
331 |
+
new_glu_wi, new_glu_wg = new_glu_weight.chunk(2, dim=0)
|
332 |
+
|
333 |
+
# Tile GLU separately
|
334 |
+
new_glu_wi = tile_weight(pretrained_glu_wi, new_glu_wi, mode=mode)
|
335 |
+
new_glu_wg = tile_weight(pretrained_glu_wg, new_glu_wg, mode=mode)
|
336 |
+
|
337 |
+
# Concatenate tiled GLU
|
338 |
+
return torch.cat([new_glu_wi, new_glu_wg], dim=0)
|
339 |
+
|
340 |
+
|
341 |
+
def tile_fused_qkvff(
|
342 |
+
pretrained_qkvff_weight: torch.Tensor,
|
343 |
+
new_qkvff_weight: torch.Tensor,
|
344 |
+
pretrained_attn_size: int,
|
345 |
+
pretrained_mlp_size: int,
|
346 |
+
new_attn_size: int,
|
347 |
+
new_mlp_size: int,
|
348 |
+
is_glu: bool = False,
|
349 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
350 |
+
):
|
351 |
+
"""
|
352 |
+
Tile the weights of a fused pretrained QKVFF layer to a new, larger QKVFF dimension.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
pretrained_qkvff_weight (torch.Tensor): The original fused QKVFF layer
|
356 |
+
new_qkvff_weight (torch.Tensor): The new fused QKVFF layer with larger linear_dim
|
357 |
+
pretrained_attn_size (int): The attention size of the pretrained fused QKVFF layer
|
358 |
+
pretrained_mlp_size (int): The mlp size of the pretrained fused QKVFF layer
|
359 |
+
new_attn_size (int): The attention size of the new fused QKVFF layer
|
360 |
+
new_mlp_size (int): The mlp size of the new fused QKVFF layer
|
361 |
+
is_glu (bool): Whether the QKVFF layer is a GLU layer
|
362 |
+
mode (Union[str, TileMode]): The tiling mode to use
|
363 |
+
Returns:
|
364 |
+
torch.Tensor: The new fused QKVFF layer with tiled weights
|
365 |
+
"""
|
366 |
+
# Split QKVFF
|
367 |
+
pretrained_qkv, pretrained_ff = pretrained_qkvff_weight.split([pretrained_attn_size, pretrained_mlp_size], dim=0)
|
368 |
+
new_qkv, new_ff = new_qkvff_weight.split([new_attn_size, new_mlp_size], dim=0)
|
369 |
+
|
370 |
+
# Tile QKVFF separately
|
371 |
+
new_qkv = tile_fused_qkv(pretrained_qkv, new_qkv, mode=mode)
|
372 |
+
if is_glu:
|
373 |
+
new_ff = tile_fused_glu(pretrained_ff, new_ff, mode=mode)
|
374 |
+
else:
|
375 |
+
new_ff = tile_weight(pretrained_ff, new_ff, mode=mode)
|
376 |
+
|
377 |
+
# Concatenate tiled QKVFF
|
378 |
+
return torch.cat([new_qkv, new_ff], dim=0)
|
379 |
+
|
380 |
+
|
381 |
+
class TileLinear(StrEnum):
|
382 |
+
wqkv = "wqkv"
|
383 |
+
glu = "glu"
|
384 |
+
wqkvff = "wqkvff"
|
385 |
+
default = "default"
|
386 |
+
|
387 |
+
|
388 |
+
def tile_linear(
|
389 |
+
pretrained_linear: nn.Linear,
|
390 |
+
new_linear: nn.Linear,
|
391 |
+
linear_type: Union[str, TileLinear] = TileLinear.default,
|
392 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
393 |
+
pretrained_attn_size: Optional[int] = None,
|
394 |
+
pretrained_mlp_size: Optional[int] = None,
|
395 |
+
new_attn_size: Optional[int] = None,
|
396 |
+
new_mlp_size: Optional[int] = None,
|
397 |
+
wqkvff_is_glu: Optional[bool] = None,
|
398 |
+
bias_only: Optional[bool] = False,
|
399 |
+
):
|
400 |
+
"""
|
401 |
+
Tile the weights of a linear layer to a new, larger linear dimension.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
pretrained_linear (nn.Linear): The original linear layer
|
405 |
+
new_linear (nn.Linear): The new linear layer with larger linear_dim
|
406 |
+
linear_type (Union[str, TileLinear]): The type of linear layer to tile
|
407 |
+
mode (Union[str, TileMode]): The tiling mode to use
|
408 |
+
pretrained_attn_size (int): The attention size of the pretrained linear layer. Only used if linear_type is wqkvff.
|
409 |
+
pretrained_mlp_size (int): The mlp size of the pretrained linear layer. Only used if linear_type is wqkvff.
|
410 |
+
new_attn_size (int): The attention size of the new linear layer. Only used if linear_type is wqkvff.
|
411 |
+
new_mlp_size (int): The mlp size of the new linear layer. Only used if linear_type is wqkvff.
|
412 |
+
wqkvff_is_glu (bool): Whether the wqkvff layer is a GLU layer. Only used if linear_type is wqkvff.
|
413 |
+
bias_only (bool): Whether to only tile the bias. Only used if tiling weight tied decoder.
|
414 |
+
"""
|
415 |
+
if isinstance(linear_type, str):
|
416 |
+
linear_type = TileLinear(linear_type)
|
417 |
+
if isinstance(mode, str):
|
418 |
+
mode = TileMode(mode)
|
419 |
+
|
420 |
+
with torch.no_grad():
|
421 |
+
if linear_type == TileLinear.wqkv:
|
422 |
+
if not bias_only:
|
423 |
+
new_linear.weight = nn.Parameter(
|
424 |
+
tile_fused_qkv(pretrained_linear.weight, new_linear.weight, mode=mode),
|
425 |
+
requires_grad=new_linear.weight.requires_grad,
|
426 |
+
)
|
427 |
+
if pretrained_linear.bias is not None:
|
428 |
+
new_linear.bias = nn.Parameter(
|
429 |
+
tile_fused_qkv(pretrained_linear.bias, new_linear.bias, mode=mode),
|
430 |
+
requires_grad=new_linear.bias.requires_grad,
|
431 |
+
)
|
432 |
+
elif linear_type == TileLinear.glu:
|
433 |
+
if not bias_only:
|
434 |
+
new_linear.weight = nn.Parameter(
|
435 |
+
tile_fused_glu(pretrained_linear.weight, new_linear.weight, mode=mode),
|
436 |
+
requires_grad=new_linear.weight.requires_grad,
|
437 |
+
)
|
438 |
+
if pretrained_linear.bias is not None:
|
439 |
+
new_linear.bias = nn.Parameter(
|
440 |
+
tile_fused_glu(pretrained_linear.bias, new_linear.bias, mode=mode),
|
441 |
+
requires_grad=new_linear.bias.requires_grad,
|
442 |
+
)
|
443 |
+
elif linear_type == TileLinear.wqkvff:
|
444 |
+
if not bias_only:
|
445 |
+
new_linear.weight = nn.Parameter(
|
446 |
+
tile_fused_qkvff(
|
447 |
+
pretrained_linear.weight,
|
448 |
+
new_linear.weight,
|
449 |
+
pretrained_attn_size,
|
450 |
+
pretrained_mlp_size,
|
451 |
+
new_attn_size,
|
452 |
+
new_mlp_size,
|
453 |
+
wqkvff_is_glu,
|
454 |
+
mode=mode,
|
455 |
+
),
|
456 |
+
requires_grad=new_linear.weight.requires_grad,
|
457 |
+
)
|
458 |
+
if pretrained_linear.bias is not None:
|
459 |
+
new_linear.bias = nn.Parameter(
|
460 |
+
tile_fused_qkvff(
|
461 |
+
pretrained_linear.bias,
|
462 |
+
new_linear.bias,
|
463 |
+
pretrained_attn_size,
|
464 |
+
pretrained_mlp_size,
|
465 |
+
new_attn_size,
|
466 |
+
new_mlp_size,
|
467 |
+
wqkvff_is_glu,
|
468 |
+
mode=mode,
|
469 |
+
),
|
470 |
+
requires_grad=new_linear.bias.requires_grad,
|
471 |
+
)
|
472 |
+
else:
|
473 |
+
if not bias_only:
|
474 |
+
new_linear.weight = nn.Parameter(
|
475 |
+
tile_weight(pretrained_linear.weight, new_linear.weight, mode=mode),
|
476 |
+
requires_grad=new_linear.weight.requires_grad,
|
477 |
+
)
|
478 |
+
if pretrained_linear.bias is not None:
|
479 |
+
new_linear.bias = nn.Parameter(
|
480 |
+
tile_weight(pretrained_linear.bias, new_linear.bias, mode=mode),
|
481 |
+
requires_grad=new_linear.bias.requires_grad,
|
482 |
+
)
|
483 |
+
|
484 |
+
|
485 |
+
def tile_norm(
|
486 |
+
pretrained_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
|
487 |
+
new_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
|
488 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
489 |
+
):
|
490 |
+
"""
|
491 |
+
Tile the weights of a pretrained norm layer to a new, larger layer norm dimension.
|
492 |
+
|
493 |
+
Args:
|
494 |
+
pretrained_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The original norm layer
|
495 |
+
new_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The new norm layer with larger layer norm dimension
|
496 |
+
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
497 |
+
"""
|
498 |
+
if isinstance(pretrained_norm, nn.Identity):
|
499 |
+
return
|
500 |
+
if isinstance(mode, str):
|
501 |
+
mode = TileMode(mode)
|
502 |
+
|
503 |
+
with torch.no_grad():
|
504 |
+
new_norm.weight.data = nn.Parameter(
|
505 |
+
tile_weight(pretrained_norm.weight, new_norm.weight, mode=mode),
|
506 |
+
requires_grad=new_norm.weight.requires_grad,
|
507 |
+
)
|
508 |
+
if hasattr(pretrained_norm, "bias") and pretrained_norm.bias is not None:
|
509 |
+
new_norm.bias.data = nn.Parameter(
|
510 |
+
tile_weight(pretrained_norm.bias, new_norm.bias, mode=mode),
|
511 |
+
requires_grad=new_norm.bias.requires_grad,
|
512 |
+
)
|
513 |
+
|
514 |
+
|
515 |
+
def tile_embedding(
|
516 |
+
pretrained_embedding: nn.Embedding,
|
517 |
+
new_embedding: nn.Embedding,
|
518 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
519 |
+
) -> nn.Embedding:
|
520 |
+
"""
|
521 |
+
Tile the weights of an embedding layer to a new, larger embedding dimension.
|
522 |
+
|
523 |
+
Args:
|
524 |
+
pretrained_embedding (nn.Embedding): The original embedding layer
|
525 |
+
new_embedding (nn.Embedding): The new embedding layer with larger embedding_dim
|
526 |
+
tile_mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
527 |
+
|
528 |
+
Returns:
|
529 |
+
nn.Embedding: The new embedding layer with tiled weights
|
530 |
+
"""
|
531 |
+
with torch.no_grad():
|
532 |
+
# Ensure vocabulary size remains the same
|
533 |
+
if pretrained_embedding.num_embeddings != new_embedding.num_embeddings:
|
534 |
+
raise ValueError("Vocabulary size (num_embeddings) must remain constant")
|
535 |
+
|
536 |
+
# Ensure new embedding dimension is larger
|
537 |
+
if new_embedding.embedding_dim <= pretrained_embedding.embedding_dim:
|
538 |
+
raise ValueError("New embedding_dim must be larger than the old embedding_dim")
|
539 |
+
|
540 |
+
# Tile the weights
|
541 |
+
new_embedding.weight.data = nn.Parameter(
|
542 |
+
tile_weight(pretrained_embedding.weight, new_embedding.weight, mode=mode),
|
543 |
+
requires_grad=new_embedding.weight.requires_grad,
|
544 |
+
)
|
545 |
+
|
546 |
+
# Handle padding_idx if it exists
|
547 |
+
if pretrained_embedding.padding_idx is not None:
|
548 |
+
if new_embedding.padding_idx is None:
|
549 |
+
new_embedding.padding_idx = pretrained_embedding.padding_idx
|
550 |
+
else:
|
551 |
+
assert new_embedding.padding_idx == pretrained_embedding.padding_idx, "padding_idx must remain the same"
|
layers.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright 2022 MosaicML Examples authors
|
5 |
+
# SPDX-License-Identifier: Apache-2.0
|
6 |
+
|
7 |
+
# Copyright 2023 MosaicML Examples authors
|
8 |
+
# SPDX-License-Identifier: Apache-2.0
|
9 |
+
|
10 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
11 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
12 |
+
# Copyright (c) 2023, Tri Dao.
|
13 |
+
|
14 |
+
|
15 |
+
import copy
|
16 |
+
import math
|
17 |
+
import warnings
|
18 |
+
from typing import Optional, Union, List
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
|
23 |
+
from .bert_padding import unpad_input, pad_input
|
24 |
+
|
25 |
+
from .activation import get_act_fn
|
26 |
+
from .attention import FlexBertAttentionBase, BertAlibiUnpadAttention, get_attention_layer
|
27 |
+
from .mlp import FlexBertMLPBase, BertResidualGLU, get_mlp_layer
|
28 |
+
from .configuration_bert import FlexBertConfig, maybe_add_padding
|
29 |
+
from .normalization import get_norm_layer
|
30 |
+
from .initialization import ModuleType, init_weights
|
31 |
+
|
32 |
+
|
33 |
+
class BertAlibiLayer(nn.Module):
|
34 |
+
"""Composes the Mosaic BERT attention and FFN blocks into a single layer."""
|
35 |
+
|
36 |
+
def __init__(self, config):
|
37 |
+
super().__init__()
|
38 |
+
self.attention = BertAlibiUnpadAttention(config)
|
39 |
+
self.mlp = BertResidualGLU(config)
|
40 |
+
|
41 |
+
def forward(
|
42 |
+
self,
|
43 |
+
hidden_states: torch.Tensor,
|
44 |
+
cu_seqlens: torch.Tensor,
|
45 |
+
seqlen: int,
|
46 |
+
subset_idx: Optional[torch.Tensor] = None,
|
47 |
+
indices: Optional[torch.Tensor] = None,
|
48 |
+
attn_mask: Optional[torch.Tensor] = None,
|
49 |
+
bias: Optional[torch.Tensor] = None,
|
50 |
+
slopes: Optional[torch.Tensor] = None,
|
51 |
+
) -> torch.Tensor:
|
52 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
hidden_states: (total_nnz, dim)
|
56 |
+
cu_seqlens: (batch + 1,)
|
57 |
+
seqlen: int
|
58 |
+
subset_idx: () set of indices whose values we care about at the end of the layer
|
59 |
+
(e.g., the masked tokens, if this is the final layer).
|
60 |
+
indices: None or (total_nnz,)
|
61 |
+
attn_mask: None or (batch, max_seqlen_in_batch)
|
62 |
+
bias: None or (batch, heads, max_seqlen_in_batch, max_seqlen_in_batch)
|
63 |
+
slopes: None or (batch, heads) or (heads,)
|
64 |
+
"""
|
65 |
+
assert (bias is None) == (slopes is None), f"{bias=}, {slopes=}"
|
66 |
+
attention_output = self.attention(
|
67 |
+
hidden_states, cu_seqlens, seqlen, subset_idx, indices, attn_mask, bias, slopes
|
68 |
+
)
|
69 |
+
layer_output = self.mlp(attention_output)
|
70 |
+
return layer_output
|
71 |
+
|
72 |
+
|
73 |
+
class BertAlibiEncoder(nn.Module):
|
74 |
+
"""A stack of BERT layers providing the backbone of Mosaic BERT.
|
75 |
+
|
76 |
+
This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertAlibiEncoder`,
|
77 |
+
but with substantial modifications to implement unpadding and ALiBi.
|
78 |
+
|
79 |
+
Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
|
80 |
+
at padded tokens, and pre-computes attention biases to implement ALiBi.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(self, config):
|
84 |
+
super().__init__()
|
85 |
+
layer = BertAlibiLayer(config)
|
86 |
+
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
87 |
+
|
88 |
+
self.num_attention_heads = config.num_attention_heads
|
89 |
+
|
90 |
+
# The alibi mask will be dynamically expanded if it is too small for
|
91 |
+
# the input the model receives. But it generally helps to initialize it
|
92 |
+
# to a reasonably large size to help pre-allocate CUDA memory.
|
93 |
+
# The default `alibi_starting_size` is 512.
|
94 |
+
self._current_alibi_size = int(config.alibi_starting_size)
|
95 |
+
self.alibi = torch.zeros((1, self.num_attention_heads, self._current_alibi_size, self._current_alibi_size))
|
96 |
+
self.rebuild_alibi_tensor(size=config.alibi_starting_size)
|
97 |
+
|
98 |
+
def rebuild_alibi_tensor(self, size: int, device: Optional[Union[torch.device, str]] = None):
|
99 |
+
# Alibi
|
100 |
+
# Following https://github.com/ofirpress/attention_with_linear_biases/issues/5 (Implementation 1)
|
101 |
+
# In the causal case, you can exploit the fact that softmax is invariant to a uniform translation
|
102 |
+
# of the logits, which makes the math work out *after* applying causal masking. If no causal masking
|
103 |
+
# will be applied, it is necessary to construct the diagonal mask.
|
104 |
+
n_heads = self.num_attention_heads
|
105 |
+
|
106 |
+
def _get_alibi_head_slopes(n_heads: int) -> List[float]:
|
107 |
+
def get_slopes_power_of_2(n_heads: int) -> List[float]:
|
108 |
+
start = 2 ** (-(2 ** -(math.log2(n_heads) - 3)))
|
109 |
+
ratio = start
|
110 |
+
return [start * ratio**i for i in range(n_heads)]
|
111 |
+
|
112 |
+
# In the paper, they only train models that have 2^a heads for some a. This function
|
113 |
+
# has some good properties that only occur when the input is a power of 2. To
|
114 |
+
# maintain that even when the number of heads is not a power of 2, we use a
|
115 |
+
# workaround.
|
116 |
+
if math.log2(n_heads).is_integer():
|
117 |
+
return get_slopes_power_of_2(n_heads)
|
118 |
+
|
119 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(n_heads))
|
120 |
+
slopes_a = get_slopes_power_of_2(closest_power_of_2)
|
121 |
+
slopes_b = _get_alibi_head_slopes(2 * closest_power_of_2)
|
122 |
+
slopes_b = slopes_b[0::2][: n_heads - closest_power_of_2]
|
123 |
+
return slopes_a + slopes_b
|
124 |
+
|
125 |
+
context_position = torch.arange(size, device=device)[:, None]
|
126 |
+
memory_position = torch.arange(size, device=device)[None, :]
|
127 |
+
relative_position = torch.abs(memory_position - context_position)
|
128 |
+
# [n_heads, max_token_length, max_token_length]
|
129 |
+
relative_position = relative_position.unsqueeze(0).expand(n_heads, -1, -1)
|
130 |
+
slopes = torch.Tensor(_get_alibi_head_slopes(n_heads)).to(device)
|
131 |
+
self.slopes = slopes
|
132 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * -relative_position
|
133 |
+
# [1, n_heads, max_token_length, max_token_length]
|
134 |
+
alibi = alibi.unsqueeze(0)
|
135 |
+
assert alibi.shape == torch.Size([1, n_heads, size, size])
|
136 |
+
|
137 |
+
self._current_alibi_size = size
|
138 |
+
self.alibi = alibi
|
139 |
+
|
140 |
+
def forward(
|
141 |
+
self,
|
142 |
+
hidden_states: torch.Tensor,
|
143 |
+
attention_mask: torch.Tensor,
|
144 |
+
output_all_encoded_layers: Optional[bool] = True,
|
145 |
+
subset_mask: Optional[torch.Tensor] = None,
|
146 |
+
) -> List[torch.Tensor]:
|
147 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
148 |
+
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
|
149 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
150 |
+
|
151 |
+
attention_mask_bool = attention_mask.bool()
|
152 |
+
batch, seqlen = hidden_states.shape[:2]
|
153 |
+
# Unpad inputs and mask. It will remove tokens that are padded.
|
154 |
+
# Assume ntokens is total number of tokens (padded and non-padded)
|
155 |
+
# and ntokens_unpad is total number of non-padded tokens.
|
156 |
+
# Then unpadding performs the following compression of the inputs:
|
157 |
+
# hidden_states[ntokens,hidden] -> hidden_states[ntokens_unpad,hidden]
|
158 |
+
hidden_states, indices, cu_seqlens, _ = unpad_input(hidden_states, attention_mask_bool)
|
159 |
+
|
160 |
+
# Add alibi matrix to extended_attention_mask
|
161 |
+
if self._current_alibi_size < seqlen:
|
162 |
+
# Rebuild the alibi tensor when needed
|
163 |
+
warnings.warn(f"Increasing alibi size from {self._current_alibi_size} to {seqlen}")
|
164 |
+
self.rebuild_alibi_tensor(size=seqlen, device=hidden_states.device)
|
165 |
+
elif self.alibi.device != hidden_states.device:
|
166 |
+
# Device catch-up
|
167 |
+
self.alibi = self.alibi.to(hidden_states.device)
|
168 |
+
self.slopes = self.slopes.to(hidden_states.device) # type: ignore
|
169 |
+
alibi_bias = self.alibi[:, :, :seqlen, :seqlen]
|
170 |
+
attn_bias = extended_attention_mask[:, :, :seqlen, :seqlen]
|
171 |
+
alibi_attn_mask = attn_bias + alibi_bias
|
172 |
+
|
173 |
+
all_encoder_layers = []
|
174 |
+
if subset_mask is None:
|
175 |
+
for layer_module in self.layer:
|
176 |
+
hidden_states = layer_module(
|
177 |
+
hidden_states,
|
178 |
+
cu_seqlens,
|
179 |
+
seqlen,
|
180 |
+
None,
|
181 |
+
indices,
|
182 |
+
attn_mask=attention_mask,
|
183 |
+
bias=alibi_attn_mask,
|
184 |
+
slopes=self.slopes,
|
185 |
+
)
|
186 |
+
if output_all_encoded_layers:
|
187 |
+
all_encoder_layers.append(hidden_states)
|
188 |
+
# Pad inputs and mask. It will insert back zero-padded tokens.
|
189 |
+
# Assume ntokens is total number of tokens (padded and non-padded)
|
190 |
+
# and ntokens_unpad is total number of non-padded tokens.
|
191 |
+
# Then padding performs the following de-compression:
|
192 |
+
# hidden_states[ntokens_unpad,hidden] -> hidden_states[ntokens,hidden]
|
193 |
+
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
194 |
+
else:
|
195 |
+
for i in range(len(self.layer) - 1):
|
196 |
+
layer_module = self.layer[i]
|
197 |
+
hidden_states = layer_module(
|
198 |
+
hidden_states,
|
199 |
+
cu_seqlens,
|
200 |
+
seqlen,
|
201 |
+
None,
|
202 |
+
indices,
|
203 |
+
attn_mask=attention_mask,
|
204 |
+
bias=alibi_attn_mask,
|
205 |
+
slopes=self.slopes,
|
206 |
+
)
|
207 |
+
if output_all_encoded_layers:
|
208 |
+
all_encoder_layers.append(hidden_states)
|
209 |
+
subset_idx = torch.nonzero(subset_mask[attention_mask_bool], as_tuple=False).flatten()
|
210 |
+
hidden_states = self.layer[-1](
|
211 |
+
hidden_states,
|
212 |
+
cu_seqlens,
|
213 |
+
seqlen,
|
214 |
+
subset_idx=subset_idx,
|
215 |
+
indices=indices,
|
216 |
+
attn_mask=attention_mask,
|
217 |
+
bias=alibi_attn_mask,
|
218 |
+
slopes=self.slopes,
|
219 |
+
)
|
220 |
+
|
221 |
+
if not output_all_encoded_layers:
|
222 |
+
all_encoder_layers.append(hidden_states)
|
223 |
+
return all_encoder_layers
|
224 |
+
|
225 |
+
|
226 |
+
class BertPooler(nn.Module):
|
227 |
+
def __init__(self, config):
|
228 |
+
super(BertPooler, self).__init__()
|
229 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
230 |
+
self.activation = nn.Tanh()
|
231 |
+
|
232 |
+
def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True) -> torch.Tensor:
|
233 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
234 |
+
# to the first token.
|
235 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
236 |
+
pooled_output = self.dense(first_token_tensor)
|
237 |
+
pooled_output = self.activation(pooled_output)
|
238 |
+
return pooled_output
|
239 |
+
|
240 |
+
|
241 |
+
class BertPredictionHeadTransform(nn.Module):
|
242 |
+
def __init__(self, config):
|
243 |
+
super().__init__()
|
244 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
245 |
+
if isinstance(config.hidden_act, str):
|
246 |
+
self.transform_act_fn = get_act_fn(config.head_pred_act)
|
247 |
+
else:
|
248 |
+
self.transform_act_fn = config.hidden_act
|
249 |
+
self.LayerNorm = get_norm_layer(config)
|
250 |
+
|
251 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
252 |
+
hidden_states = self.dense(hidden_states)
|
253 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
254 |
+
hidden_states = self.LayerNorm(hidden_states)
|
255 |
+
return hidden_states
|
256 |
+
|
257 |
+
|
258 |
+
class FlexBertLayerBase(nn.Module):
|
259 |
+
"""A FlexBERT Layer base class for type hints."""
|
260 |
+
|
261 |
+
attn: FlexBertAttentionBase
|
262 |
+
mlp: FlexBertMLPBase
|
263 |
+
|
264 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
265 |
+
super().__init__()
|
266 |
+
self.config = config
|
267 |
+
self.layer_id = layer_id
|
268 |
+
|
269 |
+
def _init_weights(self, reset_params: bool = False):
|
270 |
+
if hasattr(self, "attn"):
|
271 |
+
self.attn._init_weights(reset_params)
|
272 |
+
if hasattr(self, "mlp"):
|
273 |
+
self.mlp._init_weights(reset_params)
|
274 |
+
|
275 |
+
def reset_parameters(self):
|
276 |
+
self._init_weights(reset_params=True)
|
277 |
+
|
278 |
+
def forward(self, hidden_states: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, **kwargs) -> torch.Tensor:
|
279 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
280 |
+
|
281 |
+
|
282 |
+
class FlexBertCompileUnpadPreNormLayer(FlexBertLayerBase):
|
283 |
+
"""Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""
|
284 |
+
|
285 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
286 |
+
super().__init__(config=config, layer_id=layer_id)
|
287 |
+
if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
|
288 |
+
self.attn_norm = nn.Identity()
|
289 |
+
else:
|
290 |
+
self.attn_norm = get_norm_layer(config)
|
291 |
+
self.attn = get_attention_layer(config, layer_id=layer_id)
|
292 |
+
self.mlp_norm = get_norm_layer(config, compiled_norm=config.compile_model)
|
293 |
+
self.mlp = get_mlp_layer(config, layer_id=layer_id)
|
294 |
+
self.compile_model = config.compile_model
|
295 |
+
|
296 |
+
def _init_weights(self, reset_params: bool = False):
|
297 |
+
super()._init_weights(reset_params)
|
298 |
+
if reset_params:
|
299 |
+
self.attn_norm.reset_parameters()
|
300 |
+
self.mlp_norm.reset_parameters()
|
301 |
+
|
302 |
+
@torch.compile(dynamic=True)
|
303 |
+
def compiled_mlp(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
304 |
+
return self.mlp(self.mlp_norm(hidden_states))
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: torch.Tensor,
|
309 |
+
cu_seqlens: torch.Tensor,
|
310 |
+
max_seqlen: int,
|
311 |
+
indices: Optional[torch.Tensor] = None,
|
312 |
+
attn_mask: Optional[torch.Tensor] = None,
|
313 |
+
) -> torch.Tensor:
|
314 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
hidden_states: (total_nnz, dim)
|
318 |
+
cu_seqlens: (batch + 1,)
|
319 |
+
max_seqlen: int
|
320 |
+
indices: None or (total_nnz,)
|
321 |
+
attn_mask: None or (batch, max_seqlen)
|
322 |
+
"""
|
323 |
+
attn_out = hidden_states + self.attn(self.attn_norm(hidden_states), cu_seqlens, max_seqlen, indices, attn_mask)
|
324 |
+
return attn_out + self.compiled_mlp(attn_out)
|
325 |
+
|
326 |
+
|
327 |
+
class FlexBertUnpadPreNormLayer(FlexBertLayerBase):
|
328 |
+
"""Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""
|
329 |
+
|
330 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
331 |
+
super().__init__(config=config, layer_id=layer_id)
|
332 |
+
if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
|
333 |
+
self.attn_norm = nn.Identity()
|
334 |
+
else:
|
335 |
+
self.attn_norm = get_norm_layer(config)
|
336 |
+
self.attn = get_attention_layer(config, layer_id=layer_id)
|
337 |
+
self.mlp_norm = get_norm_layer(config)
|
338 |
+
self.mlp = get_mlp_layer(config, layer_id=layer_id)
|
339 |
+
|
340 |
+
def _init_weights(self, reset_params: bool = False):
|
341 |
+
super()._init_weights(reset_params)
|
342 |
+
if reset_params:
|
343 |
+
self.attn_norm.reset_parameters()
|
344 |
+
self.mlp_norm.reset_parameters()
|
345 |
+
|
346 |
+
def forward(
|
347 |
+
self,
|
348 |
+
hidden_states: torch.Tensor,
|
349 |
+
cu_seqlens: torch.Tensor,
|
350 |
+
max_seqlen: int,
|
351 |
+
indices: Optional[torch.Tensor] = None,
|
352 |
+
attn_mask: Optional[torch.Tensor] = None,
|
353 |
+
) -> torch.Tensor:
|
354 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
hidden_states: (total_nnz, dim)
|
358 |
+
cu_seqlens: (batch + 1,)
|
359 |
+
max_seqlen: int
|
360 |
+
indices: None or (total_nnz,)
|
361 |
+
attn_mask: None or (batch, max_seqlen)
|
362 |
+
"""
|
363 |
+
attn_out = hidden_states + self.attn(self.attn_norm(hidden_states), cu_seqlens, max_seqlen, indices, attn_mask)
|
364 |
+
return attn_out + self.mlp(self.mlp_norm(attn_out))
|
365 |
+
|
366 |
+
|
367 |
+
class FlexBertUnpadParallelPreNormLayer(FlexBertLayerBase):
|
368 |
+
"""Composes the FlexBERT parallel attention and MLP blocks into a single layer using pre-normalization."""
|
369 |
+
|
370 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
371 |
+
super().__init__(config=config, layer_id=layer_id)
|
372 |
+
self.attn_size = config.hidden_size * 3
|
373 |
+
self.mlp_size = config.intermediate_size * 2
|
374 |
+
# Compute QKV and FF outputs at once
|
375 |
+
self.Wqkvff = nn.Linear(config.hidden_size, self.attn_size + self.mlp_size, bias=config.attn_qkv_bias)
|
376 |
+
if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
|
377 |
+
self.norm = nn.Identity()
|
378 |
+
else:
|
379 |
+
self.norm = get_norm_layer(config)
|
380 |
+
self.attn = get_attention_layer(config, layer_id=layer_id)
|
381 |
+
self.mlp = get_mlp_layer(config, layer_id=layer_id)
|
382 |
+
|
383 |
+
def _init_weights(self, reset_params: bool = False):
|
384 |
+
super()._init_weights(reset_params)
|
385 |
+
if reset_params and hasattr(self.norm, "reset_parameters"):
|
386 |
+
self.norm.reset_parameters()
|
387 |
+
|
388 |
+
init_weights(
|
389 |
+
self.config,
|
390 |
+
self.Wqkvff,
|
391 |
+
layer_dim=self.config.hidden_size,
|
392 |
+
layer_id=None,
|
393 |
+
type_of_module=ModuleType.in_module,
|
394 |
+
)
|
395 |
+
|
396 |
+
def forward(
|
397 |
+
self,
|
398 |
+
hidden_states: torch.Tensor,
|
399 |
+
cu_seqlens: torch.Tensor,
|
400 |
+
max_seqlen: int,
|
401 |
+
indices: Optional[torch.Tensor] = None,
|
402 |
+
attn_mask: Optional[torch.Tensor] = None,
|
403 |
+
) -> torch.Tensor:
|
404 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
hidden_states: (total_nnz, dim)
|
408 |
+
attn_mask: None or (batch, max_seqlen)
|
409 |
+
"""
|
410 |
+
# Compute QKV and FF outputs at once and split them
|
411 |
+
qkv, intermediate_ff = self.Wqkvff(self.norm(hidden_states)).split([self.attn_size, self.mlp_size], dim=1)
|
412 |
+
return hidden_states + self.attn(qkv, cu_seqlens, max_seqlen, indices, attn_mask) + self.mlp(intermediate_ff)
|
413 |
+
|
414 |
+
|
415 |
+
class FlexBertPaddedPreNormLayer(FlexBertLayerBase):
|
416 |
+
"""Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""
|
417 |
+
|
418 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
419 |
+
super().__init__(config=config, layer_id=layer_id)
|
420 |
+
if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
|
421 |
+
self.attn_norm = nn.Identity()
|
422 |
+
else:
|
423 |
+
self.attn_norm = get_norm_layer(config)
|
424 |
+
self.attn = get_attention_layer(config, layer_id=layer_id)
|
425 |
+
self.mlp_norm = get_norm_layer(config)
|
426 |
+
self.mlp = get_mlp_layer(config, layer_id=layer_id)
|
427 |
+
|
428 |
+
def _init_weights(self, reset_params: bool = False):
|
429 |
+
super()._init_weights(reset_params)
|
430 |
+
if reset_params:
|
431 |
+
self.attn_norm.reset_parameters()
|
432 |
+
self.mlp_norm.reset_parameters()
|
433 |
+
|
434 |
+
def forward(
|
435 |
+
self,
|
436 |
+
hidden_states: torch.Tensor,
|
437 |
+
attn_mask: Optional[torch.Tensor] = None,
|
438 |
+
) -> torch.Tensor:
|
439 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
hidden_states: (batch, max_seqlen, dim)
|
443 |
+
attn_mask: None or (batch, max_seqlen)
|
444 |
+
"""
|
445 |
+
attn_out = hidden_states + self.attn(self.attn_norm(hidden_states), attn_mask)
|
446 |
+
return attn_out + self.mlp(self.mlp_norm(attn_out))
|
447 |
+
|
448 |
+
|
449 |
+
class FlexBertPaddedParallelPreNormLayer(FlexBertLayerBase):
|
450 |
+
"""Composes the FlexBERT attention and MLP blocks into a single layer using pre-normalization."""
|
451 |
+
|
452 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
453 |
+
super().__init__(config=config, layer_id=layer_id)
|
454 |
+
self.attn_size = config.hidden_size * 3
|
455 |
+
self.mlp_size = config.intermediate_size * 2
|
456 |
+
# Compute QKV and FF outputs at once
|
457 |
+
self.Wqkvff = nn.Linear(config.hidden_size, self.attn_size + self.mlp_size, bias=config.attn_qkv_bias)
|
458 |
+
if config.skip_first_prenorm and config.embed_norm and layer_id == 0:
|
459 |
+
self.norm = nn.Identity()
|
460 |
+
else:
|
461 |
+
self.norm = get_norm_layer(config)
|
462 |
+
self.attn = get_attention_layer(config, layer_id=layer_id)
|
463 |
+
self.mlp = get_mlp_layer(config, layer_id=layer_id)
|
464 |
+
|
465 |
+
def _init_weights(self, reset_params: bool = False):
|
466 |
+
super()._init_weights(reset_params)
|
467 |
+
if reset_params:
|
468 |
+
self.norm.reset_parameters()
|
469 |
+
|
470 |
+
init_weights(
|
471 |
+
self.config,
|
472 |
+
self.Wqkvff,
|
473 |
+
layer_dim=self.config.hidden_size,
|
474 |
+
layer_id=None,
|
475 |
+
type_of_module=ModuleType.in_module,
|
476 |
+
)
|
477 |
+
|
478 |
+
def forward(
|
479 |
+
self,
|
480 |
+
hidden_states: torch.Tensor,
|
481 |
+
attn_mask: Optional[torch.Tensor] = None,
|
482 |
+
) -> torch.Tensor:
|
483 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
484 |
+
|
485 |
+
Args:
|
486 |
+
hidden_states: (batch, max_seqlen, dim)
|
487 |
+
attn_mask: None or (batch, max_seqlen)
|
488 |
+
"""
|
489 |
+
# Compute QKV and FF outputs at once and split them
|
490 |
+
qkv, intermediate_ff = self.Wqkvff(self.norm(hidden_states)).split([self.attn_size, self.mlp_size], dim=2)
|
491 |
+
return hidden_states + self.attn(qkv, attn_mask) + self.mlp(intermediate_ff)
|
492 |
+
|
493 |
+
|
494 |
+
class FlexBertUnpadPostNormLayer(FlexBertLayerBase):
|
495 |
+
"""Composes the FlexBERT attention and MLP blocks into a single layer using post-normalization."""
|
496 |
+
|
497 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
498 |
+
super().__init__(config=config, layer_id=layer_id)
|
499 |
+
self.attn = get_attention_layer(config, layer_id=layer_id)
|
500 |
+
self.attn_norm = get_norm_layer(config)
|
501 |
+
self.mlp = get_mlp_layer(config, layer_id=layer_id)
|
502 |
+
self.mlp_norm = get_norm_layer(config)
|
503 |
+
|
504 |
+
def _init_weights(self, reset_params: bool = False):
|
505 |
+
super()._init_weights(reset_params)
|
506 |
+
if reset_params:
|
507 |
+
self.attn_norm.reset_parameters()
|
508 |
+
self.mlp_norm.reset_parameters()
|
509 |
+
|
510 |
+
def forward(
|
511 |
+
self,
|
512 |
+
hidden_states: torch.Tensor,
|
513 |
+
cu_seqlens: torch.Tensor,
|
514 |
+
max_seqlen: int,
|
515 |
+
indices: Optional[torch.Tensor] = None,
|
516 |
+
attn_mask: Optional[torch.Tensor] = None,
|
517 |
+
) -> torch.Tensor:
|
518 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
519 |
+
|
520 |
+
Args:
|
521 |
+
hidden_states: (total_nnz, dim)
|
522 |
+
cu_seqlens: (batch + 1,)
|
523 |
+
max_seqlen: int
|
524 |
+
indices: None or (total_nnz,)
|
525 |
+
attn_mask: None or (batch, max_seqlen)
|
526 |
+
"""
|
527 |
+
attn_out = self.attn_norm(hidden_states + self.attn(hidden_states, cu_seqlens, max_seqlen, indices, attn_mask))
|
528 |
+
return self.mlp_norm(attn_out + self.mlp(attn_out))
|
529 |
+
|
530 |
+
|
531 |
+
class FlexBertPaddedPostNormLayer(FlexBertLayerBase):
|
532 |
+
"""Composes the FlexBERT attention and MLP blocks into a single layer using post-normalization."""
|
533 |
+
|
534 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
535 |
+
super().__init__(config=config, layer_id=layer_id)
|
536 |
+
self.attn = get_attention_layer(config, layer_id=layer_id)
|
537 |
+
self.attn_norm = get_norm_layer(config)
|
538 |
+
self.mlp = get_mlp_layer(config, layer_id=layer_id)
|
539 |
+
self.mlp_norm = get_norm_layer(config)
|
540 |
+
|
541 |
+
def _init_weights(self, reset_params: bool = False):
|
542 |
+
super()._init_weights(reset_params)
|
543 |
+
if reset_params:
|
544 |
+
self.mlp_norm.reset_parameters()
|
545 |
+
|
546 |
+
def forward(
|
547 |
+
self,
|
548 |
+
hidden_states: torch.Tensor,
|
549 |
+
attn_mask: Optional[torch.Tensor] = None,
|
550 |
+
) -> torch.Tensor:
|
551 |
+
"""Forward pass for a BERT layer, including both attention and MLP.
|
552 |
+
|
553 |
+
Args:
|
554 |
+
hidden_states: (batch, max_seqlen, dim)
|
555 |
+
attn_mask: None or (batch, max_seqlen)
|
556 |
+
"""
|
557 |
+
attn_out = self.attn_norm(hidden_states + self.attn(hidden_states, attn_mask))
|
558 |
+
return self.mlp_norm(attn_out + self.mlp(attn_out))
|
559 |
+
|
560 |
+
|
561 |
+
LAYER2CLS = {
|
562 |
+
"unpadded_prenorm": FlexBertUnpadPreNormLayer,
|
563 |
+
"unpadded_compile_prenorm": FlexBertCompileUnpadPreNormLayer,
|
564 |
+
"unpadded_parallel_prenorm": FlexBertUnpadParallelPreNormLayer,
|
565 |
+
"unpadded_postnorm": FlexBertUnpadPostNormLayer,
|
566 |
+
"padded_prenorm": FlexBertPaddedPreNormLayer,
|
567 |
+
"padded_parallel_prenorm": FlexBertPaddedParallelPreNormLayer,
|
568 |
+
"padded_postnorm": FlexBertPaddedPostNormLayer,
|
569 |
+
}
|
570 |
+
|
571 |
+
|
572 |
+
def get_bert_layer(config: FlexBertConfig, layer_id: Optional[int] = None) -> FlexBertLayerBase:
|
573 |
+
try:
|
574 |
+
bert_layer = (
|
575 |
+
config.initial_bert_layer
|
576 |
+
if layer_id < config.num_initial_layers and getattr(config, "initial_bert_layer", None) is not None
|
577 |
+
else config.bert_layer
|
578 |
+
)
|
579 |
+
bert_layer = maybe_add_padding(config, bert_layer)
|
580 |
+
if config.compile_model and bert_layer == "unpadded_prenorm":
|
581 |
+
bert_layer = "unpadded_compile_prenorm"
|
582 |
+
return LAYER2CLS[bert_layer](config, layer_id=layer_id)
|
583 |
+
except KeyError:
|
584 |
+
if layer_id < config.num_initial_layers and getattr(config, "initial_bert_layer", None) is not None:
|
585 |
+
raise ValueError(
|
586 |
+
f"Invalid BERT layer type: {config.initial_bert_layer=}, must be one of {LAYER2CLS.keys()}."
|
587 |
+
f"{config.padding=} will be automatically prepended to `config.bert_layer` if unspecified."
|
588 |
+
)
|
589 |
+
else:
|
590 |
+
raise ValueError(
|
591 |
+
f"Invalid BERT layer type: {config.bert_layer=}, must be one of {LAYER2CLS.keys()}. "
|
592 |
+
f"{config.padding=} will be automatically prepended to `config.bert_layer` if unspecified."
|
593 |
+
)
|
594 |
+
|
595 |
+
|
596 |
+
class FlexBertEncoderBase(nn.Module):
|
597 |
+
"""A FlexBERT base class for type hints."""
|
598 |
+
|
599 |
+
layers: nn.ModuleList
|
600 |
+
|
601 |
+
def _init_weights(self, reset_params: bool = False):
|
602 |
+
if hasattr(self, "layers"):
|
603 |
+
for layer in self.layers:
|
604 |
+
layer._init_weights(reset_params=reset_params)
|
605 |
+
|
606 |
+
def reset_parameters(self):
|
607 |
+
self._init_weights(reset_params=True)
|
608 |
+
|
609 |
+
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
610 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
611 |
+
|
612 |
+
|
613 |
+
class FlexBertUnpadEncoder(FlexBertEncoderBase):
|
614 |
+
"""A stack of BERT layers providing the backbone of FlexBERT.
|
615 |
+
|
616 |
+
This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertAlibiEncoder`,
|
617 |
+
but with substantial modifications to implement unpadding and ALiBi.
|
618 |
+
|
619 |
+
Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
|
620 |
+
at padded tokens, and pre-computes attention biases to implement ALiBi.
|
621 |
+
"""
|
622 |
+
|
623 |
+
def __init__(self, config: FlexBertConfig):
|
624 |
+
super().__init__()
|
625 |
+
self.layers = nn.ModuleList([get_bert_layer(config, layer_id=i) for i in range(config.num_hidden_layers)])
|
626 |
+
self.num_attention_heads = config.num_attention_heads
|
627 |
+
|
628 |
+
def forward(
|
629 |
+
self,
|
630 |
+
hidden_states: torch.Tensor,
|
631 |
+
attention_mask: torch.Tensor,
|
632 |
+
indices: Optional[torch.Tensor] = None,
|
633 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
634 |
+
max_seqlen: Optional[int] = None,
|
635 |
+
) -> torch.Tensor:
|
636 |
+
if indices is None and cu_seqlens is None and max_seqlen is None:
|
637 |
+
attention_mask_bool = attention_mask.bool()
|
638 |
+
batch, seqlen = hidden_states.shape[:2]
|
639 |
+
hidden_states, indices, cu_seqlens, max_seqlen = unpad_input(
|
640 |
+
hidden_states, attention_mask_bool
|
641 |
+
)
|
642 |
+
|
643 |
+
for layer_module in self.layers:
|
644 |
+
hidden_states = layer_module(
|
645 |
+
hidden_states,
|
646 |
+
cu_seqlens,
|
647 |
+
max_seqlen,
|
648 |
+
indices,
|
649 |
+
attn_mask=attention_mask,
|
650 |
+
)
|
651 |
+
|
652 |
+
return pad_input(hidden_states, indices, batch, seqlen)
|
653 |
+
else:
|
654 |
+
for layer_module in self.layers:
|
655 |
+
hidden_states = layer_module(
|
656 |
+
hidden_states,
|
657 |
+
cu_seqlens,
|
658 |
+
max_seqlen,
|
659 |
+
indices,
|
660 |
+
attn_mask=attention_mask,
|
661 |
+
)
|
662 |
+
return hidden_states
|
663 |
+
|
664 |
+
|
665 |
+
class FlexBertPaddedEncoder(FlexBertEncoderBase):
|
666 |
+
"""A stack of BERT layers providing the backbone of FlexBERT.
|
667 |
+
|
668 |
+
This module is modeled after the Hugging Face BERT's :class:`~transformers.model.bert.modeling_bert.BertAlibiEncoder`,
|
669 |
+
but with substantial modifications to implement unpadding and ALiBi.
|
670 |
+
|
671 |
+
Compared to the analogous Hugging Face BERT module, this module handles unpadding to reduce unnecessary computation
|
672 |
+
at padded tokens, and pre-computes attention biases to implement ALiBi.
|
673 |
+
"""
|
674 |
+
|
675 |
+
def __init__(self, config: FlexBertConfig):
|
676 |
+
super().__init__()
|
677 |
+
self.layers = nn.ModuleList([get_bert_layer(config, layer_id=i) for i in range(config.num_hidden_layers)])
|
678 |
+
self.num_attention_heads = config.num_attention_heads
|
679 |
+
|
680 |
+
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, **kwargs) -> torch.Tensor:
|
681 |
+
for layer_module in self.layers:
|
682 |
+
hidden_states = layer_module(hidden_states, attn_mask=attention_mask)
|
683 |
+
|
684 |
+
return hidden_states
|
685 |
+
|
686 |
+
|
687 |
+
ENC2CLS = {
|
688 |
+
"unpadded_base": FlexBertUnpadEncoder,
|
689 |
+
"padded_base": FlexBertPaddedEncoder,
|
690 |
+
}
|
691 |
+
|
692 |
+
|
693 |
+
def get_encoder_layer(config: FlexBertConfig) -> FlexBertEncoderBase:
|
694 |
+
try:
|
695 |
+
return ENC2CLS[maybe_add_padding(config, config.encoder_layer)](config)
|
696 |
+
except KeyError:
|
697 |
+
raise ValueError(
|
698 |
+
f"Invalid encoder layer type: {config.encoder_layer=}, must be one of {ENC2CLS.keys()}. "
|
699 |
+
f"{config.padding=} will be automatically prepended to `config.encoder_layer` if unspecified."
|
700 |
+
)
|
mlp.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright 2022 MosaicML Examples authors
|
5 |
+
# SPDX-License-Identifier: Apache-2.0
|
6 |
+
|
7 |
+
# Copyright 2023 MosaicML Examples authors
|
8 |
+
# SPDX-License-Identifier: Apache-2.0
|
9 |
+
|
10 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
11 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
12 |
+
# Copyright (c) 2023, Tri Dao.
|
13 |
+
|
14 |
+
from typing import Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
from .configuration_bert import FlexBertConfig
|
20 |
+
from .activation import get_act_fn
|
21 |
+
from .normalization import get_norm_layer
|
22 |
+
from .initialization import ModuleType, init_weights
|
23 |
+
|
24 |
+
|
25 |
+
class BertResidualGLU(nn.Module):
|
26 |
+
"""Applies the FFN at the end of each Mosaic BERT layer.
|
27 |
+
|
28 |
+
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
|
29 |
+
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality, but
|
30 |
+
introduces Gated Linear Units.
|
31 |
+
|
32 |
+
Note: Mosaic BERT adds parameters in order to implement Gated Linear Units. To keep parameter count consistent with that of a
|
33 |
+
standard Hugging Face BERT, scale down `config.intermediate_size` by 2/3. For example, a Mosaic BERT constructed with
|
34 |
+
`config.intermediate_size=2048` will have the same parameter footprint as its Hugging Face BERT counterpart constructed
|
35 |
+
with the `config.intermediate_size=3072`.
|
36 |
+
However, in most cases it will not be necessary to adjust `config.intermediate_size` since, despite the increased
|
37 |
+
parameter size, Mosaic BERT typically offers a net higher throughput than a Hugging Face BERT built from the same `config`.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
config,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.config = config
|
46 |
+
self.gated_layers = nn.Linear(config.hidden_size, config.intermediate_size * 2, bias=False)
|
47 |
+
self.act = get_act_fn(config.hidden_act)
|
48 |
+
self.wo = nn.Linear(config.intermediate_size, config.hidden_size)
|
49 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
50 |
+
self.layernorm = get_norm_layer(config)
|
51 |
+
|
52 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
53 |
+
"""Compute new hidden states from current hidden states.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
hidden_states (torch.Tensor): The (unpadded) hidden states from
|
57 |
+
the attention layer [nnz, dim].
|
58 |
+
"""
|
59 |
+
residual_connection = hidden_states
|
60 |
+
# compute the activation
|
61 |
+
hidden_states = self.gated_layers(hidden_states)
|
62 |
+
gated = hidden_states[:, : self.config.intermediate_size]
|
63 |
+
non_gated = hidden_states[:, self.config.intermediate_size :]
|
64 |
+
hidden_states = self.act(gated) * non_gated
|
65 |
+
hidden_states = self.dropout(hidden_states)
|
66 |
+
# multiply by the second matrix
|
67 |
+
hidden_states = self.wo(hidden_states)
|
68 |
+
# add the residual connection and post-LN
|
69 |
+
hidden_states = self.layernorm(hidden_states + residual_connection)
|
70 |
+
return hidden_states
|
71 |
+
|
72 |
+
|
73 |
+
class FlexBertMLPBase(nn.Module):
|
74 |
+
"""A FlexBERT MLP base class for type hints."""
|
75 |
+
|
76 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
77 |
+
super().__init__()
|
78 |
+
self.config = config
|
79 |
+
self.layer_id = layer_id
|
80 |
+
|
81 |
+
def _init_weights(self, reset_params: bool = False):
|
82 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
83 |
+
|
84 |
+
def reset_parameters(self):
|
85 |
+
self._init_weights(reset_params=True)
|
86 |
+
|
87 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
88 |
+
raise NotImplementedError("This is a base class and should not be used directly.")
|
89 |
+
|
90 |
+
|
91 |
+
class FlexBertMLP(FlexBertMLPBase):
|
92 |
+
"""Applies the MLP at the end of each FlexBERT layer.
|
93 |
+
|
94 |
+
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
|
95 |
+
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
|
96 |
+
"""
|
97 |
+
|
98 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
99 |
+
super().__init__(config=config, layer_id=layer_id)
|
100 |
+
self.Wi = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.mlp_in_bias)
|
101 |
+
self.act = get_act_fn(config.hidden_act)
|
102 |
+
self.drop = nn.Dropout(config.mlp_dropout_prob) if config.mlp_dropout_prob > 0.0 else nn.Identity()
|
103 |
+
self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_out_bias)
|
104 |
+
|
105 |
+
def _init_weights(self, reset_params: bool = False):
|
106 |
+
init_weights(
|
107 |
+
self.config,
|
108 |
+
self.Wi,
|
109 |
+
layer_dim=self.config.hidden_size,
|
110 |
+
layer_id=None,
|
111 |
+
type_of_module=ModuleType.in_module,
|
112 |
+
)
|
113 |
+
init_weights(
|
114 |
+
self.config,
|
115 |
+
self.Wo,
|
116 |
+
layer_dim=self.config.intermediate_size,
|
117 |
+
layer_id=self.layer_id,
|
118 |
+
type_of_module=ModuleType.out_module,
|
119 |
+
)
|
120 |
+
|
121 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
122 |
+
"""Compute new hidden states from current hidden states.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
hidden_states (torch.Tensor): The (unpadded) hidden states from
|
126 |
+
the attention layer [nnz, dim].
|
127 |
+
"""
|
128 |
+
return self.Wo(self.drop(self.act(self.Wi(hidden_states))))
|
129 |
+
|
130 |
+
|
131 |
+
class FlexBertGLU(FlexBertMLPBase):
|
132 |
+
"""Applies the GLU at the end of each FlexBERT layer.
|
133 |
+
|
134 |
+
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
|
135 |
+
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
139 |
+
super().__init__(config=config, layer_id=layer_id)
|
140 |
+
self.Wi = nn.Linear(config.hidden_size, int(config.intermediate_size) * 2, bias=config.mlp_in_bias)
|
141 |
+
self.act = get_act_fn(config.hidden_act)
|
142 |
+
self.drop = nn.Dropout(config.mlp_dropout_prob) if config.mlp_dropout_prob > 0.0 else nn.Identity()
|
143 |
+
self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_out_bias)
|
144 |
+
|
145 |
+
def _init_weights(self, reset_params: bool = False):
|
146 |
+
init_weights(
|
147 |
+
self.config,
|
148 |
+
self.Wi,
|
149 |
+
layer_dim=self.config.hidden_size,
|
150 |
+
layer_id=None,
|
151 |
+
type_of_module=ModuleType.in_module,
|
152 |
+
)
|
153 |
+
init_weights(
|
154 |
+
self.config,
|
155 |
+
self.Wo,
|
156 |
+
layer_dim=self.config.intermediate_size,
|
157 |
+
layer_id=self.layer_id,
|
158 |
+
type_of_module=ModuleType.out_module,
|
159 |
+
)
|
160 |
+
|
161 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
162 |
+
input, gate = self.Wi(hidden_states).chunk(2, dim=-1)
|
163 |
+
return self.Wo(self.drop(self.act(input) * gate))
|
164 |
+
|
165 |
+
|
166 |
+
class FlexBertParallelGLU(FlexBertMLPBase):
|
167 |
+
"""Applies the GLU at the end of each FlexBERT layer using intermediate_ff computed in parallel of the attention.
|
168 |
+
|
169 |
+
Compared to the default BERT architecture, this block replaces :class:`~transformers.model.bert.modeling_bert.BertIntermediate`
|
170 |
+
and :class:`~transformers.model.bert.modeling_bert.SelfOutput` with a single module that has similar functionality.
|
171 |
+
"""
|
172 |
+
|
173 |
+
def __init__(self, config: FlexBertConfig, layer_id: Optional[int] = None):
|
174 |
+
super().__init__(config=config, layer_id=layer_id)
|
175 |
+
self.act = get_act_fn(config.hidden_act)
|
176 |
+
self.drop = nn.Dropout(config.mlp_dropout_prob) if config.mlp_dropout_prob > 0.0 else nn.Identity()
|
177 |
+
self.Wo = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_out_bias)
|
178 |
+
|
179 |
+
def _init_weights(self, reset_params: bool = False):
|
180 |
+
init_weights(
|
181 |
+
self.config,
|
182 |
+
self.Wo,
|
183 |
+
layer_dim=self.config.intermediate_size,
|
184 |
+
layer_id=self.layer_id,
|
185 |
+
type_of_module=ModuleType.out_module,
|
186 |
+
)
|
187 |
+
|
188 |
+
def forward(self, intermediate_ff: torch.Tensor) -> torch.Tensor:
|
189 |
+
input, gate = intermediate_ff.chunk(2, dim=-1)
|
190 |
+
return self.Wo(self.drop(self.act(input) * gate))
|
191 |
+
|
192 |
+
|
193 |
+
MLP2CLS = {
|
194 |
+
"mlp": FlexBertMLP,
|
195 |
+
"glu": FlexBertGLU,
|
196 |
+
"parallel_glu": FlexBertParallelGLU,
|
197 |
+
}
|
198 |
+
|
199 |
+
|
200 |
+
def get_mlp_layer(config: FlexBertConfig, layer_id: Optional[int] = None) -> FlexBertMLPBase:
|
201 |
+
try:
|
202 |
+
mlp_layer = (
|
203 |
+
config.initial_mlp_layer
|
204 |
+
if layer_id < config.num_initial_layers and getattr(config, "initial_mlp_layer", None) is not None
|
205 |
+
else config.mlp_layer
|
206 |
+
)
|
207 |
+
return MLP2CLS[mlp_layer](config, layer_id=layer_id)
|
208 |
+
except KeyError as e:
|
209 |
+
if layer_id < config.num_initial_layers and getattr(config, "initial_mlp_layer", None) is not None:
|
210 |
+
raise ValueError(
|
211 |
+
f"Invalid MLP layer type: {config.initial_mlp_layer=}, must be one of {MLP2CLS.keys()}. {e}"
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
raise ValueError(f"Invalid MLP layer type: {config.mlp_layer=}, must be one of {MLP2CLS.keys()}. {e}")
|
modeling_flexbert.py
ADDED
@@ -0,0 +1,1920 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# RMSNorm Implementation: Copyright Meta (from their Llama RMSNorm implementation)
|
5 |
+
# License: LLAMA 2 COMMUNITY LICENSE AGREEMENT
|
6 |
+
|
7 |
+
# Copyright 2022 Jonas Geiping
|
8 |
+
# License: MIT
|
9 |
+
|
10 |
+
# Copyright 2022 MosaicML Examples authors
|
11 |
+
# SPDX-License-Identifier: Apache-2.0
|
12 |
+
|
13 |
+
# Copyright 2023 MosaicML Examples authors
|
14 |
+
# SPDX-License-Identifier: Apache-2.0
|
15 |
+
|
16 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
17 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
18 |
+
# Copyright (c) 2023, Tri Dao.
|
19 |
+
|
20 |
+
"""Implements Mosaic BERT, with an eye towards the Hugging Face API.
|
21 |
+
|
22 |
+
Mosaic BERT improves performance over Hugging Face BERT through the following:
|
23 |
+
|
24 |
+
1. ALiBi. This architectural change removes positional embeddings and instead encodes positional
|
25 |
+
information through attention biases based on query-key position distance. It improves the effectiveness
|
26 |
+
of training with shorter sequence lengths by enabling extrapolation to longer sequences.
|
27 |
+
|
28 |
+
2. Gated Linear Units (GLU). This architectural change replaces the FFN component of the BERT layer
|
29 |
+
to improve overall expressiveness, providing better convergence properties.
|
30 |
+
|
31 |
+
3. Flash Attention. The MosaicBERT's self-attention layer makes use of Flash Attention, which dramatically
|
32 |
+
improves the speed of self-attention. Our implementation utilizes a bleeding edge implementation that
|
33 |
+
supports attention biases, which allows us to use Flash Attention with ALiBi.
|
34 |
+
|
35 |
+
4. Unpadding. Padding is often used to simplify batching across sequences of different lengths. Standard BERT
|
36 |
+
implementations waste computation on padded tokens. MosaicBERT internally unpads to reduce unnecessary computation
|
37 |
+
and improve speed. It does this without changing how the user interfaces with the model, thereby
|
38 |
+
preserving the simple API of standard implementations.
|
39 |
+
|
40 |
+
|
41 |
+
Currently, MosaicBERT is available for masked language modeling :class:`BertForMaskedLM` and sequence
|
42 |
+
classification :class:`BertForSequenceClassification`. We aim to expand this catalogue in future releases.
|
43 |
+
|
44 |
+
See :file:`./mosaic_bert.py` for utilities to simplify working with MosaicBERT in Composer, and for example usage
|
45 |
+
of the core Mosaic BERT classes.
|
46 |
+
"""
|
47 |
+
|
48 |
+
import logging
|
49 |
+
import os
|
50 |
+
import sys
|
51 |
+
import warnings
|
52 |
+
from dataclasses import dataclass
|
53 |
+
from typing import List, Optional, Tuple, Union
|
54 |
+
|
55 |
+
# Add folder root to path to allow us to use relative imports regardless of what directory the script is run from
|
56 |
+
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
57 |
+
|
58 |
+
import torch
|
59 |
+
import torch.nn as nn
|
60 |
+
from einops import rearrange
|
61 |
+
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
|
62 |
+
from transformers.modeling_outputs import (
|
63 |
+
MaskedLMOutput,
|
64 |
+
ModelOutput,
|
65 |
+
MultipleChoiceModelOutput,
|
66 |
+
SequenceClassifierOutput,
|
67 |
+
CausalLMOutput,
|
68 |
+
)
|
69 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel
|
70 |
+
|
71 |
+
from bert_padding import index_put_first_axis
|
72 |
+
|
73 |
+
from src.bert_layers.activation import get_act_fn
|
74 |
+
from src.bert_layers.attention import (
|
75 |
+
FlexBertPaddedAttention,
|
76 |
+
FlexBertPaddedParallelAttention,
|
77 |
+
FlexBertPaddedRopeAttention,
|
78 |
+
FlexBertPaddedRopeParallelAttention,
|
79 |
+
FlexBertUnpadAttention,
|
80 |
+
FlexBertUnpadParallelAttention,
|
81 |
+
FlexBertUnpadRopeAttention,
|
82 |
+
FlexBertUnpadRopeParallelAttention,
|
83 |
+
)
|
84 |
+
from src.bert_layers.configuration_bert import FlexBertConfig
|
85 |
+
from src.bert_layers.embeddings import (
|
86 |
+
BertAlibiEmbeddings,
|
87 |
+
FlexBertAbsoluteEmbeddings,
|
88 |
+
FlexBertCompiledSansPositionEmbeddings,
|
89 |
+
FlexBertSansPositionEmbeddings,
|
90 |
+
get_embedding_layer,
|
91 |
+
)
|
92 |
+
from src.bert_layers.initialization import (
|
93 |
+
ModuleType,
|
94 |
+
TileLinear,
|
95 |
+
TileMode,
|
96 |
+
init_weights,
|
97 |
+
tile_embedding,
|
98 |
+
tile_linear,
|
99 |
+
tile_norm,
|
100 |
+
)
|
101 |
+
from src.bert_layers.layers import (
|
102 |
+
BertAlibiEncoder,
|
103 |
+
BertPooler,
|
104 |
+
BertPredictionHeadTransform,
|
105 |
+
FlexBertCompileUnpadPreNormLayer,
|
106 |
+
FlexBertPaddedEncoder,
|
107 |
+
FlexBertPaddedParallelPreNormLayer,
|
108 |
+
FlexBertPaddedPostNormLayer,
|
109 |
+
FlexBertPaddedPreNormLayer,
|
110 |
+
FlexBertUnpadEncoder,
|
111 |
+
FlexBertUnpadParallelPreNormLayer,
|
112 |
+
FlexBertUnpadPostNormLayer,
|
113 |
+
FlexBertUnpadPreNormLayer,
|
114 |
+
get_encoder_layer,
|
115 |
+
)
|
116 |
+
from src.bert_layers.loss import get_loss_fn
|
117 |
+
from src.bert_layers.mlp import FlexBertGLU, FlexBertMLP, FlexBertParallelGLU
|
118 |
+
from src.bert_layers.normalization import get_norm_layer
|
119 |
+
from src.bert_layers.padding import pad_input, unpad_input
|
120 |
+
|
121 |
+
logger = logging.getLogger(__name__)
|
122 |
+
|
123 |
+
|
124 |
+
def _count_parameters(model: nn.Module, trainable: bool = True) -> int:
|
125 |
+
if trainable:
|
126 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
127 |
+
else:
|
128 |
+
return sum(p.numel() for p in model.parameters())
|
129 |
+
|
130 |
+
|
131 |
+
class BertModel(BertPreTrainedModel):
|
132 |
+
"""Overall BERT model.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
config: a BertConfig class instance with the configuration to build a new model
|
136 |
+
|
137 |
+
Inputs:
|
138 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
139 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
140 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
141 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
142 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
143 |
+
a `sentence B` token (see BERT paper for more details).
|
144 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
145 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
146 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
147 |
+
a batch has varying length sentences.
|
148 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
149 |
+
|
150 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
151 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
152 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
153 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
154 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
155 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
156 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
157 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
158 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
159 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
160 |
+
|
161 |
+
Example usage:
|
162 |
+
```python
|
163 |
+
# Already been converted into WordPiece token ids
|
164 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
165 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
166 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
167 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
168 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
169 |
+
model = BertModel(config=config)
|
170 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
171 |
+
```
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
config,
|
177 |
+
add_pooling_layer: bool = True,
|
178 |
+
):
|
179 |
+
super(BertModel, self).__init__(config)
|
180 |
+
self.embeddings = BertAlibiEmbeddings(config)
|
181 |
+
self.encoder = BertAlibiEncoder(config)
|
182 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
183 |
+
self.post_init()
|
184 |
+
|
185 |
+
def get_input_embeddings(self):
|
186 |
+
return self.embeddings.word_embeddings
|
187 |
+
|
188 |
+
def set_input_embeddings(self, value):
|
189 |
+
self.embeddings.word_embeddings = value
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
input_ids: torch.Tensor,
|
194 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
195 |
+
attention_mask: Optional[torch.Tensor] = None,
|
196 |
+
position_ids: Optional[torch.Tensor] = None,
|
197 |
+
output_all_encoded_layers: Optional[bool] = False,
|
198 |
+
masked_tokens_mask: Optional[torch.Tensor] = None,
|
199 |
+
**kwargs,
|
200 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
201 |
+
if attention_mask is None:
|
202 |
+
attention_mask = torch.ones_like(input_ids)
|
203 |
+
if token_type_ids is None:
|
204 |
+
token_type_ids = torch.zeros_like(input_ids)
|
205 |
+
|
206 |
+
embedding_output = self.embeddings(input_ids, token_type_ids, position_ids)
|
207 |
+
|
208 |
+
subset_mask = []
|
209 |
+
first_col_mask = []
|
210 |
+
|
211 |
+
if masked_tokens_mask is None:
|
212 |
+
subset_mask = None
|
213 |
+
else:
|
214 |
+
first_col_mask = torch.zeros_like(masked_tokens_mask)
|
215 |
+
first_col_mask[:, 0] = True
|
216 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
217 |
+
|
218 |
+
encoder_outputs = self.encoder(
|
219 |
+
embedding_output,
|
220 |
+
attention_mask,
|
221 |
+
output_all_encoded_layers=output_all_encoded_layers,
|
222 |
+
subset_mask=subset_mask,
|
223 |
+
)
|
224 |
+
|
225 |
+
if masked_tokens_mask is None:
|
226 |
+
sequence_output = encoder_outputs[-1]
|
227 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
228 |
+
else:
|
229 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
230 |
+
attention_mask_bool = attention_mask.bool()
|
231 |
+
subset_idx = subset_mask[attention_mask_bool] # type: ignore
|
232 |
+
sequence_output = encoder_outputs[-1][masked_tokens_mask[attention_mask_bool][subset_idx]]
|
233 |
+
if self.pooler is not None:
|
234 |
+
pool_input = encoder_outputs[-1][first_col_mask[attention_mask_bool][subset_idx]]
|
235 |
+
pooled_output = self.pooler(pool_input, pool=False)
|
236 |
+
else:
|
237 |
+
pooled_output = None
|
238 |
+
|
239 |
+
if not output_all_encoded_layers:
|
240 |
+
encoder_outputs = sequence_output
|
241 |
+
|
242 |
+
if self.pooler is not None:
|
243 |
+
return encoder_outputs, pooled_output
|
244 |
+
|
245 |
+
return encoder_outputs, None
|
246 |
+
|
247 |
+
|
248 |
+
###################
|
249 |
+
# Bert Heads
|
250 |
+
###################
|
251 |
+
class BertLMPredictionHead(nn.Module):
|
252 |
+
def __init__(self, config, bert_model_embedding_weights):
|
253 |
+
super().__init__()
|
254 |
+
self.transform = BertPredictionHeadTransform(config)
|
255 |
+
# The output weights are the same as the input embeddings, but there is
|
256 |
+
# an output-only bias for each token.
|
257 |
+
self.decoder = nn.Linear(bert_model_embedding_weights.size(1), bert_model_embedding_weights.size(0))
|
258 |
+
self.decoder.weight = bert_model_embedding_weights
|
259 |
+
|
260 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
261 |
+
hidden_states = self.transform(hidden_states)
|
262 |
+
hidden_states = self.decoder(hidden_states)
|
263 |
+
return hidden_states
|
264 |
+
|
265 |
+
|
266 |
+
class BertOnlyMLMHead(nn.Module):
|
267 |
+
def __init__(self, config, bert_model_embedding_weights):
|
268 |
+
super().__init__()
|
269 |
+
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
270 |
+
|
271 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
272 |
+
prediction_scores = self.predictions(sequence_output)
|
273 |
+
return prediction_scores
|
274 |
+
|
275 |
+
|
276 |
+
class BertOnlyNSPHead(nn.Module):
|
277 |
+
def __init__(self, config):
|
278 |
+
super().__init__()
|
279 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
280 |
+
|
281 |
+
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
|
282 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
283 |
+
return seq_relationship_score
|
284 |
+
|
285 |
+
|
286 |
+
#####################
|
287 |
+
# Various Bert models
|
288 |
+
#####################
|
289 |
+
|
290 |
+
|
291 |
+
class BertForPreTraining(BertPreTrainedModel):
|
292 |
+
# TBD: Coming in Future Commit
|
293 |
+
pass
|
294 |
+
|
295 |
+
|
296 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
297 |
+
# TBD: Coming in Future Commit
|
298 |
+
pass
|
299 |
+
|
300 |
+
|
301 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
302 |
+
def __init__(self, config):
|
303 |
+
super().__init__(config)
|
304 |
+
|
305 |
+
if config.is_decoder:
|
306 |
+
warnings.warn(
|
307 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
308 |
+
"bi-directional self-attention."
|
309 |
+
)
|
310 |
+
|
311 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
312 |
+
self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
|
313 |
+
|
314 |
+
# Initialize weights and apply final processing
|
315 |
+
self.post_init()
|
316 |
+
|
317 |
+
@classmethod
|
318 |
+
def from_composer(
|
319 |
+
cls,
|
320 |
+
pretrained_checkpoint,
|
321 |
+
state_dict=None,
|
322 |
+
cache_dir=None,
|
323 |
+
from_tf=False,
|
324 |
+
config=None,
|
325 |
+
*inputs,
|
326 |
+
**kwargs,
|
327 |
+
):
|
328 |
+
"""Load from pre-trained."""
|
329 |
+
model = cls(config, *inputs, **kwargs)
|
330 |
+
if from_tf:
|
331 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
332 |
+
|
333 |
+
state_dict = torch.load(pretrained_checkpoint)
|
334 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
335 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
336 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
337 |
+
|
338 |
+
if len(missing_keys) > 0:
|
339 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
340 |
+
if len(unexpected_keys) > 0:
|
341 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
342 |
+
|
343 |
+
return model
|
344 |
+
|
345 |
+
def get_output_embeddings(self):
|
346 |
+
return self.cls.predictions.decoder
|
347 |
+
|
348 |
+
def set_output_embeddings(self, new_embeddings):
|
349 |
+
self.cls.predictions.decoder = new_embeddings
|
350 |
+
|
351 |
+
def forward(
|
352 |
+
self,
|
353 |
+
input_ids: Optional[torch.Tensor] = None,
|
354 |
+
attention_mask: Optional[torch.Tensor] = None,
|
355 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
356 |
+
position_ids: Optional[torch.Tensor] = None,
|
357 |
+
head_mask: Optional[torch.Tensor] = None,
|
358 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
359 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
360 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
361 |
+
labels: Optional[torch.Tensor] = None,
|
362 |
+
output_attentions: Optional[bool] = None,
|
363 |
+
output_hidden_states: Optional[bool] = None,
|
364 |
+
return_dict: Optional[bool] = None,
|
365 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
366 |
+
# labels should be a `torch.LongTensor` of shape
|
367 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
368 |
+
# masked language modeling loss.
|
369 |
+
#
|
370 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
371 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
372 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
373 |
+
# ..., config.vocab_size]`
|
374 |
+
#
|
375 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
376 |
+
# seqlen) dimensions are flattened
|
377 |
+
if (input_ids is not None) == (inputs_embeds is not None):
|
378 |
+
raise ValueError("Must specify either input_ids or input_embeds!")
|
379 |
+
|
380 |
+
if labels is None:
|
381 |
+
masked_tokens_mask = None
|
382 |
+
else:
|
383 |
+
masked_tokens_mask = labels > 0
|
384 |
+
|
385 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
386 |
+
|
387 |
+
outputs = self.bert(
|
388 |
+
input_ids,
|
389 |
+
attention_mask=attention_mask,
|
390 |
+
token_type_ids=token_type_ids,
|
391 |
+
position_ids=position_ids,
|
392 |
+
head_mask=head_mask,
|
393 |
+
inputs_embeds=inputs_embeds,
|
394 |
+
encoder_hidden_states=encoder_hidden_states,
|
395 |
+
encoder_attention_mask=encoder_attention_mask,
|
396 |
+
output_attentions=output_attentions,
|
397 |
+
output_hidden_states=output_hidden_states,
|
398 |
+
return_dict=return_dict,
|
399 |
+
masked_tokens_mask=masked_tokens_mask,
|
400 |
+
)
|
401 |
+
|
402 |
+
sequence_output = outputs[0]
|
403 |
+
prediction_scores = self.cls(sequence_output)
|
404 |
+
|
405 |
+
loss = None
|
406 |
+
if labels is not None:
|
407 |
+
# Compute loss
|
408 |
+
loss_fct = nn.CrossEntropyLoss()
|
409 |
+
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
|
410 |
+
loss = loss_fct(prediction_scores, labels.flatten()[masked_token_idx])
|
411 |
+
|
412 |
+
assert input_ids is not None, "Coding error; please open an issue"
|
413 |
+
batch, seqlen = input_ids.shape[:2]
|
414 |
+
prediction_scores = rearrange(
|
415 |
+
index_put_first_axis(prediction_scores, masked_token_idx, batch * seqlen),
|
416 |
+
"(b s) d -> b s d",
|
417 |
+
b=batch,
|
418 |
+
)
|
419 |
+
|
420 |
+
if not return_dict:
|
421 |
+
output = (prediction_scores,) + outputs[2:]
|
422 |
+
return ((loss,) + output) if loss is not None else output
|
423 |
+
|
424 |
+
return MaskedLMOutput(
|
425 |
+
loss=loss,
|
426 |
+
logits=prediction_scores,
|
427 |
+
hidden_states=None,
|
428 |
+
attentions=None,
|
429 |
+
)
|
430 |
+
|
431 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
|
432 |
+
input_shape = input_ids.shape
|
433 |
+
effective_batch_size = input_shape[0]
|
434 |
+
|
435 |
+
# add a dummy token
|
436 |
+
if self.config.pad_token_id is None:
|
437 |
+
raise ValueError("The PAD token should be defined for generation")
|
438 |
+
|
439 |
+
attention_mask = torch.cat(
|
440 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
441 |
+
dim=-1,
|
442 |
+
)
|
443 |
+
dummy_token = torch.full(
|
444 |
+
(effective_batch_size, 1),
|
445 |
+
self.config.pad_token_id,
|
446 |
+
dtype=torch.long,
|
447 |
+
device=input_ids.device,
|
448 |
+
)
|
449 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
450 |
+
|
451 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
452 |
+
|
453 |
+
|
454 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
455 |
+
# TBD: Push in future commit
|
456 |
+
pass
|
457 |
+
|
458 |
+
|
459 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
460 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
461 |
+
|
462 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
463 |
+
e.g., GLUE tasks.
|
464 |
+
"""
|
465 |
+
|
466 |
+
def __init__(self, config):
|
467 |
+
super().__init__(config)
|
468 |
+
self.num_labels = config.num_labels
|
469 |
+
self.config = config
|
470 |
+
|
471 |
+
self.bert = BertModel(config)
|
472 |
+
classifier_dropout = (
|
473 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
474 |
+
)
|
475 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
476 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
477 |
+
|
478 |
+
# Initialize weights and apply final processing
|
479 |
+
self.post_init()
|
480 |
+
|
481 |
+
@classmethod
|
482 |
+
def from_composer(
|
483 |
+
cls,
|
484 |
+
pretrained_checkpoint,
|
485 |
+
state_dict=None,
|
486 |
+
cache_dir=None,
|
487 |
+
from_tf=False,
|
488 |
+
config=None,
|
489 |
+
*inputs,
|
490 |
+
**kwargs,
|
491 |
+
):
|
492 |
+
"""Load from pre-trained."""
|
493 |
+
model = cls(config, *inputs, **kwargs)
|
494 |
+
if from_tf:
|
495 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
496 |
+
|
497 |
+
state_dict = torch.load(pretrained_checkpoint)
|
498 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
499 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
500 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
501 |
+
|
502 |
+
if len(missing_keys) > 0:
|
503 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
504 |
+
if len(unexpected_keys) > 0:
|
505 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
506 |
+
|
507 |
+
return model
|
508 |
+
|
509 |
+
def forward(
|
510 |
+
self,
|
511 |
+
input_ids: Optional[torch.Tensor] = None,
|
512 |
+
attention_mask: Optional[torch.Tensor] = None,
|
513 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
514 |
+
position_ids: Optional[torch.Tensor] = None,
|
515 |
+
head_mask: Optional[torch.Tensor] = None,
|
516 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
517 |
+
labels: Optional[torch.Tensor] = None,
|
518 |
+
output_attentions: Optional[bool] = None,
|
519 |
+
output_hidden_states: Optional[bool] = None,
|
520 |
+
return_dict: Optional[bool] = None,
|
521 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
522 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
523 |
+
# Labels for computing the sequence classification/regression loss.
|
524 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
525 |
+
# If `config.num_labels == 1` a regression loss is computed
|
526 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
527 |
+
# is computed (cross-entropy).
|
528 |
+
|
529 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
530 |
+
|
531 |
+
outputs = self.bert(
|
532 |
+
input_ids,
|
533 |
+
attention_mask=attention_mask,
|
534 |
+
token_type_ids=token_type_ids,
|
535 |
+
position_ids=position_ids,
|
536 |
+
head_mask=head_mask,
|
537 |
+
inputs_embeds=inputs_embeds,
|
538 |
+
output_attentions=output_attentions,
|
539 |
+
output_hidden_states=output_hidden_states,
|
540 |
+
return_dict=return_dict,
|
541 |
+
)
|
542 |
+
|
543 |
+
pooled_output = outputs[1]
|
544 |
+
|
545 |
+
pooled_output = self.dropout(pooled_output)
|
546 |
+
logits = self.classifier(pooled_output)
|
547 |
+
|
548 |
+
loss = None
|
549 |
+
if labels is not None:
|
550 |
+
# Compute loss
|
551 |
+
if self.config.problem_type is None:
|
552 |
+
if self.num_labels == 1:
|
553 |
+
self.config.problem_type = "regression"
|
554 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
555 |
+
self.config.problem_type = "single_label_classification"
|
556 |
+
else:
|
557 |
+
self.config.problem_type = "multi_label_classification"
|
558 |
+
|
559 |
+
if self.config.problem_type == "regression":
|
560 |
+
loss_fct = nn.MSELoss()
|
561 |
+
if self.num_labels == 1:
|
562 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
563 |
+
else:
|
564 |
+
loss = loss_fct(logits, labels)
|
565 |
+
elif self.config.problem_type == "single_label_classification":
|
566 |
+
loss_fct = nn.CrossEntropyLoss()
|
567 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
568 |
+
elif self.config.problem_type == "multi_label_classification":
|
569 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
570 |
+
loss = loss_fct(logits, labels)
|
571 |
+
|
572 |
+
if not return_dict:
|
573 |
+
output = (logits,) + outputs[2:]
|
574 |
+
return ((loss,) + output) if loss is not None else output
|
575 |
+
|
576 |
+
return SequenceClassifierOutput(
|
577 |
+
loss=loss,
|
578 |
+
logits=logits,
|
579 |
+
hidden_states=None,
|
580 |
+
attentions=None,
|
581 |
+
)
|
582 |
+
|
583 |
+
|
584 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
585 |
+
"""
|
586 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
587 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
588 |
+
"""
|
589 |
+
|
590 |
+
def __init__(self, config):
|
591 |
+
super().__init__(config)
|
592 |
+
self.num_labels = config.num_labels
|
593 |
+
self.config = config
|
594 |
+
|
595 |
+
self.bert = BertModel(config)
|
596 |
+
classifier_dropout = (
|
597 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
598 |
+
)
|
599 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
600 |
+
|
601 |
+
# In multiple choice tasks, all choices are submitted in a batch, and
|
602 |
+
# we compute a logit for each option independently. The logits are then
|
603 |
+
# normalized in the forward pass to get a probability distribution over
|
604 |
+
# the choices.
|
605 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
606 |
+
|
607 |
+
# Initialize weights and apply final processing
|
608 |
+
self.post_init()
|
609 |
+
|
610 |
+
@classmethod
|
611 |
+
def from_composer(
|
612 |
+
cls,
|
613 |
+
pretrained_checkpoint,
|
614 |
+
state_dict=None,
|
615 |
+
cache_dir=None,
|
616 |
+
from_tf=False,
|
617 |
+
config=None,
|
618 |
+
*inputs,
|
619 |
+
**kwargs,
|
620 |
+
):
|
621 |
+
"""Load from pre-trained."""
|
622 |
+
model = cls(config, *inputs, **kwargs)
|
623 |
+
if from_tf:
|
624 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
625 |
+
|
626 |
+
state_dict = torch.load(pretrained_checkpoint)
|
627 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
628 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
629 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
630 |
+
|
631 |
+
if len(missing_keys) > 0:
|
632 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
633 |
+
if len(unexpected_keys) > 0:
|
634 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
635 |
+
|
636 |
+
return model
|
637 |
+
|
638 |
+
def forward(
|
639 |
+
self,
|
640 |
+
input_ids: Optional[torch.Tensor] = None,
|
641 |
+
attention_mask: Optional[torch.Tensor] = None,
|
642 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
643 |
+
position_ids: Optional[torch.Tensor] = None,
|
644 |
+
head_mask: Optional[torch.Tensor] = None,
|
645 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
646 |
+
labels: Optional[torch.Tensor] = None,
|
647 |
+
output_attentions: Optional[bool] = None,
|
648 |
+
output_hidden_states: Optional[bool] = None,
|
649 |
+
return_dict: Optional[bool] = None,
|
650 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
651 |
+
r"""
|
652 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
653 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
654 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
655 |
+
`input_ids` above)
|
656 |
+
"""
|
657 |
+
|
658 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
659 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
660 |
+
|
661 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
662 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
663 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
664 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
665 |
+
inputs_embeds = (
|
666 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
667 |
+
if inputs_embeds is not None
|
668 |
+
else None
|
669 |
+
)
|
670 |
+
|
671 |
+
outputs = self.bert(
|
672 |
+
input_ids,
|
673 |
+
attention_mask=attention_mask,
|
674 |
+
token_type_ids=token_type_ids,
|
675 |
+
position_ids=position_ids,
|
676 |
+
head_mask=head_mask,
|
677 |
+
inputs_embeds=inputs_embeds,
|
678 |
+
output_attentions=output_attentions,
|
679 |
+
output_hidden_states=output_hidden_states,
|
680 |
+
return_dict=return_dict,
|
681 |
+
)
|
682 |
+
|
683 |
+
pooled_output = outputs[1]
|
684 |
+
|
685 |
+
pooled_output = self.dropout(pooled_output)
|
686 |
+
logits = self.classifier(pooled_output)
|
687 |
+
reshaped_logits = logits.view(-1, num_choices)
|
688 |
+
|
689 |
+
loss = None
|
690 |
+
if labels is not None:
|
691 |
+
loss_fct = nn.CrossEntropyLoss()
|
692 |
+
loss = loss_fct(reshaped_logits, labels)
|
693 |
+
|
694 |
+
if not return_dict:
|
695 |
+
output = (reshaped_logits,) + outputs[2:]
|
696 |
+
return ((loss,) + output) if loss is not None else output
|
697 |
+
|
698 |
+
return MultipleChoiceModelOutput(
|
699 |
+
loss=loss,
|
700 |
+
logits=reshaped_logits,
|
701 |
+
hidden_states=None,
|
702 |
+
attentions=None,
|
703 |
+
)
|
704 |
+
|
705 |
+
|
706 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
707 |
+
# TBD: Push in future commit
|
708 |
+
pass
|
709 |
+
|
710 |
+
|
711 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
712 |
+
"""Bert Model with a span classification head.
|
713 |
+
|
714 |
+
This is used for extractive question-answering tasks like SQuAD (a linear
|
715 |
+
layers on top of the hidden states' output to compute `span start logits`
|
716 |
+
and `span end logits`).
|
717 |
+
"""
|
718 |
+
|
719 |
+
# TBD: Push in future commit
|
720 |
+
|
721 |
+
|
722 |
+
###################
|
723 |
+
# FlexBert Heads
|
724 |
+
###################
|
725 |
+
|
726 |
+
|
727 |
+
class FlexBertPredictionHead(nn.Module):
|
728 |
+
def __init__(self, config: FlexBertConfig):
|
729 |
+
super().__init__()
|
730 |
+
self.config = config
|
731 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_pred_bias)
|
732 |
+
self.act = get_act_fn(config.head_pred_act) if config.head_pred_act else nn.Identity()
|
733 |
+
self.norm = (
|
734 |
+
get_norm_layer(config, compiled_norm=config.compile_model) if config.head_pred_norm else nn.Identity()
|
735 |
+
)
|
736 |
+
|
737 |
+
def _init_weights(self, reset_params: bool = False):
|
738 |
+
if reset_params:
|
739 |
+
self.norm.reset_parameters()
|
740 |
+
init_weights(self.config, self.dense, layer_dim=self.config.hidden_size, type_of_module=ModuleType.in_module)
|
741 |
+
|
742 |
+
def reset_parameters(self):
|
743 |
+
self._init_weights(reset_params=True)
|
744 |
+
|
745 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
746 |
+
return self.norm(self.act(self.dense(hidden_states)))
|
747 |
+
|
748 |
+
|
749 |
+
class FlexBertPoolingHead(nn.Module):
|
750 |
+
def __init__(self, config: FlexBertConfig):
|
751 |
+
super().__init__()
|
752 |
+
self.config = config
|
753 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, config.head_class_bias)
|
754 |
+
self.act = get_act_fn(config.head_class_act) if config.head_class_act else nn.Identity()
|
755 |
+
self.norm = get_norm_layer(config) if config.head_class_norm else nn.Identity()
|
756 |
+
self.drop = torch.nn.Dropout(config.head_class_dropout) if config.head_class_dropout > 0 else nn.Identity()
|
757 |
+
self.pooling_type = config.pooling_type
|
758 |
+
|
759 |
+
def forward(self, hidden_states: torch.Tensor, pool: Optional[bool] = True) -> torch.Tensor:
|
760 |
+
if pool:
|
761 |
+
if self.pooling_type == "cls":
|
762 |
+
output = hidden_states[:, 0]
|
763 |
+
elif self.pooling_type == "mean":
|
764 |
+
output = hidden_states.mean(dim=1)
|
765 |
+
elif self.pooling_type == "max":
|
766 |
+
output = hidden_states.max(dim=1)[0]
|
767 |
+
else:
|
768 |
+
output = hidden_states
|
769 |
+
|
770 |
+
return self.drop(self.norm(self.act(self.dense(output))))
|
771 |
+
|
772 |
+
def _init_weights(self, reset_params: bool = False):
|
773 |
+
init_weights(self.config, self.dense, self.config.hidden_size, type_of_module=ModuleType.out_module)
|
774 |
+
if reset_params and hasattr(self.norm, "reset_parameters"):
|
775 |
+
self.norm.reset_parameters()
|
776 |
+
|
777 |
+
def reset_parameters(self):
|
778 |
+
self._init_weights(reset_params=True)
|
779 |
+
|
780 |
+
|
781 |
+
###################
|
782 |
+
# FlexBert Models
|
783 |
+
###################
|
784 |
+
|
785 |
+
|
786 |
+
@dataclass
|
787 |
+
class MaskedLMOutput(ModelOutput):
|
788 |
+
"""
|
789 |
+
Base class for masked language models outputs.
|
790 |
+
|
791 |
+
Args:
|
792 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
793 |
+
Masked language modeling (MLM) loss.
|
794 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
795 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
796 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
797 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
798 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
799 |
+
|
800 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
801 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
802 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
803 |
+
sequence_length)`.
|
804 |
+
|
805 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
806 |
+
heads.
|
807 |
+
"""
|
808 |
+
|
809 |
+
loss: Optional[torch.FloatTensor] = None
|
810 |
+
logits: torch.FloatTensor = None
|
811 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
812 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
813 |
+
indices: Optional[torch.LongTensor] = None
|
814 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
815 |
+
max_seqlen: Optional[int] = None
|
816 |
+
batch_size: Optional[int] = None
|
817 |
+
seq_len: Optional[int] = None
|
818 |
+
labels: Optional[torch.LongTensor] = None
|
819 |
+
|
820 |
+
|
821 |
+
@dataclass
|
822 |
+
class MaskedLMOutputZLoss(ModelOutput):
|
823 |
+
"""
|
824 |
+
Base class for masked language models outputs.
|
825 |
+
|
826 |
+
Args:
|
827 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
828 |
+
Masked language modeling (MLM) loss.
|
829 |
+
ce_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
830 |
+
Cross entropy loss.
|
831 |
+
z_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
832 |
+
Z loss.
|
833 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
834 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
835 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
836 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
837 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
838 |
+
|
839 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
840 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
841 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
842 |
+
sequence_length)`.
|
843 |
+
|
844 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
845 |
+
heads.
|
846 |
+
indices (`torch.LongTensor` of shape `(batch_size,)`):
|
847 |
+
Indices of the tokens to be masked.
|
848 |
+
"""
|
849 |
+
|
850 |
+
loss: Optional[torch.FloatTensor] = None
|
851 |
+
ce_loss: Optional[torch.FloatTensor] = None
|
852 |
+
z_loss: Optional[torch.FloatTensor] = None
|
853 |
+
logits: torch.FloatTensor = None
|
854 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
855 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
856 |
+
indices: Optional[torch.LongTensor] = None
|
857 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
858 |
+
max_seqlen: Optional[int] = None
|
859 |
+
batch_size: Optional[int] = None
|
860 |
+
seq_len: Optional[int] = None
|
861 |
+
labels: Optional[torch.LongTensor] = None
|
862 |
+
|
863 |
+
|
864 |
+
class FlexBertPreTrainedModel(BertPreTrainedModel):
|
865 |
+
"""
|
866 |
+
An abstract class to handle custom weights initialization of modules
|
867 |
+
"""
|
868 |
+
|
869 |
+
def _init_module_weights(self, module: nn.Module):
|
870 |
+
"""
|
871 |
+
Custom weight init of modules using src.bert_layers.initialization.init_weights
|
872 |
+
Currently only supports init of embedding modules
|
873 |
+
"""
|
874 |
+
assert isinstance(module, nn.Module)
|
875 |
+
if isinstance(module, nn.Embedding):
|
876 |
+
init_weights(self.config, module, type_of_module=ModuleType.emb)
|
877 |
+
else:
|
878 |
+
raise NotImplementedError("Custom weight init for the given module is not supported")
|
879 |
+
|
880 |
+
|
881 |
+
class FlexBertModel(FlexBertPreTrainedModel):
|
882 |
+
"""Overall BERT model.
|
883 |
+
|
884 |
+
Args:
|
885 |
+
config: a BertConfig class instance with the configuration to build a new model
|
886 |
+
|
887 |
+
Inputs:
|
888 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
889 |
+
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
|
890 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
891 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
892 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
893 |
+
a `sentence B` token (see BERT paper for more details).
|
894 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
895 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
896 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
897 |
+
a batch has varying length sentences.
|
898 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
899 |
+
|
900 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
901 |
+
`encoded_layers`: controlled by `output_all_encoded_layers` argument:
|
902 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
903 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
904 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
905 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
906 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
907 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
908 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
909 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
910 |
+
|
911 |
+
Example usage:
|
912 |
+
```python
|
913 |
+
# Already been converted into WordPiece token ids
|
914 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
915 |
+
input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
916 |
+
token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
|
917 |
+
config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
|
918 |
+
num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
|
919 |
+
model = BertModel(config=config)
|
920 |
+
all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
|
921 |
+
```
|
922 |
+
"""
|
923 |
+
|
924 |
+
def __init__(self, config: FlexBertConfig):
|
925 |
+
super().__init__(config)
|
926 |
+
self.embeddings = get_embedding_layer(config)
|
927 |
+
self.encoder = get_encoder_layer(config)
|
928 |
+
if config.final_norm:
|
929 |
+
# if we use prenorm attention we need to add a final norm
|
930 |
+
self.final_norm = get_norm_layer(config)
|
931 |
+
else:
|
932 |
+
self.final_norm = None
|
933 |
+
self.unpad_embeddings = config.unpad_embeddings
|
934 |
+
|
935 |
+
def post_init(self):
|
936 |
+
self._init_weights(reset_params=False)
|
937 |
+
self._backward_compatibility_gradient_checkpointing()
|
938 |
+
|
939 |
+
def get_input_embeddings(self):
|
940 |
+
return self.embeddings.tok_embeddings
|
941 |
+
|
942 |
+
def set_input_embeddings(self, value):
|
943 |
+
self.embeddings.tok_embeddings = value
|
944 |
+
|
945 |
+
def forward(
|
946 |
+
self,
|
947 |
+
input_ids: torch.Tensor,
|
948 |
+
attention_mask: Optional[torch.Tensor] = None,
|
949 |
+
position_ids: Optional[torch.Tensor] = None,
|
950 |
+
indices: Optional[torch.Tensor] = None,
|
951 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
952 |
+
max_seqlen: Optional[int] = None,
|
953 |
+
**kwargs,
|
954 |
+
) -> Tuple[Union[List[torch.Tensor], torch.Tensor], Optional[torch.Tensor]]:
|
955 |
+
if attention_mask is None:
|
956 |
+
attention_mask = torch.ones_like(input_ids)
|
957 |
+
|
958 |
+
embedding_output = self.embeddings(input_ids, position_ids)
|
959 |
+
|
960 |
+
encoder_outputs = self.encoder(
|
961 |
+
hidden_states=embedding_output,
|
962 |
+
attention_mask=attention_mask,
|
963 |
+
indices=indices,
|
964 |
+
cu_seqlens=cu_seqlens,
|
965 |
+
max_seqlen=max_seqlen,
|
966 |
+
)
|
967 |
+
|
968 |
+
if self.final_norm is not None:
|
969 |
+
encoder_outputs = self.final_norm(encoder_outputs)
|
970 |
+
return encoder_outputs
|
971 |
+
|
972 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
973 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
974 |
+
if module:
|
975 |
+
self._init_module_weights(module)
|
976 |
+
else:
|
977 |
+
assert isinstance(reset_params, bool)
|
978 |
+
self.embeddings._init_weights(reset_params=reset_params)
|
979 |
+
self.encoder._init_weights(reset_params=reset_params)
|
980 |
+
|
981 |
+
if reset_params and self.config.final_norm:
|
982 |
+
self.final_norm.reset_parameters()
|
983 |
+
|
984 |
+
def reset_parameters(self):
|
985 |
+
self._init_weights(reset_params=True)
|
986 |
+
|
987 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
988 |
+
"""Returns the number of parameters in the model.
|
989 |
+
|
990 |
+
Args:
|
991 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
992 |
+
trainable: only count trainable parameters.
|
993 |
+
"""
|
994 |
+
params = sum([_count_parameters(layer, trainable) for layer in self.encoder.layers])
|
995 |
+
if count_embeddings:
|
996 |
+
params += _count_parameters(self.embeddings, trainable)
|
997 |
+
if hasattr(self.embeddings, "position_embeddings"):
|
998 |
+
params -= _count_parameters(self.embeddings.position_embeddings, trainable)
|
999 |
+
return params
|
1000 |
+
|
1001 |
+
|
1002 |
+
class FlexBertForMaskedLM(FlexBertPreTrainedModel):
|
1003 |
+
def __init__(self, config: FlexBertConfig):
|
1004 |
+
super().__init__(config)
|
1005 |
+
self.bert = FlexBertModel(config)
|
1006 |
+
self.head = FlexBertPredictionHead(config)
|
1007 |
+
|
1008 |
+
if config.tie_word_embeddings:
|
1009 |
+
decoder_weights = self.bert.embeddings.tok_embeddings.weight
|
1010 |
+
else:
|
1011 |
+
decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
|
1012 |
+
self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
|
1013 |
+
self.decoder.weight = decoder_weights
|
1014 |
+
|
1015 |
+
self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
|
1016 |
+
self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
|
1017 |
+
self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
|
1018 |
+
self.unpad_embeddings = config.unpad_embeddings
|
1019 |
+
self.pad_logits = config.pad_logits
|
1020 |
+
self.compile_model = config.compile_model
|
1021 |
+
self.masked_prediction = config.masked_prediction
|
1022 |
+
|
1023 |
+
# Initialize weights and apply final processing
|
1024 |
+
self._init_weights(reset_params=False)
|
1025 |
+
|
1026 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
1027 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
1028 |
+
if module:
|
1029 |
+
self._init_module_weights(module)
|
1030 |
+
else:
|
1031 |
+
assert isinstance(reset_params, bool)
|
1032 |
+
self.bert._init_weights(reset_params=reset_params)
|
1033 |
+
self.head._init_weights(reset_params=reset_params)
|
1034 |
+
|
1035 |
+
# Output weights.
|
1036 |
+
if not self.config.tie_word_embeddings:
|
1037 |
+
init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
1038 |
+
|
1039 |
+
@classmethod
|
1040 |
+
def from_composer(
|
1041 |
+
cls,
|
1042 |
+
pretrained_checkpoint,
|
1043 |
+
state_dict=None,
|
1044 |
+
cache_dir=None,
|
1045 |
+
from_tf=False,
|
1046 |
+
config=None,
|
1047 |
+
*inputs,
|
1048 |
+
**kwargs,
|
1049 |
+
):
|
1050 |
+
"""Load from pre-trained."""
|
1051 |
+
model = cls(config, *inputs, **kwargs)
|
1052 |
+
if from_tf:
|
1053 |
+
raise ValueError("FlexBERT does not support loading TensorFlow weights.")
|
1054 |
+
|
1055 |
+
state_dict = torch.load(pretrained_checkpoint)
|
1056 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
1057 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
1058 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
1059 |
+
|
1060 |
+
if len(missing_keys) > 0:
|
1061 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
1062 |
+
if len(unexpected_keys) > 0:
|
1063 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
1064 |
+
|
1065 |
+
return model
|
1066 |
+
|
1067 |
+
def get_output_embeddings(self):
|
1068 |
+
return self.decoder
|
1069 |
+
|
1070 |
+
def set_output_embeddings(self, new_embeddings):
|
1071 |
+
self.decoder = new_embeddings
|
1072 |
+
|
1073 |
+
@torch.no_grad()
|
1074 |
+
def unpad_inputs(
|
1075 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
|
1076 |
+
):
|
1077 |
+
return unpad_input(input_ids, attention_mask, position_ids, labels)
|
1078 |
+
|
1079 |
+
@torch.no_grad()
|
1080 |
+
def pad_inputs(
|
1081 |
+
self,
|
1082 |
+
inputs: torch.Tensor,
|
1083 |
+
indices: torch.Tensor,
|
1084 |
+
batch_size: int,
|
1085 |
+
seqlen: int,
|
1086 |
+
labels: Optional[torch.Tensor] = None,
|
1087 |
+
ignore_index: int = -100,
|
1088 |
+
):
|
1089 |
+
return pad_input(
|
1090 |
+
inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
@torch.compile(dynamic=True)
|
1094 |
+
def compiled_head(self, output: torch.Tensor) -> torch.Tensor:
|
1095 |
+
return self.decoder(self.head(output))
|
1096 |
+
|
1097 |
+
def forward(
|
1098 |
+
self,
|
1099 |
+
input_ids: Optional[torch.Tensor],
|
1100 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1101 |
+
position_ids: Optional[torch.Tensor] = None,
|
1102 |
+
labels: Optional[torch.Tensor] = None,
|
1103 |
+
return_dict: Optional[bool] = None,
|
1104 |
+
indices: Optional[torch.Tensor] = None,
|
1105 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1106 |
+
max_seqlen: Optional[int] = None,
|
1107 |
+
batch_size: Optional[int] = None,
|
1108 |
+
seq_len: Optional[int] = None,
|
1109 |
+
**kwargs,
|
1110 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1111 |
+
# labels should be a `torch.LongTensor` of shape
|
1112 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
1113 |
+
# masked language modeling loss.
|
1114 |
+
#
|
1115 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
1116 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
1117 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
1118 |
+
# ..., config.vocab_size]`
|
1119 |
+
#
|
1120 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
1121 |
+
# seqlen) dimensions are flattened
|
1122 |
+
|
1123 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1124 |
+
|
1125 |
+
if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
|
1126 |
+
batch_size, seq_len = input_ids.shape[:2]
|
1127 |
+
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
|
1128 |
+
input_ids, attention_mask, position_ids, labels
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
|
1132 |
+
output = self.bert(
|
1133 |
+
input_ids,
|
1134 |
+
attention_mask=attention_mask,
|
1135 |
+
position_ids=position_ids,
|
1136 |
+
indices=indices,
|
1137 |
+
cu_seqlens=cu_seqlens,
|
1138 |
+
max_seqlen=max_seqlen,
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
if self.masked_prediction and labels is not None:
|
1142 |
+
# flatten labels and output first
|
1143 |
+
labels = labels.view(-1)
|
1144 |
+
output = output.view(labels.shape[0], -1)
|
1145 |
+
|
1146 |
+
# then filter out the non-masked tokens
|
1147 |
+
mask_tokens = labels != self.loss_fn.ignore_index
|
1148 |
+
output = output[mask_tokens]
|
1149 |
+
labels = labels[mask_tokens]
|
1150 |
+
|
1151 |
+
if self.compile_model:
|
1152 |
+
logits = self.compiled_head(output)
|
1153 |
+
else:
|
1154 |
+
logits = self.decoder(self.head(output))
|
1155 |
+
|
1156 |
+
loss = None
|
1157 |
+
if labels is not None:
|
1158 |
+
if not self.masked_prediction:
|
1159 |
+
labels = labels.view(-1)
|
1160 |
+
logits = logits.view(labels.shape[0], -1)
|
1161 |
+
|
1162 |
+
if self.return_z_loss:
|
1163 |
+
loss, z_loss = self.loss_fn(logits, labels)
|
1164 |
+
if self.pad_logits:
|
1165 |
+
return MaskedLMOutputZLoss(
|
1166 |
+
loss=loss,
|
1167 |
+
ce_loss=loss.detach().clone() - z_loss,
|
1168 |
+
z_loss=z_loss,
|
1169 |
+
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
|
1170 |
+
hidden_states=None,
|
1171 |
+
attentions=None,
|
1172 |
+
)
|
1173 |
+
else:
|
1174 |
+
return MaskedLMOutputZLoss(
|
1175 |
+
loss=loss,
|
1176 |
+
ce_loss=loss.detach().clone() - z_loss,
|
1177 |
+
z_loss=z_loss,
|
1178 |
+
logits=logits,
|
1179 |
+
hidden_states=None,
|
1180 |
+
attentions=None,
|
1181 |
+
indices=indices,
|
1182 |
+
cu_seqlens=cu_seqlens,
|
1183 |
+
max_seqlen=max_seqlen,
|
1184 |
+
batch_size=batch_size,
|
1185 |
+
seq_len=seq_len,
|
1186 |
+
labels=labels,
|
1187 |
+
)
|
1188 |
+
else:
|
1189 |
+
loss = self.loss_fn(logits, labels)
|
1190 |
+
|
1191 |
+
if self.pad_logits:
|
1192 |
+
return MaskedLMOutput(
|
1193 |
+
loss=loss,
|
1194 |
+
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
|
1195 |
+
hidden_states=None,
|
1196 |
+
attentions=None,
|
1197 |
+
)
|
1198 |
+
else:
|
1199 |
+
return MaskedLMOutput(
|
1200 |
+
loss=loss,
|
1201 |
+
logits=logits,
|
1202 |
+
hidden_states=None,
|
1203 |
+
attentions=None,
|
1204 |
+
indices=indices,
|
1205 |
+
cu_seqlens=cu_seqlens,
|
1206 |
+
max_seqlen=max_seqlen,
|
1207 |
+
batch_size=batch_size,
|
1208 |
+
seq_len=seq_len,
|
1209 |
+
labels=labels,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
|
1213 |
+
input_shape = input_ids.shape
|
1214 |
+
effective_batch_size = input_shape[0]
|
1215 |
+
|
1216 |
+
# add a dummy token
|
1217 |
+
if self.config.pad_token_id is None:
|
1218 |
+
raise ValueError("The PAD token should be defined for generation")
|
1219 |
+
|
1220 |
+
attention_mask = torch.cat(
|
1221 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
1222 |
+
dim=-1,
|
1223 |
+
)
|
1224 |
+
dummy_token = torch.full(
|
1225 |
+
(effective_batch_size, 1),
|
1226 |
+
self.config.pad_token_id,
|
1227 |
+
dtype=torch.long,
|
1228 |
+
device=input_ids.device,
|
1229 |
+
)
|
1230 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1231 |
+
|
1232 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1233 |
+
|
1234 |
+
def get_number_parameters(
|
1235 |
+
self, count_embeddings: bool = True, count_decoder: bool = False, trainable: bool = True
|
1236 |
+
) -> int:
|
1237 |
+
"""Returns the number of parameters in the model.
|
1238 |
+
|
1239 |
+
Args:
|
1240 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
1241 |
+
count_decoder: count the parameters in the decoder layer if weights are not tied.
|
1242 |
+
trainable: only count trainable parameters.
|
1243 |
+
"""
|
1244 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
1245 |
+
params += _count_parameters(self.head, trainable)
|
1246 |
+
if count_decoder and not self.config.tie_word_embeddings:
|
1247 |
+
params += _count_parameters(self.decoder, trainable)
|
1248 |
+
return params
|
1249 |
+
|
1250 |
+
|
1251 |
+
class FlexBertForSequenceClassification(FlexBertPreTrainedModel):
|
1252 |
+
"""Bert Model transformer with a sequence classification/regression head.
|
1253 |
+
|
1254 |
+
This head is just a linear layer on top of the pooled output. Used for,
|
1255 |
+
e.g., GLUE tasks.
|
1256 |
+
"""
|
1257 |
+
|
1258 |
+
def __init__(self, config: FlexBertConfig):
|
1259 |
+
super().__init__(config)
|
1260 |
+
self.num_labels = config.num_labels
|
1261 |
+
self.config = config
|
1262 |
+
|
1263 |
+
self.bert = FlexBertModel(config)
|
1264 |
+
self.head = FlexBertPoolingHead(config)
|
1265 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1266 |
+
|
1267 |
+
# Initialize weights and apply final processing
|
1268 |
+
self._init_weights(reset_params=False)
|
1269 |
+
|
1270 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
1271 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
1272 |
+
if module:
|
1273 |
+
self._init_module_weights(module)
|
1274 |
+
else:
|
1275 |
+
assert isinstance(reset_params, bool)
|
1276 |
+
self.bert._init_weights(reset_params=reset_params)
|
1277 |
+
self.head._init_weights(reset_params=reset_params)
|
1278 |
+
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
1279 |
+
|
1280 |
+
@classmethod
|
1281 |
+
def from_composer(
|
1282 |
+
cls,
|
1283 |
+
pretrained_checkpoint,
|
1284 |
+
state_dict=None,
|
1285 |
+
cache_dir=None,
|
1286 |
+
from_tf=False,
|
1287 |
+
config=None,
|
1288 |
+
*inputs,
|
1289 |
+
**kwargs,
|
1290 |
+
):
|
1291 |
+
"""Load from pre-trained."""
|
1292 |
+
model = cls(config, *inputs, **kwargs)
|
1293 |
+
if from_tf:
|
1294 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
1295 |
+
|
1296 |
+
state_dict = torch.load(pretrained_checkpoint)
|
1297 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
1298 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
1299 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
1300 |
+
|
1301 |
+
if len(missing_keys) > 0:
|
1302 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
1303 |
+
if len(unexpected_keys) > 0:
|
1304 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
1305 |
+
|
1306 |
+
return model
|
1307 |
+
|
1308 |
+
def forward(
|
1309 |
+
self,
|
1310 |
+
input_ids: Optional[torch.Tensor] = None,
|
1311 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1312 |
+
position_ids: Optional[torch.Tensor] = None,
|
1313 |
+
labels: Optional[torch.Tensor] = None,
|
1314 |
+
return_dict: Optional[bool] = None,
|
1315 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1316 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1317 |
+
# Labels for computing the sequence classification/regression loss.
|
1318 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
1319 |
+
# If `config.num_labels == 1` a regression loss is computed
|
1320 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
1321 |
+
# is computed (cross-entropy).
|
1322 |
+
|
1323 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1324 |
+
|
1325 |
+
output = self.bert(
|
1326 |
+
input_ids,
|
1327 |
+
attention_mask=attention_mask,
|
1328 |
+
position_ids=position_ids,
|
1329 |
+
)
|
1330 |
+
|
1331 |
+
pooled_output = self.head(output)
|
1332 |
+
logits = self.classifier(pooled_output)
|
1333 |
+
|
1334 |
+
loss = None
|
1335 |
+
if labels is not None:
|
1336 |
+
# Compute loss
|
1337 |
+
if self.config.problem_type is None:
|
1338 |
+
if self.num_labels == 1:
|
1339 |
+
self.config.problem_type = "regression"
|
1340 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1341 |
+
self.config.problem_type = "single_label_classification"
|
1342 |
+
else:
|
1343 |
+
self.config.problem_type = "multi_label_classification"
|
1344 |
+
|
1345 |
+
if self.config.problem_type == "regression":
|
1346 |
+
loss_fct = nn.MSELoss()
|
1347 |
+
if self.num_labels == 1:
|
1348 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1349 |
+
else:
|
1350 |
+
loss = loss_fct(logits, labels)
|
1351 |
+
elif self.config.problem_type == "single_label_classification":
|
1352 |
+
loss_fct = nn.CrossEntropyLoss()
|
1353 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1354 |
+
elif self.config.problem_type == "multi_label_classification":
|
1355 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1356 |
+
loss = loss_fct(logits, labels)
|
1357 |
+
|
1358 |
+
if not return_dict:
|
1359 |
+
output = (logits,) + output
|
1360 |
+
return ((loss,) + output) if loss is not None else output
|
1361 |
+
|
1362 |
+
return SequenceClassifierOutput(
|
1363 |
+
loss=loss,
|
1364 |
+
logits=logits,
|
1365 |
+
hidden_states=None,
|
1366 |
+
attentions=None,
|
1367 |
+
)
|
1368 |
+
|
1369 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
1370 |
+
"""Returns the number of parameters in the model.
|
1371 |
+
|
1372 |
+
Args:
|
1373 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
1374 |
+
trainable: only count trainable parameters.
|
1375 |
+
"""
|
1376 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
1377 |
+
params += _count_parameters(self.head, trainable)
|
1378 |
+
params += _count_parameters(self.classifier, trainable)
|
1379 |
+
return params
|
1380 |
+
|
1381 |
+
|
1382 |
+
class FlexBertForMultipleChoice(FlexBertPreTrainedModel):
|
1383 |
+
"""
|
1384 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1385 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1386 |
+
"""
|
1387 |
+
|
1388 |
+
def __init__(self, config: FlexBertConfig):
|
1389 |
+
super().__init__(config)
|
1390 |
+
self.num_labels = config.num_labels
|
1391 |
+
self.config = config
|
1392 |
+
|
1393 |
+
self.bert = FlexBertModel(config)
|
1394 |
+
self.head = FlexBertPoolingHead(config)
|
1395 |
+
|
1396 |
+
# In multiple choice tasks, all choices are submitted in a batch, and
|
1397 |
+
# we compute a logit for each option independently. The logits are then
|
1398 |
+
# normalized in the forward pass to get a probability distribution over
|
1399 |
+
# the choices.
|
1400 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1401 |
+
|
1402 |
+
# Initialize weights and apply final processing
|
1403 |
+
self._init_weights(reset_params=False)
|
1404 |
+
|
1405 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
1406 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
1407 |
+
if module:
|
1408 |
+
self._init_module_weights(module)
|
1409 |
+
else:
|
1410 |
+
assert isinstance(reset_params, bool)
|
1411 |
+
self.bert._init_weights(reset_params=reset_params)
|
1412 |
+
self.head._init_weights(reset_params=reset_params)
|
1413 |
+
init_weights(self.config, self.classifier, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
1414 |
+
|
1415 |
+
@classmethod
|
1416 |
+
def from_composer(
|
1417 |
+
cls,
|
1418 |
+
pretrained_checkpoint,
|
1419 |
+
state_dict=None,
|
1420 |
+
cache_dir=None,
|
1421 |
+
from_tf=False,
|
1422 |
+
config=None,
|
1423 |
+
*inputs,
|
1424 |
+
**kwargs,
|
1425 |
+
):
|
1426 |
+
"""Load from pre-trained."""
|
1427 |
+
model = cls(config, *inputs, **kwargs)
|
1428 |
+
if from_tf:
|
1429 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
1430 |
+
|
1431 |
+
state_dict = torch.load(pretrained_checkpoint)
|
1432 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
1433 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
1434 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
1435 |
+
|
1436 |
+
if len(missing_keys) > 0:
|
1437 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
1438 |
+
if len(unexpected_keys) > 0:
|
1439 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
1440 |
+
|
1441 |
+
return model
|
1442 |
+
|
1443 |
+
def forward(
|
1444 |
+
self,
|
1445 |
+
input_ids: Optional[torch.Tensor] = None,
|
1446 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1447 |
+
position_ids: Optional[torch.Tensor] = None,
|
1448 |
+
labels: Optional[torch.Tensor] = None,
|
1449 |
+
return_dict: Optional[bool] = None,
|
1450 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1451 |
+
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1452 |
+
# Labels for computing the sequence classification/regression loss.
|
1453 |
+
# Indices should be in `[0, ..., config.num_labels - 1]`.
|
1454 |
+
# If `config.num_labels == 1` a regression loss is computed
|
1455 |
+
# (mean-square loss). If `config.num_labels > 1` a classification loss
|
1456 |
+
# is computed (cross-entropy).
|
1457 |
+
|
1458 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1459 |
+
num_choices = input_ids.shape[1]
|
1460 |
+
|
1461 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1462 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1463 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1464 |
+
|
1465 |
+
output = self.bert(
|
1466 |
+
input_ids,
|
1467 |
+
attention_mask=attention_mask,
|
1468 |
+
position_ids=position_ids,
|
1469 |
+
)
|
1470 |
+
|
1471 |
+
pooled_output = self.head(output)
|
1472 |
+
logits = self.classifier(pooled_output)
|
1473 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1474 |
+
|
1475 |
+
loss = None
|
1476 |
+
if labels is not None:
|
1477 |
+
loss_fct = nn.CrossEntropyLoss()
|
1478 |
+
loss = loss_fct(reshaped_logits, labels)
|
1479 |
+
|
1480 |
+
if not return_dict:
|
1481 |
+
output = (reshaped_logits,) + output
|
1482 |
+
return ((loss,) + output) if loss is not None else output
|
1483 |
+
|
1484 |
+
return MultipleChoiceModelOutput(
|
1485 |
+
loss=loss,
|
1486 |
+
logits=reshaped_logits,
|
1487 |
+
hidden_states=None,
|
1488 |
+
attentions=None,
|
1489 |
+
)
|
1490 |
+
|
1491 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
1492 |
+
"""Returns the number of parameters in the model.
|
1493 |
+
|
1494 |
+
Args:
|
1495 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
1496 |
+
trainable: only count trainable parameters.
|
1497 |
+
"""
|
1498 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
1499 |
+
params += _count_parameters(self.head, trainable)
|
1500 |
+
params += _count_parameters(self.classifier, trainable)
|
1501 |
+
return params
|
1502 |
+
|
1503 |
+
|
1504 |
+
class FlexBertForCasualLM(FlexBertPreTrainedModel):
|
1505 |
+
"""Bert Model transformer with a LM head.
|
1506 |
+
|
1507 |
+
This head is just a standard LM head module. Used for causal language modeling tasks.
|
1508 |
+
"""
|
1509 |
+
|
1510 |
+
def __init__(self, config: FlexBertConfig):
|
1511 |
+
super().__init__(config)
|
1512 |
+
self.bert = FlexBertModel(config)
|
1513 |
+
self.lm_head = FlexBertPredictionHead(config)
|
1514 |
+
|
1515 |
+
if config.tie_word_embeddings:
|
1516 |
+
decoder_weights = self.bert.embeddings.tok_embeddings.weight
|
1517 |
+
else:
|
1518 |
+
decoder_weights = nn.Linear(config.hidden_size, config.vocab_size, bias=False).weight
|
1519 |
+
self.decoder = nn.Linear(decoder_weights.size(1), decoder_weights.size(0), bias=config.decoder_bias)
|
1520 |
+
self.decoder.weight = decoder_weights
|
1521 |
+
|
1522 |
+
self.loss_fn = nn.CrossEntropyLoss() if not hasattr(config, "loss_function") else get_loss_fn(config)
|
1523 |
+
self.fa_ce = getattr(config, "loss_function", "cross_entropy") == "fa_cross_entropy"
|
1524 |
+
self.return_z_loss = config.loss_kwargs.get("return_z_loss", False)
|
1525 |
+
self.unpad_embeddings = config.unpad_embeddings
|
1526 |
+
self.pad_logits = config.pad_logits
|
1527 |
+
self.compile_model = config.compile_model
|
1528 |
+
# self.masked_prediction = config.masked_prediction
|
1529 |
+
|
1530 |
+
# Initialize weights and apply final processing
|
1531 |
+
self._init_weights(reset_params=False)
|
1532 |
+
|
1533 |
+
def _init_weights(self, module: Optional[nn.Module] = None, reset_params: Optional[bool] = None):
|
1534 |
+
assert (module is None) != (reset_params is None), "arg module xor reset_params must be specified"
|
1535 |
+
if module:
|
1536 |
+
self._init_module_weights(module)
|
1537 |
+
else:
|
1538 |
+
assert isinstance(reset_params, bool)
|
1539 |
+
self.bert._init_weights(reset_params=reset_params)
|
1540 |
+
self.lm_head._init_weights(reset_params=reset_params)
|
1541 |
+
|
1542 |
+
if not self.config.tie_word_embeddings:
|
1543 |
+
init_weights(self.config, self.decoder, self.config.hidden_size, type_of_module=ModuleType.final_out)
|
1544 |
+
|
1545 |
+
@classmethod
|
1546 |
+
def from_composer(
|
1547 |
+
cls,
|
1548 |
+
pretrained_checkpoint,
|
1549 |
+
state_dict=None,
|
1550 |
+
cache_dir=None,
|
1551 |
+
from_tf=False,
|
1552 |
+
config=None,
|
1553 |
+
*inputs,
|
1554 |
+
**kwargs,
|
1555 |
+
):
|
1556 |
+
"""Load from pre-trained."""
|
1557 |
+
model = cls(config, *inputs, **kwargs)
|
1558 |
+
if from_tf:
|
1559 |
+
raise ValueError("Mosaic BERT does not support loading TensorFlow weights.")
|
1560 |
+
|
1561 |
+
state_dict = torch.load(pretrained_checkpoint)
|
1562 |
+
# If the state_dict was saved after wrapping with `composer.HuggingFaceModel`, it takes on the `model` prefix
|
1563 |
+
consume_prefix_in_state_dict_if_present(state_dict, prefix="model.")
|
1564 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
1565 |
+
|
1566 |
+
if len(missing_keys) > 0:
|
1567 |
+
logger.warning(f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}")
|
1568 |
+
if len(unexpected_keys) > 0:
|
1569 |
+
logger.warning(f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}")
|
1570 |
+
|
1571 |
+
return model
|
1572 |
+
|
1573 |
+
|
1574 |
+
def get_output_embeddings(self):
|
1575 |
+
return self.decoder
|
1576 |
+
|
1577 |
+
def set_output_embeddings(self, new_embeddings):
|
1578 |
+
self.decoder = new_embeddings
|
1579 |
+
|
1580 |
+
@torch.no_grad()
|
1581 |
+
def unpad_inputs(
|
1582 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, position_ids: torch.Tensor, labels: torch.Tensor
|
1583 |
+
):
|
1584 |
+
return unpad_input(input_ids, attention_mask, position_ids, labels)
|
1585 |
+
|
1586 |
+
@torch.no_grad()
|
1587 |
+
def pad_inputs(
|
1588 |
+
self,
|
1589 |
+
inputs: torch.Tensor,
|
1590 |
+
indices: torch.Tensor,
|
1591 |
+
batch_size: int,
|
1592 |
+
seqlen: int,
|
1593 |
+
labels: Optional[torch.Tensor] = None,
|
1594 |
+
ignore_index: int = -100,
|
1595 |
+
):
|
1596 |
+
return pad_input(
|
1597 |
+
inputs=inputs, indices=indices, batch=batch_size, seqlen=seqlen, labels=labels, ignore_index=ignore_index
|
1598 |
+
)
|
1599 |
+
|
1600 |
+
@torch.compile(dynamic=True)
|
1601 |
+
def compiled_lm_head(self, output: torch.Tensor) -> torch.Tensor:
|
1602 |
+
return self.decoder(self.lm_head(output))
|
1603 |
+
|
1604 |
+
def forward(
|
1605 |
+
self,
|
1606 |
+
input_ids: Optional[torch.Tensor],
|
1607 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1608 |
+
position_ids: Optional[torch.Tensor] = None,
|
1609 |
+
labels: Optional[torch.Tensor] = None,
|
1610 |
+
return_dict: Optional[bool] = None,
|
1611 |
+
indices: Optional[torch.Tensor] = None,
|
1612 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1613 |
+
max_seqlen: Optional[int] = None,
|
1614 |
+
batch_size: Optional[int] = None,
|
1615 |
+
seq_len: Optional[int] = None,
|
1616 |
+
**kwargs,
|
1617 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutput]:
|
1618 |
+
# labels should be a `torch.LongTensor` of shape
|
1619 |
+
# `(batch_size, sequence_length)`. These are used for computing the
|
1620 |
+
# masked language modeling loss.
|
1621 |
+
#
|
1622 |
+
# Indices should be in `[-100, 0, ..., config.vocab_size]` (see
|
1623 |
+
# `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
1624 |
+
# (masked), the loss is only computed for the tokens with labels in `[0,
|
1625 |
+
# ..., config.vocab_size]`
|
1626 |
+
#
|
1627 |
+
# Prediction scores are only computed for masked tokens and the (bs,
|
1628 |
+
# seqlen) dimensions are flattened
|
1629 |
+
|
1630 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1631 |
+
|
1632 |
+
if self.unpad_embeddings and (indices is None and cu_seqlens is None and max_seqlen is None):
|
1633 |
+
batch_size, seq_len = input_ids.shape[:2]
|
1634 |
+
input_ids, indices, cu_seqlens, max_seqlen, position_ids, labels = self.unpad_inputs(
|
1635 |
+
input_ids, attention_mask, position_ids, labels
|
1636 |
+
)
|
1637 |
+
|
1638 |
+
hidden_states = self.bert(
|
1639 |
+
input_ids,
|
1640 |
+
attention_mask=None,
|
1641 |
+
position_ids=position_ids,
|
1642 |
+
indices=indices,
|
1643 |
+
cu_seqlens=cu_seqlens,
|
1644 |
+
max_seqlen=max_seqlen,
|
1645 |
+
)
|
1646 |
+
|
1647 |
+
if self.compile_model:
|
1648 |
+
logits = self.compiled_lm_head(hidden_states)
|
1649 |
+
else:
|
1650 |
+
logits = self.lm_head(hidden_states)
|
1651 |
+
|
1652 |
+
loss = None
|
1653 |
+
if labels is not None:
|
1654 |
+
if indices is not None:
|
1655 |
+
# Unpadded case: shift within each sequence using input_ids
|
1656 |
+
# Initialize shifted labels from input_ids
|
1657 |
+
shift_labels = torch.full_like(input_ids, -100)
|
1658 |
+
|
1659 |
+
# For each sequence, shift the input_ids to create labels
|
1660 |
+
for i in range(len(cu_seqlens) - 1):
|
1661 |
+
start = cu_seqlens[i]
|
1662 |
+
end = cu_seqlens[i + 1]
|
1663 |
+
# Input: [A, B, C, D] -> Labels: [B, C, D, -100]
|
1664 |
+
shift_labels[start:end-1] = input_ids[start+1:end]
|
1665 |
+
|
1666 |
+
# Debug prints
|
1667 |
+
# print(f"input_ids slice: {input_ids[:20]}") # Show first 20 tokens
|
1668 |
+
# print(f"shift_labels slice: {shift_labels[:20]}") # Show first 20 token
|
1669 |
+
|
1670 |
+
# # Debug prints
|
1671 |
+
# print(f"input_ids slice: {input_ids[:20]}") # Show first 20 tokens
|
1672 |
+
# print(f"shift_labels slice: {shift_labels[:20]}") # Show first 20 tokens
|
1673 |
+
# print(f"First sequence length: {cu_seqlens[1] - cu_seqlens[0]}")
|
1674 |
+
|
1675 |
+
else:
|
1676 |
+
# Padded case: simple shift
|
1677 |
+
shift_labels = input_ids[..., 1:].contiguous()
|
1678 |
+
logits = logits[..., :-1, :].contiguous()
|
1679 |
+
|
1680 |
+
# For both cases, we'll use the shifted input_ids as our labels
|
1681 |
+
labels = shift_labels
|
1682 |
+
|
1683 |
+
# Flatten the tokens
|
1684 |
+
loss = self.loss_fn(
|
1685 |
+
logits.view(-1, logits.size(-1)),
|
1686 |
+
shift_labels.view(-1)
|
1687 |
+
)
|
1688 |
+
|
1689 |
+
if self.pad_logits:
|
1690 |
+
return CausalLMOutput(
|
1691 |
+
loss=loss,
|
1692 |
+
logits=self.pad_inputs(logits, indices, batch_size, seq_len)[0],
|
1693 |
+
hidden_states=None,
|
1694 |
+
attentions=None,
|
1695 |
+
)
|
1696 |
+
else:
|
1697 |
+
return CausalLMOutput(
|
1698 |
+
loss=loss,
|
1699 |
+
logits=logits,
|
1700 |
+
hidden_states=hidden_states,
|
1701 |
+
attentions=None,
|
1702 |
+
)
|
1703 |
+
|
1704 |
+
def prepare_inputs_for_generation(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **model_kwargs):
|
1705 |
+
input_shape = input_ids.shape
|
1706 |
+
effective_batch_size = input_shape[0]
|
1707 |
+
|
1708 |
+
# add a dummy token
|
1709 |
+
if self.config.pad_token_id is None:
|
1710 |
+
raise ValueError("The PAD token should be defined for generation")
|
1711 |
+
|
1712 |
+
attention_mask = torch.cat(
|
1713 |
+
[attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))],
|
1714 |
+
dim=-1,
|
1715 |
+
)
|
1716 |
+
dummy_token = torch.full(
|
1717 |
+
(effective_batch_size, 1),
|
1718 |
+
self.config.pad_token_id,
|
1719 |
+
dtype=torch.long,
|
1720 |
+
device=input_ids.device,
|
1721 |
+
)
|
1722 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1723 |
+
|
1724 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1725 |
+
|
1726 |
+
def get_number_parameters(self, count_embeddings: bool = True, trainable: bool = True) -> int:
|
1727 |
+
"""Returns the number of parameters in the model.
|
1728 |
+
|
1729 |
+
Args:
|
1730 |
+
count_embeddings: count the parameters in the embeddings layer, excluding position embeddings.
|
1731 |
+
trainable: only count trainable parameters.
|
1732 |
+
"""
|
1733 |
+
params = self.bert.get_number_parameters(count_embeddings, trainable)
|
1734 |
+
params += _count_parameters(self.lm_head, trainable)
|
1735 |
+
return params
|
1736 |
+
|
1737 |
+
|
1738 |
+
def init_model_from_pretrained(
|
1739 |
+
pretrained_model: FlexBertModel,
|
1740 |
+
new_model: FlexBertModel,
|
1741 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
1742 |
+
):
|
1743 |
+
"""
|
1744 |
+
Initialize the new model from the pretrained model.
|
1745 |
+
|
1746 |
+
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
|
1747 |
+
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
|
1748 |
+
|
1749 |
+
Args:
|
1750 |
+
pretrained_model (FlexBertModel): The smaller, pre-trained model
|
1751 |
+
new_model (FlexBertModel): The larger model to be initialized
|
1752 |
+
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
1753 |
+
|
1754 |
+
This function assumes that the new_model has more layers and a larger hidden size
|
1755 |
+
than the pretrained_model, but the same vocabulary size.
|
1756 |
+
"""
|
1757 |
+
|
1758 |
+
# Tile embeddings
|
1759 |
+
assert isinstance(
|
1760 |
+
new_model.embeddings, type(pretrained_model.embeddings)
|
1761 |
+
), f"Pretrained and new_model layers must be the same type, got {type(new_model.embeddings)} and {type(pretrained_model.embeddings)}"
|
1762 |
+
assert isinstance(
|
1763 |
+
new_model.embeddings,
|
1764 |
+
(FlexBertAbsoluteEmbeddings, FlexBertSansPositionEmbeddings, FlexBertCompiledSansPositionEmbeddings),
|
1765 |
+
), f"Unsupported embedding layer type: {type(new_model.embeddings)}"
|
1766 |
+
|
1767 |
+
tile_embedding(pretrained_model.embeddings.tok_embeddings, new_model.embeddings.tok_embeddings, mode=mode)
|
1768 |
+
if isinstance(pretrained_model.embeddings, FlexBertAbsoluteEmbeddings):
|
1769 |
+
tile_embedding(pretrained_model.embeddings.pos_embeddings, new_model.embeddings.pos_embeddings, mode=mode)
|
1770 |
+
|
1771 |
+
if hasattr(pretrained_model.embeddings, "norm"):
|
1772 |
+
tile_norm(pretrained_model.embeddings.norm, new_model.embeddings.norm, mode=mode)
|
1773 |
+
|
1774 |
+
# Tile encoder layers
|
1775 |
+
assert isinstance(
|
1776 |
+
pretrained_model.encoder, (FlexBertUnpadEncoder, FlexBertPaddedEncoder)
|
1777 |
+
), f"Unsupported encoder layer type: {type(pretrained_model.encoder)}"
|
1778 |
+
assert isinstance(
|
1779 |
+
new_model.encoder, type(pretrained_model.encoder)
|
1780 |
+
), f"Pretrained and new_model encoder layers must be the same type, got {type(new_model.encoder)} and {type(pretrained_model.encoder)}"
|
1781 |
+
|
1782 |
+
# Calculate the layer mapping
|
1783 |
+
pretrained_layers = len(pretrained_model.encoder.layers)
|
1784 |
+
new_layers = len(new_model.encoder.layers)
|
1785 |
+
layer_mapping = [round(i * pretrained_layers / new_layers) for i in range(new_layers)]
|
1786 |
+
|
1787 |
+
# Initialize layers
|
1788 |
+
for new_model_idx, pretrained_idx in enumerate(layer_mapping):
|
1789 |
+
new_model_layer = new_model.encoder.layers[new_model_idx]
|
1790 |
+
pretrained_layer = pretrained_model.encoder.layers[pretrained_idx]
|
1791 |
+
|
1792 |
+
# first tile the PreNorm/PostNorm layers
|
1793 |
+
assert isinstance(
|
1794 |
+
new_model_layer, type(pretrained_layer)
|
1795 |
+
), f"Pretrained and new_model prenorm/postnorm layers must be the same type, got {type(new_model_layer)} and {type(pretrained_layer)}"
|
1796 |
+
assert isinstance(
|
1797 |
+
new_model_layer,
|
1798 |
+
(
|
1799 |
+
FlexBertUnpadPreNormLayer,
|
1800 |
+
FlexBertCompileUnpadPreNormLayer,
|
1801 |
+
FlexBertUnpadParallelPreNormLayer,
|
1802 |
+
FlexBertUnpadPostNormLayer,
|
1803 |
+
FlexBertPaddedPreNormLayer,
|
1804 |
+
FlexBertPaddedParallelPreNormLayer,
|
1805 |
+
FlexBertPaddedPostNormLayer,
|
1806 |
+
),
|
1807 |
+
), f"Unsupported prenorm/postnorm layer type: {type(new_model_layer)}"
|
1808 |
+
|
1809 |
+
# First tile the normalization layers
|
1810 |
+
if hasattr(pretrained_layer, "attn_norm"):
|
1811 |
+
tile_norm(pretrained_layer.attn_norm, new_model_layer.attn_norm, mode=mode)
|
1812 |
+
if hasattr(pretrained_layer, "norm"):
|
1813 |
+
tile_norm(pretrained_layer.norm, new_model_layer.norm, mode=mode)
|
1814 |
+
if hasattr(pretrained_layer, "mlp_norm"):
|
1815 |
+
tile_norm(pretrained_layer.mlp_norm, new_model_layer.mlp_norm, mode=mode)
|
1816 |
+
|
1817 |
+
# Then tile the attention & mlp layers
|
1818 |
+
assert isinstance(
|
1819 |
+
new_model_layer.attn, type(pretrained_layer.attn)
|
1820 |
+
), f"Pretrained and new_model attention layers must be the same type, got {type(new_model_layer.attn)} and {type(pretrained_layer.attn)}"
|
1821 |
+
|
1822 |
+
# first try the parallel attention layers
|
1823 |
+
if isinstance(pretrained_layer, (FlexBertUnpadParallelPreNormLayer, FlexBertPaddedParallelPreNormLayer)):
|
1824 |
+
assert isinstance(
|
1825 |
+
pretrained_layer.attn,
|
1826 |
+
(
|
1827 |
+
FlexBertUnpadParallelAttention,
|
1828 |
+
FlexBertPaddedParallelAttention,
|
1829 |
+
FlexBertUnpadRopeParallelAttention,
|
1830 |
+
FlexBertPaddedRopeParallelAttention,
|
1831 |
+
),
|
1832 |
+
), f"Parallel prenorm layer must have parallel attention layer: {type(pretrained_layer.attn)}"
|
1833 |
+
if not isinstance(pretrained_layer.mlp, (FlexBertParallelGLU)):
|
1834 |
+
raise ValueError(f"Parallel prenorm layer must have parallel MLP layer: {type(pretrained_layer.mlp)}")
|
1835 |
+
tile_linear(
|
1836 |
+
pretrained_layer.Wqkvff,
|
1837 |
+
new_model_layer.Wqkvff,
|
1838 |
+
linear_type=TileLinear.wqkvff,
|
1839 |
+
mode=mode,
|
1840 |
+
pretrained_attn_size=pretrained_layer.attn_size,
|
1841 |
+
pretrained_mlp_size=pretrained_layer.mlp_size,
|
1842 |
+
new_attn_size=new_model_layer.attn_size,
|
1843 |
+
new_mlp_size=new_model_layer.mlp_size,
|
1844 |
+
wqkvff_is_glu=True,
|
1845 |
+
)
|
1846 |
+
|
1847 |
+
# then try the fused attention layers
|
1848 |
+
elif isinstance(
|
1849 |
+
pretrained_layer.attn,
|
1850 |
+
(
|
1851 |
+
FlexBertUnpadAttention,
|
1852 |
+
FlexBertPaddedAttention,
|
1853 |
+
FlexBertUnpadRopeAttention,
|
1854 |
+
FlexBertPaddedRopeAttention,
|
1855 |
+
),
|
1856 |
+
):
|
1857 |
+
tile_linear(pretrained_layer.attn.Wqkv, new_model_layer.attn.Wqkv, linear_type=TileLinear.wqkv, mode=mode)
|
1858 |
+
else:
|
1859 |
+
raise ValueError(f"Unsupported attention layer type: {type(pretrained_layer.attn)}")
|
1860 |
+
|
1861 |
+
# finally, tile the attention output layer
|
1862 |
+
tile_linear(pretrained_layer.attn.Wo, new_model_layer.attn.Wo, linear_type=TileLinear.default, mode=mode)
|
1863 |
+
|
1864 |
+
# tile the mlp layer if the model is not using parallel attention layers
|
1865 |
+
if not isinstance(pretrained_layer.mlp, (FlexBertMLP, FlexBertGLU, FlexBertParallelGLU)):
|
1866 |
+
raise ValueError(f"Unsupported MLP layer type: {type(pretrained_layer.mlp)}")
|
1867 |
+
assert isinstance(
|
1868 |
+
new_model_layer.mlp, type(pretrained_layer.mlp)
|
1869 |
+
), f"Pretrained and new_model mlp layers must be the same type, got {type(new_model_layer.mlp)} and {type(pretrained_layer.mlp)}"
|
1870 |
+
|
1871 |
+
# already tiled the parallel glu layer if it exists, so only need to handle mlp & glu Wi
|
1872 |
+
if isinstance(pretrained_layer.mlp, FlexBertGLU):
|
1873 |
+
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.glu, mode=mode)
|
1874 |
+
elif isinstance(pretrained_layer.mlp, FlexBertMLP):
|
1875 |
+
tile_linear(pretrained_layer.mlp.Wi, new_model_layer.mlp.Wi, linear_type=TileLinear.default, mode=mode)
|
1876 |
+
# tile the output for both ParallelGLU and MLP/GLU
|
1877 |
+
tile_linear(pretrained_layer.mlp.Wo, new_model_layer.mlp.Wo, linear_type=TileLinear.default, mode=mode)
|
1878 |
+
|
1879 |
+
|
1880 |
+
def init_mlm_model_from_pretrained(
|
1881 |
+
config: FlexBertConfig,
|
1882 |
+
pretrained_model: FlexBertForMaskedLM,
|
1883 |
+
new_model: FlexBertForMaskedLM,
|
1884 |
+
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
|
1885 |
+
):
|
1886 |
+
"""
|
1887 |
+
Initialize the new model from the pretrained model.
|
1888 |
+
|
1889 |
+
This method uses Gopher layer scaling and Phi-style weight tiling as selected by `mode`.
|
1890 |
+
The new model must have the same or more layers and the same or larger dimensions than the pretrained model.
|
1891 |
+
|
1892 |
+
Args:
|
1893 |
+
config (FlexBertConfig): The configuration of the new_model
|
1894 |
+
pretrained_model (FlexBertForMaskedLM): The smaller, pre-trained model
|
1895 |
+
new_model (FlexBertForMaskedLM): The larger model to be initialized from the pretrained model
|
1896 |
+
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
|
1897 |
+
|
1898 |
+
This function assumes that the new_model has more layers and a larger hidden size
|
1899 |
+
than the pretrained_model, but the same vocabulary size.
|
1900 |
+
"""
|
1901 |
+
init_model_from_pretrained(pretrained_model.bert, new_model.bert, mode=mode)
|
1902 |
+
|
1903 |
+
# TODO: uncomment this when the repo is turned into a pip installable package
|
1904 |
+
# if not isinstance(pretrained_model.head, FlexBertPredictionHead):
|
1905 |
+
# raise ValueError(f"Pretrained model must have a prediction head: {type(pretrained_model.head)}")
|
1906 |
+
# if not isinstance(new_model.head, FlexBertPredictionHead):
|
1907 |
+
# raise ValueError(f"New model must have a prediction head: {type(new_model.head)}")
|
1908 |
+
|
1909 |
+
# tile the prediction head
|
1910 |
+
tile_linear(pretrained_model.head.dense, new_model.head.dense, linear_type=TileLinear.default, mode=mode)
|
1911 |
+
tile_norm(pretrained_model.head.norm, new_model.head.norm, mode=mode)
|
1912 |
+
|
1913 |
+
# setup weight tying
|
1914 |
+
if config.tie_word_embeddings:
|
1915 |
+
new_model.decoder.weight = new_model.bert.embeddings.tok_embeddings.weight
|
1916 |
+
tile_linear(
|
1917 |
+
pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode, bias_only=True
|
1918 |
+
)
|
1919 |
+
else:
|
1920 |
+
tile_linear(pretrained_model.decoder, new_model.decoder, linear_type=TileLinear.default, mode=mode)
|
normalization.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# RMSNorm Implementation: Copyright Meta (from their Llama RMSNorm implementation)
|
5 |
+
# License: LLAMA 2 COMMUNITY LICENSE AGREEMENT
|
6 |
+
|
7 |
+
|
8 |
+
import inspect
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from torch.nn import init
|
12 |
+
|
13 |
+
from .configuration_bert import FlexBertConfig
|
14 |
+
|
15 |
+
try:
|
16 |
+
from flash_attn.ops.triton.layer_norm import RMSNorm as TritonRMSNorm
|
17 |
+
from flash_attn.ops.triton.layer_norm import layer_norm_fn
|
18 |
+
|
19 |
+
except ImportError:
|
20 |
+
TritonRMSNorm = None
|
21 |
+
layer_norm_fn = None
|
22 |
+
|
23 |
+
|
24 |
+
class RMSNorm(nn.Module):
|
25 |
+
"""Llama2 RMSNorm implementation"""
|
26 |
+
|
27 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
28 |
+
"""
|
29 |
+
Initialize the RMSNorm normalization layer.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
dim (int): The dimension of the input tensor.
|
33 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
34 |
+
|
35 |
+
Attributes:
|
36 |
+
eps (float): A small value added to the denominator for numerical stability.
|
37 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
38 |
+
|
39 |
+
"""
|
40 |
+
super().__init__()
|
41 |
+
self.eps = eps
|
42 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
43 |
+
|
44 |
+
def _norm(self, x):
|
45 |
+
"""
|
46 |
+
Apply the RMSNorm normalization to the input tensor.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
x (torch.Tensor): The input tensor.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
torch.Tensor: The normalized tensor.
|
53 |
+
|
54 |
+
"""
|
55 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
"""
|
59 |
+
Forward pass through the RMSNorm layer.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
x (torch.Tensor): The input tensor.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
66 |
+
|
67 |
+
"""
|
68 |
+
output = self._norm(x.float()).type_as(x)
|
69 |
+
return output * self.weight
|
70 |
+
|
71 |
+
def reset_parameters(self):
|
72 |
+
init.ones_(self.weight)
|
73 |
+
|
74 |
+
|
75 |
+
if layer_norm_fn is not None:
|
76 |
+
|
77 |
+
class TritonLayerNorm(nn.LayerNorm):
|
78 |
+
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
79 |
+
return layer_norm_fn(
|
80 |
+
x,
|
81 |
+
self.weight,
|
82 |
+
self.bias,
|
83 |
+
residual=residual,
|
84 |
+
eps=self.eps,
|
85 |
+
prenorm=prenorm,
|
86 |
+
residual_in_fp32=residual_in_fp32,
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
TritonLayerNorm = None
|
90 |
+
|
91 |
+
NORM2CLS = {
|
92 |
+
"layernorm": nn.LayerNorm,
|
93 |
+
"triton_layernorm": TritonLayerNorm if TritonLayerNorm is not None else nn.LayerNorm,
|
94 |
+
"rmsnorm": RMSNorm,
|
95 |
+
"triton_rmsnorm": TritonRMSNorm if TritonRMSNorm is not None else RMSNorm,
|
96 |
+
}
|
97 |
+
|
98 |
+
|
99 |
+
def get_norm_layer(config: FlexBertConfig, compiled_norm: bool = False) -> nn.Module:
|
100 |
+
try:
|
101 |
+
if compiled_norm:
|
102 |
+
# Use non-Triton norms when compiling
|
103 |
+
if config.normalization.startswith("triton_"):
|
104 |
+
norm = config.normalization.replace("triton_", "")
|
105 |
+
else:
|
106 |
+
norm = config.normalization
|
107 |
+
else:
|
108 |
+
norm = config.normalization
|
109 |
+
signature = inspect.signature(NORM2CLS[norm])
|
110 |
+
if hasattr(config, "norm_kwargs"):
|
111 |
+
norm_kwargs = {k: v for k, v in config.norm_kwargs.items() if k in signature.parameters}
|
112 |
+
else:
|
113 |
+
norm_kwargs = {}
|
114 |
+
return NORM2CLS[norm](config.hidden_size, **norm_kwargs)
|
115 |
+
except KeyError:
|
116 |
+
raise ValueError(f"Invalid normalization layer type: {config.normalization}, must be one of {NORM2CLS.keys()}.")
|
options.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .normalization import NORM2CLS
|
2 |
+
from .embeddings import EBB2CLS
|
3 |
+
from .activation import ACT2CLS
|
4 |
+
from .attention import ATTN2CLS
|
5 |
+
from .mlp import MLP2CLS
|
6 |
+
from .layers import LAYER2CLS
|
7 |
+
|
8 |
+
|
9 |
+
def print_layer_options():
|
10 |
+
print("Activation options:")
|
11 |
+
for option in ACT2CLS:
|
12 |
+
print(f" {option}")
|
13 |
+
|
14 |
+
print("\nAttention Layer options:")
|
15 |
+
for option in ATTN2CLS:
|
16 |
+
print(f" {option}")
|
17 |
+
|
18 |
+
print("\nEmbedding Layer options:")
|
19 |
+
for option in EBB2CLS:
|
20 |
+
print(f" {option}")
|
21 |
+
|
22 |
+
print("\nBert Layer options:")
|
23 |
+
for option in LAYER2CLS:
|
24 |
+
print(f" {option}")
|
25 |
+
|
26 |
+
print("\nMLP Layer options:")
|
27 |
+
for option in MLP2CLS:
|
28 |
+
print(f" {option}")
|
29 |
+
|
30 |
+
print("\nNormalization options:")
|
31 |
+
for option in NORM2CLS:
|
32 |
+
print(f" {option}")
|
padding.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
from typing import Optional, Tuple
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
def unpad_input(
|
8 |
+
inputs: Tensor,
|
9 |
+
attention_mask: Tensor,
|
10 |
+
position_ids: Optional[Tensor] = None,
|
11 |
+
labels: Optional[Tensor] = None,
|
12 |
+
) -> Tuple[Tensor, Tensor, Tensor, int, Optional[Tensor], Optional[Tensor]]:
|
13 |
+
"""
|
14 |
+
Remove padding from input sequences.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
inputs: (batch, seqlen, ...) or (batch, seqlen)
|
18 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
19 |
+
position_ids: (batch, seqlen), int, position ids
|
20 |
+
labels: (batch, seqlen), int, labels
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
unpadded_inputs: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask.
|
24 |
+
indices: (total_nnz)
|
25 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths
|
26 |
+
max_seqlen_in_batch: int
|
27 |
+
unpadded_position_ids: (total_nnz) or None
|
28 |
+
unpadded_labels: (total_nnz) or None
|
29 |
+
"""
|
30 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
31 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
32 |
+
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
33 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
34 |
+
|
35 |
+
if inputs.dim() == 2:
|
36 |
+
unpadded_inputs = inputs.flatten()[indices]
|
37 |
+
else:
|
38 |
+
batch, seqlen, *rest = inputs.shape
|
39 |
+
shape = batch * seqlen
|
40 |
+
unpadded_inputs = inputs.view(shape, *rest)[indices]
|
41 |
+
|
42 |
+
unpadded_position_ids = position_ids.flatten()[indices] if position_ids is not None else None
|
43 |
+
unpadded_labels = labels.flatten()[indices] if labels is not None else None
|
44 |
+
|
45 |
+
return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch, unpadded_position_ids, unpadded_labels
|
46 |
+
|
47 |
+
|
48 |
+
def pad_input(
|
49 |
+
inputs: Tensor,
|
50 |
+
indices: Tensor,
|
51 |
+
batch: int,
|
52 |
+
seqlen: int,
|
53 |
+
labels: Optional[Tensor] = None,
|
54 |
+
ignore_index: int = -100,
|
55 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
56 |
+
"""
|
57 |
+
Add padding to sequences.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
inputs: (total_nnz, ...) or (total_nnz,), where total_nnz = number of tokens selected in attention_mask.
|
61 |
+
indices: (total_nnz)
|
62 |
+
batch: int, batch size
|
63 |
+
seqlen: int, max sequence length
|
64 |
+
position_ids: (total_nnz) or None
|
65 |
+
labels: (total_nnz) or None
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
padded_inputs: (batch, seqlen, ...) or (batch, seqlen)
|
69 |
+
padded_labels: (batch, seqlen) or None
|
70 |
+
"""
|
71 |
+
if inputs.dim() == 1:
|
72 |
+
output = torch.zeros(batch * seqlen, dtype=inputs.dtype, device=inputs.device)
|
73 |
+
output[indices] = inputs
|
74 |
+
padded_inputs = output.view(batch, seqlen)
|
75 |
+
else:
|
76 |
+
_, *rest = inputs.shape
|
77 |
+
output = torch.zeros(batch * seqlen, *rest, dtype=inputs.dtype, device=inputs.device)
|
78 |
+
output[indices] = inputs
|
79 |
+
padded_inputs = output.view(batch, seqlen, *rest)
|
80 |
+
|
81 |
+
padded_labels = None
|
82 |
+
if labels is not None:
|
83 |
+
padded_labels = torch.full((batch * seqlen,), fill_value=ignore_index, dtype=labels.dtype, device=labels.device)
|
84 |
+
padded_labels[indices] = labels
|
85 |
+
padded_labels = padded_labels.view(batch, seqlen)
|
86 |
+
|
87 |
+
return padded_inputs, padded_labels
|
rotary.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 **AUTHORS_TODO**
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright (c) 2023, Tri Dao.
|
5 |
+
# License: Apache-2.0
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from einops import rearrange
|
9 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
10 |
+
|
11 |
+
from typing import Optional, Tuple, Union
|
12 |
+
|
13 |
+
|
14 |
+
class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
15 |
+
@staticmethod
|
16 |
+
def forward(
|
17 |
+
ctx,
|
18 |
+
qkv,
|
19 |
+
cos,
|
20 |
+
sin,
|
21 |
+
interleaved=False,
|
22 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
23 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
24 |
+
max_seqlen: Optional[int] = None,
|
25 |
+
):
|
26 |
+
# (total_nnz, 3, nheads, headdim)
|
27 |
+
total_nnz, three, nheads, headdim = qkv.shape
|
28 |
+
assert three == 3
|
29 |
+
if qkv.is_contiguous():
|
30 |
+
# Call 1 kernel instead of 2 kernels
|
31 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
32 |
+
# dimensions, we get the same tensor
|
33 |
+
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
|
34 |
+
qk = qkv[:, :2].view(total_nnz, -1, headdim)
|
35 |
+
apply_rotary(
|
36 |
+
qk,
|
37 |
+
cos,
|
38 |
+
sin,
|
39 |
+
seqlen_offsets=seqlen_offsets,
|
40 |
+
cu_seqlens=cu_seqlens,
|
41 |
+
max_seqlen=max_seqlen,
|
42 |
+
interleaved=interleaved,
|
43 |
+
inplace=True,
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
q, k = qkv[:, 0, :, :], qkv[:, 1, :, :]
|
47 |
+
apply_rotary(
|
48 |
+
q,
|
49 |
+
cos,
|
50 |
+
sin,
|
51 |
+
seqlen_offsets=seqlen_offsets,
|
52 |
+
cu_seqlens=cu_seqlens,
|
53 |
+
max_seqlen=max_seqlen,
|
54 |
+
interleaved=interleaved,
|
55 |
+
inplace=True,
|
56 |
+
)
|
57 |
+
apply_rotary(
|
58 |
+
k,
|
59 |
+
cos,
|
60 |
+
sin,
|
61 |
+
seqlen_offsets=seqlen_offsets,
|
62 |
+
cu_seqlens=cu_seqlens,
|
63 |
+
max_seqlen=max_seqlen,
|
64 |
+
interleaved=interleaved,
|
65 |
+
inplace=True,
|
66 |
+
)
|
67 |
+
|
68 |
+
if isinstance(seqlen_offsets, int):
|
69 |
+
ctx.save_for_backward(cos, sin, cu_seqlens)
|
70 |
+
ctx.seqlen_offsets = seqlen_offsets
|
71 |
+
else:
|
72 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
73 |
+
ctx.seqlen_offsets = None
|
74 |
+
ctx.interleaved = interleaved
|
75 |
+
ctx.max_seqlen = max_seqlen
|
76 |
+
return qkv
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def backward(ctx, do):
|
80 |
+
seqlen_offsets = ctx.seqlen_offsets
|
81 |
+
if seqlen_offsets is None:
|
82 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
83 |
+
else:
|
84 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
85 |
+
if do.is_contiguous():
|
86 |
+
total_nnz, three, nheads, headdim = do.shape
|
87 |
+
# Call 1 kernel instead of 2 kernels
|
88 |
+
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads)
|
89 |
+
# dimensions, we get the same tensor
|
90 |
+
dqk = do[:, :2].view(total_nnz, -1, headdim)
|
91 |
+
apply_rotary(
|
92 |
+
dqk,
|
93 |
+
cos,
|
94 |
+
sin,
|
95 |
+
seqlen_offsets=seqlen_offsets,
|
96 |
+
cu_seqlens=cu_seqlens,
|
97 |
+
max_seqlen=ctx.max_seqlen,
|
98 |
+
interleaved=ctx.interleaved,
|
99 |
+
inplace=True,
|
100 |
+
conjugate=True,
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
dq, dk = do[:, 0, :, :], do[:, 1, :, :]
|
104 |
+
apply_rotary(
|
105 |
+
dq,
|
106 |
+
cos,
|
107 |
+
sin,
|
108 |
+
seqlen_offsets=seqlen_offsets,
|
109 |
+
cu_seqlens=cu_seqlens,
|
110 |
+
max_seqlen=ctx.max_seqlen,
|
111 |
+
interleaved=ctx.interleaved,
|
112 |
+
inplace=True,
|
113 |
+
conjugate=True,
|
114 |
+
)
|
115 |
+
apply_rotary(
|
116 |
+
dk,
|
117 |
+
cos,
|
118 |
+
sin,
|
119 |
+
seqlen_offsets=seqlen_offsets,
|
120 |
+
cu_seqlens=cu_seqlens,
|
121 |
+
max_seqlen=ctx.max_seqlen,
|
122 |
+
interleaved=ctx.interleaved,
|
123 |
+
inplace=True,
|
124 |
+
conjugate=True,
|
125 |
+
)
|
126 |
+
|
127 |
+
return do, None, None, None, None, None, None
|
128 |
+
|
129 |
+
|
130 |
+
def apply_rotary_emb_unpad(
|
131 |
+
qkv,
|
132 |
+
cos,
|
133 |
+
sin,
|
134 |
+
interleaved=False,
|
135 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
136 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
137 |
+
max_seqlen: Optional[int] = None,
|
138 |
+
):
|
139 |
+
"""
|
140 |
+
Arguments:
|
141 |
+
qkv: (total_nnz, 3, nheads, headdim) - input tensor for packed QKV.
|
142 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
143 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
144 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
145 |
+
inplace: if True, apply rotary embedding in-place.
|
146 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
147 |
+
Most commonly used in inference when we have KV cache.
|
148 |
+
cu_seqlens: (batch + 1,) or None
|
149 |
+
max_seqlen: int
|
150 |
+
Return:
|
151 |
+
out: (total_nnz, dim)
|
152 |
+
rotary_dim must be <= headdim
|
153 |
+
Apply rotary embedding to the first rotary_dim of x.
|
154 |
+
"""
|
155 |
+
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, interleaved, seqlen_offsets, cu_seqlens, max_seqlen)
|
156 |
+
|
157 |
+
|
158 |
+
class UnpaddedRotaryEmbedding(torch.nn.Module):
|
159 |
+
"""
|
160 |
+
The rotary position embeddings applied directly to unpadded sequences.
|
161 |
+
"""
|
162 |
+
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
dim: int,
|
166 |
+
base: float = 10000.0,
|
167 |
+
interleaved: bool = False,
|
168 |
+
max_seqlen: Optional[int] = None,
|
169 |
+
scale_base: Optional[bool] = None,
|
170 |
+
pos_idx_in_fp32: bool = True,
|
171 |
+
device: Optional[torch.device] = None,
|
172 |
+
dtype: Optional[torch.dtype] = None,
|
173 |
+
):
|
174 |
+
"""
|
175 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
176 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
177 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
178 |
+
otherwise they might be in lower precision.
|
179 |
+
This option was added because previously (before 2023-07-02), when we construct
|
180 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
181 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
182 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
183 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
184 |
+
embeddings for some positions will coincide.
|
185 |
+
To maintain compatibility with models previously trained in pure bf16,
|
186 |
+
we add this option.
|
187 |
+
max_seqlen: if max_seqlen, device, and dtype are provided, we precompute the cos_sin_cache
|
188 |
+
up to max_seqlen. If the max_seqlen, device, or dtype during training/inference differ,
|
189 |
+
the cos_sin_cache wll be recomputed during the forward pass.
|
190 |
+
"""
|
191 |
+
super().__init__()
|
192 |
+
self.dim = dim
|
193 |
+
self.base = float(base)
|
194 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
195 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
196 |
+
inv_freq = self._compute_inv_freq(device)
|
197 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
198 |
+
self.interleaved = interleaved
|
199 |
+
self.scale_base = scale_base
|
200 |
+
scale = (
|
201 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
202 |
+
if scale_base is not None
|
203 |
+
else None
|
204 |
+
)
|
205 |
+
self.register_buffer("scale", scale, persistent=False)
|
206 |
+
|
207 |
+
self._seq_len_cached = 0
|
208 |
+
self._cos_cached = None
|
209 |
+
self._sin_cached = None
|
210 |
+
self._cos_k_cached = None
|
211 |
+
self._sin_k_cached = None
|
212 |
+
|
213 |
+
if max_seqlen is not None and device is not None and dtype is not None:
|
214 |
+
self._update_cos_sin_cache(max_seqlen, device=device, dtype=dtype)
|
215 |
+
|
216 |
+
def _compute_inv_freq(self, device=None):
|
217 |
+
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
218 |
+
|
219 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
220 |
+
# Reset the tables if the sequence length has changed,
|
221 |
+
# if we're on a new device (possibly due to tracing for instance),
|
222 |
+
# or if we're switching from inference mode to training
|
223 |
+
if (
|
224 |
+
seqlen > self._seq_len_cached
|
225 |
+
or self._cos_cached is None
|
226 |
+
or self._cos_cached.device != device
|
227 |
+
or self._cos_cached.dtype != dtype
|
228 |
+
or (self.training and self._cos_cached.is_inference())
|
229 |
+
):
|
230 |
+
self._seq_len_cached = seqlen
|
231 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
232 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
233 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
234 |
+
if self.pos_idx_in_fp32:
|
235 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
236 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
237 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
238 |
+
# cos & sin output to change significantly.
|
239 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
240 |
+
if self.inv_freq.dtype != torch.float32:
|
241 |
+
inv_freq = self._compute_inv_freq(device=device)
|
242 |
+
else:
|
243 |
+
inv_freq = self.inv_freq
|
244 |
+
else:
|
245 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
246 |
+
inv_freq = self.inv_freq
|
247 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
248 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
249 |
+
freqs = torch.outer(t, inv_freq)
|
250 |
+
if self.scale is None:
|
251 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
252 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
253 |
+
else:
|
254 |
+
power = (
|
255 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
256 |
+
) / self.scale_base
|
257 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
258 |
+
# We want the multiplication by scale to happen in fp32
|
259 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
260 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
261 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
262 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
263 |
+
|
264 |
+
def forward(
|
265 |
+
self,
|
266 |
+
qkv: torch.Tensor,
|
267 |
+
cu_seqlens: torch.Tensor,
|
268 |
+
max_seqlen: Optional[int] = None,
|
269 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
270 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
271 |
+
"""
|
272 |
+
qkv: (total_nnz, 3, nheads, headdim)
|
273 |
+
cu_seqlens: (batch + 1,) cumulative sequence lengths
|
274 |
+
max_seqlen: int max seq length in the batch
|
275 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
276 |
+
Most commonly used in inference when we have KV cache.
|
277 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
278 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
279 |
+
Apply rotary embedding *inplace* to qkv.
|
280 |
+
"""
|
281 |
+
if max_seqlen is not None:
|
282 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
283 |
+
|
284 |
+
qkv = apply_rotary_emb_unpad(
|
285 |
+
qkv,
|
286 |
+
self._cos_cached,
|
287 |
+
self._sin_cached,
|
288 |
+
interleaved=self.interleaved,
|
289 |
+
seqlen_offsets=seqlen_offset,
|
290 |
+
cu_seqlens=cu_seqlens,
|
291 |
+
max_seqlen=max_seqlen,
|
292 |
+
)
|
293 |
+
|
294 |
+
return qkv
|
295 |
+
|
296 |
+
def extra_repr(self) -> str:
|
297 |
+
return f"dim={self.dim}, base={self.base}, scale_base={self.scale_base}"
|
utils.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 Optuna, Hugging Face
|
2 |
+
# License: Apache-2.0
|
3 |
+
|
4 |
+
# Copyright 2023 OLMo Authors
|
5 |
+
# License: Apache-2.0
|
6 |
+
|
7 |
+
import functools
|
8 |
+
import logging
|
9 |
+
from enum import Enum
|
10 |
+
|
11 |
+
|
12 |
+
@functools.lru_cache(None)
|
13 |
+
def warning_once(self, *args, **kwargs):
|
14 |
+
"""
|
15 |
+
This method is identical to `logger.warning()`, but will emit the warning with the same message only once
|
16 |
+
|
17 |
+
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
|
18 |
+
The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
|
19 |
+
another type of cache that includes the caller frame information in the hashing function.
|
20 |
+
"""
|
21 |
+
self.warning(*args, **kwargs)
|
22 |
+
|
23 |
+
|
24 |
+
logging.Logger.warning_once = warning_once
|
25 |
+
logging.Logger.warn_once = warning_once
|
26 |
+
|
27 |
+
|
28 |
+
class StrEnum(str, Enum):
|
29 |
+
"""
|
30 |
+
This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
|
31 |
+
We include this here for compatibility with older version of Python.
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __str__(self) -> str:
|
35 |
+
return self.value
|
36 |
+
|
37 |
+
def __repr__(self) -> str:
|
38 |
+
return f"'{str(self)}'"
|